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Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime
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In a series of recent papers, anomalous Hall and Nernst effects have been theoretically discussed in the
nonlinear regime and have seen some early success in experiments. In this paper, by utilizing the role of
Berry curvature dipole, we derive the fundamental mathematical relations between the anomalous electric and
thermoelectric transport coefficients in the nonlinear regime. The formulas we derive replace the celebrated
Wiedemann-Franz law and Mott relation of anomalous thermoelectric transport coefficients defined in the linear
response regime. In addition to fundamental and testable new formulas, an important by-product of this work is
the prediction of nonlinear anomalous thermal Hall effect which can be observed in experiments.
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Introduction. Onsager’s reciprocity relations mandate that
the Hall effect in linear response has to vanish in a time-
reversal invariant system, whereas the nonlinear Hall effect
has no such restriction [1]. The generalized Onsager’s relation
appropriate for nonlinear current response indicates that in
order to get a nonzero DC nonlinear conductivity, the current
response requires dissipation and should be proportional to
the relaxation time τ [2]. Unlike the anomalous Hall effect in
the linear-response regime [3–15], the nonlinear anomalous
Hall effect (NLAHE) does not require broken time-reversal
symmetry (TRS) but needs inversion symmetry (IS) breaking.
The Berry curvature dipole (BCD), which is defined as the
first-order moment of the Berry curvature over the occupied
states, is found to be responsible for NLAHE [16–21]. The
importance of electron-electron interactions for the external
magnetic field dependence of the nonlinear conductivities has
been pointed out [22,23]. Motivated by the idea of NLAHE,
another second-order response function, nonlinear anomalous
Nernst effect (NLANE), has been predicted in transition-
metal dichalcogenides (TMDCs) [24–26]. Interestingly, these
nonlinear responses could manifest distinctive behaviors and
have become promising tools for understanding novel mate-
rials with low crystalline symmetry in experiments. In this
Rapid Communication, by utilizing the role of the Berry
curvature dipole, we derive the fundamental mathematical
formulas among the anomalous electric and thermoelectric
transport coefficients in the nonlinear regime, replacing the
celebrated Wiedemann-Franz law and the Mott relation [27]
which are valid in the linear response regime.
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In this Rapid Communication, we begin with the derivation
of a new nonlinear response function, namely, the nonlin-
ear anomalous thermal Hall effect (NLATHE), which can
be directly observed in experiments. NLATHE refers to the
appearance of a transverse thermal gradient as a second-order
response to an applied longitudinal heat current (Fig. 1).
Armed with these calculations, we then address the question
of fundamental relations among the anomalous transport coef-
ficients in the nonlinear regime. In linear response theory, the
relations among electric, thermoelectric, and thermal trans-
port coefficients of metals are encapsulated by the celebrated
Wiedemann-Franz law and Mott formula [27]. These formulas
in the context of linear anomalous transport coefficients have
been studied in topologically trivial and nontrivial materials
in theory as well as experiments [4,28–35]. While according
to the Wiedemann-Franz law, the electric and thermal con-
ductivities (regular or anomalous) are directly proportional
to each other, the Mott formula predicts that the Nernst
coefficient is proportional to the derivative of the Hall co-
efficient with respect to the chemical potential [see Eqs. (7)
and (8)]. Interestingly, our analytical calculations for all three
anomalous transport coefficients allow us to predict funda-
mentally new relations among the transport coefficients in
the nonlinear regime. The principal result of this work is
the remarkable prediction that in the nonlinear regime the
anomalous Hall and Nernst coefficients are directly propor-
tional to each other [Eq. (16)], while they are related through
a derivative in the linear response regime [Mott relation, Eq.
(8)]. Moreover, the derivative appears in the formula relating
the electric and thermal conductivities in the nonlinear regime
[Eq. (14)], while the Wiedemann-Franz law [Eq. (7)] in the
linear response regime has no such derivative. The role of
the derivative is thus interchanged in the nonlinear regime
with respect to its linear response counterpart. These results
should be tested in experiments as confirmation of the intrin-
sic nonlinearity, rather than a more conventional departure
from the Wiedemann-Franz law and the Mott formula. We
check the validity of our analytical results by full numerical
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FIG. 1. Schematic experimental setup for measuring the nonlin-
ear anomalous thermal Hall effect. A transverse thermal gradient
(�T ) can be measured as a second-order response of the longitudinal
heat current even in the absence of external magnetic field. The
sample breaks inversion but respects time-reversal symmetry, so the
linear response anomalous thermal Hall current is known to vanish
by symmetry.

evaluation of the relevant quantities for MoS2, a TR invariant
but inversion-symmetry-broken TMDC that has been inten-
sively studied in experiments recently.

Boltzmann theory and anomalous thermal Hall effect in
nonlinear regime. The phenomenological Boltzmann trans-
port equation can be written as

{∂t + ṙ∇r + k̇∇k} f (k, r, t ) = Icoll{ f (k, r, t )}, (1)

where the collision integral Icoll{ f (k, r, t )} incorporates the ef-
fects of electron correlations (inelastic scattering) and elastic
scattering from impurities. For the sake of simplicity, we here
focus only on the impurity scattering. Invoking the relaxation
time approximation, the steady-state solutions to the Boltz-
mann equation is given by

{ṙ∇r + k̇∇k} f (k) = −gk

τ
, (2)

where gk = f (k) − f0 is the difference between the perturbed
Fermi-Dirac distribution fk and equilibrium Fermi-Dirac
function f0. Considering the homogeneous uniform fields, we
have dropped the r dependence of f (k, r, t ). Here, τ is the
average scattering time between two successive collisions.
For simplicity, we ignore the momentum dependence of the
scattering time τ and assume it to be a constant for this work.

To find the nonlinear anomalous thermal Hall coefficient in
the absence of the external fields, we expand gk as gk = g1

k +
g2

k + · · · , where gn
k is understood as the nth-order response

to the applied thermal gradient, i.e., gn
k ∝ (∇T )n. Substitut-

ing f (k) = f0 + gk into the steady-state Boltzmann equation
given in Eq. (2), we could find the distribution function at the
first and second orders in the thermal gradient as

g1
k = τvk

(εk − μ)

T

∂ f0

∂εk
∇T,

g2
k = τvk

(εk − μ)

T

∂g1
k

∂εk
∇T,

(3)

where μ is the chemical potential, vk = h̄−1∇kεk is group ve-
locity with εk the energy dispersion. In principle, expansions
with higher orders (∇T ) around the equilibrium distribution
function can be derived by iteration. However, in this paper

we restrict the expansions only up to the quadratic order and
neglect the small higher order (∝O(τ n), n � 3) terms.

After accounting for both the normal and anomalous con-
tributions, the total thermal current jQ

tot is given by jQ
tot =

jQ
N + jQ

E + jQ
T , where jQ

N is the standard contribution to ther-
mal current coming from the conventional velocity vk of the
carriers and jQ

E is the anomalous thermal current mediated by
the Berry curvature �k in the presence of electric field E [28].
In this paper, we are interested in the last term jQ

T given by
[36]

jQ
T = −k2

BT

h̄
∇T

∫
[dk]

∑
n

�n
k

[
β2

(
εn

k − μ
)2

f0

+ π2

3
− In2 (1 − f0) − 2 Li2 (1 − f0)

]
, (4)

which describes the transverse thermal response to the applied
thermal gradient −∇T in the presence of a nontrivial Berry
curvature �k.

Substituting Eq. (3) into the thermal Hall term in Eq. (4)
[with f0 replaced by fk = f0 + gk)], the nonlinear anomalous
thermal Hall current flowing along the direction a (second
order of −∇T ) can be written as

(
jQ
T

)′
a = εabc

τ∇bT ∇d T

h̄2

∫
[dk]

∑
n

	n
k,c

(
εn

k − μ
)3

T 2

∂ f0

∂kd
, (5)

where the prime on ( jQ
T )′ indicates the nonlinear response

and a, b, c, d represent the components x, y, z, and n is the
band index. In this paper, we focus on this Berry curvature-
dependent anomalous contribution to ( jQ

T )′a which is nonzero
in TRS invariant systems.

From Eq. (5), the nonlinear anomalous thermal Hall coef-
ficient can be written as [( jQ

T )′a = εabcl ′
cd (∇bT ∇d T )],

l ′
cd = τT

h̄2

∫
[dk]

∑
n

	n
k,c

(
εn

k − μ
)3

T 3

∂ f0

∂kd
. (6)

This is one of the main results of this paper. We find that
NLATHE, which is linearly proportional to the scattering
time, appears due to the Berry curvature from the states
near the Fermi surface. Under TR symmetry, we know �k =
−�−k, εk = ε−k, and ∂ f0/∂kd = −∂ f0/∂ (−kd ). Therefore, it
is clear from the Eq. (6) that NLATHE can survive even in the
time-reversal invariant systems.

Analog of Wiedemann-Franz law and Mott relation in
the nonlinear regime. We now investigate the celebrated
Wiedemann-Franz law and Mott relation in the nonlinear
regime at low temperatures. In the linear response regime, the
Wiedemann-Franz law, which gives the ratio between thermal
conductivity (κab) and electrical conductivity (σab), is given
by [37]

κab

σab
= LT (7)

with L = π2k2
B/3e2 being the Lorentz number. On the other

hand, the Mott relation can be written as [27]

αab = eLT
∂σab

∂μ
, (8)
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where αab is the thermoelectric conductivity. To derive the
analog of these formulas in the nonlinear regime, we first con-
sider the nonlinear anomalous Hall effect. The BCD-induced
NLAHE at a finite temperature can be written as [17]

χabc = εabd
e3τ

2h̄2 Dcd , (9)

where Dcd , the Berry curvature dipole, is defined as

Dcd =
∑

n

∫
[dk]

∂�k,c

∂kd
fk = −

∑
n

∫
[dk]�k,c

∂ fk

∂kd
. (10)

Using the Sommerfeld expansion [27], the BCD term (Dcd ) of
NLAHE at low temperature can be written as

Dcd (T, μ) = Gcd (μ) + π2

6
(kBT )2G(2)

cd (μ) + O(T 4), (11)

where

Gcd (ε) =
∫

[dk]δ(ε − εk )�k,c
∂εk

∂kd
(12)

and G(n)
cd (μ) = ∂nGcd (μ)/∂μn. Here, the first term Gcd (μ) is

the zero-temperature BCD at Fermi energy μ whereas the sec-
ond term shows a T 2 temperature dependence of the NLAHE,
which agrees well with previous experimental results [18].
Similarly, the NLATHE at low temperature can be written as

l ′
cd (T, μ) = −7τπ4k4

B

15h̄2 T 2G(1)
cd (μ) + O(T 4) (13)

with the higher order derivatives G(n)
cd (μ) (odd number n � 3)

included in O(T 4).
Now, based on Eqs. (11) and (13), we can write the

Wiedemann-Franz law in nonlinear regime as

l ′
cd = −14

15
eL2

0T 2 ∂χ0(μ)

∂μ
, (14)

where χ0(μ) = e3τGcd (μ)/2h̄2 denotes the zero-temperature
NLAHE coefficient given by Eq. (9), and L0 = k2

Bπ2/e2.
Clearly, unlike the linear response regime, where the ther-
mal Hall coefficient and charge Hall coefficient are directly
proportional to each other [see Eq. (7)], the analog of the
Wiedemann-Franz law in the nonlinear regime given by
Eq. (14) shows that the anomalous thermal Hall coefficient is
proportional to the first-order derivative of the anomalous Hall
coefficient with respect to the chemical potential. Also, in con-
trast to the linear regime, the proportionality factor depends
on T 2, rather then T as in conventional Wiedemann-Franz
law. The results in Eq. (14) should be taken as a result of
the intrinsic nonlinearity, rather than a conventional departure
from the Wiedemann-Franz law [38–44].

We could also derive the analog of the Mott formula in the
nonlinear regime by first writing down the NLANE coefficient
[25,26] as

α′
cd (T, μ) =eτ

h̄2

{π2k2
B

3
Gcd (μ) + 7π4k4

B

60
T 2G(2)

cd (μ) + O(T 4)
}
.

(15)

Based on Eqs. (11) and (15), the relation between the coeffi-
cients of NLANE and NLAHE can be written as

α′
cd (μ) = 2

3 L0χ0(μ), (16)

where we have considered only the first term for α′
cd [where

the higher order terms are smaller by the successive higher
order directive of the zero temperature BCD; see Eq. (11)].
Equation (16) is the Mott relation in the nonlinear regime
which shows a finite value for the NLANE (α′) even at zero
temperature. In contrast to the linear regime, where the Nernst
coefficient is proportional to the derivative of the Hall coeffi-
cient [see Eq. (8)], in the nonlinear regime, the corresponding
anomalous coefficients are directly proportional to each other.
Therefore, we find that, remarkably, the intrinsic nonlinearity
introduces a derivative in the Wiedemann-Franz law while
it removes the same from the Mott relation. These formu-
las can be directly tested in experiments in TR-invariant but
inversion-broken systems where the anomalous coefficients
are zero in the linear regime by symmetry.

Nonlinear transport coefficients for 2D massive Dirac
fermions. We consider a model Hamiltonian of tilted 2D Dirac
cones [45,46], which captures the low-energy properties of
various Dirac materials, such as the surface of topological
crystalline insulators and strained transition-metal dichalco-
genides. The corresponding model Hamiltonian can be written
as

Hs = sαkyτ0 + vF h̄(kxτy − skyτx ) + �τz. (17)

Here, vF is the Fermi velocity, � is the energy band gap
opened at the ±K valley, α is the tilting parameter, and τx,y,z,0

represent Pauli matrices. The wave vector k is measured from
the valley center ±K with index s = ±1 (which also indicates
the opposite chirality of the Dirac fermions). Note that the
Hamiltonian in Eq. (17) is TR invariant and the two massive
Dirac cones Hs=±1 are mapped to each other by the TR sym-
metry.

The low-energy dispersion and the corresponding Berry
curvature of the Hamiltonian are given as

En,s
k = sαky + (−1)n−1

√
�2 + (vF h̄)2k2,

	n,s
k = (−1)n−1 s(vF h̄)2�

2(�2 + (vF h̄)2k2)3/2
.

(18)

It is clear that �k = −�−k is satisfied for �k in Eq. (18). The
tilting parameter α is required to produce a nonzero Berry
curvature dipole contribution which can produce NLAHE,
NLANE, and NLATHE. In what follows, we use parameters
relevant to MoS2, a TR-invariant TMDC, to compute the
anomalous transport coefficients.

For a system tilted along the ky axis, only the x-direction
mirror symmetry (Mx) that takes kx → −kx is preserved. As
shown as in Fig. 2(a), the Berry curvature �k is azimuthally
symmetric in the kx-ky plane, whereas in Fig. 2(b) the modu-
lated Berry curvature β3(Ek − μ)3�k is only symmetric with
respect to kx. Because of the shift of the Fermi surface [black
dashed line in Figs. 2(a) and 2(b) or the ring in Figs. 2(c)
and 2(d)] along ky, the net integrals of �k in Fig. 2(a)
and β3(Ek − μ)3�k in Fig. 2(b) over the Fermi surface are
nonzero. This explicitly renders the NLATHE a Fermi surface
property. Figure 2 shows that the only nonzero component for
NLATHE given in Eq. (6) is l ′

zy where c = z, d = y represent
�k,z, ∂y f0 respectively.
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FIG. 2. (a) Berry curvature �n,s
k and (b) modulated Berry curva-

ture β3(Ek − μ)3�n,s
k projected on the k space for Hamiltonian given

in Eq. (17). The black dashed lines indicate the Fermi surface at μ =
1.5�. Panels (c) and (d) show the derivative of Fermi distribution
function at Fermi energy μ = 1.5� for ∂x fk and ∂y fk respec-
tively. The parameters used here are n = 1, s = 1, t = 1.1 eV, a =
3.19 Å, v = at, α = 0.1v, � = 1.8 eV, kx,y ∈ [−0.5π, 0.5π ], β =
1 (eV)−1 is considered for panels (a) and (b) and temperature T =
100 K is applied for panels (c) and (d).

It has been shown in Ref. [26] that the nonlinear anomalous
Nernst coefficient has a dependence on the chemical potential
similar to that of the nonlinear anomalous Hall coefficient
studied in the experiments of Refs. [18,19]. This is consistent
with the analog of the Mott formula valid in the nonlinear
regime given in Eq. (16). To verify the relations between
the coefficients of anomalous Hall and thermal Hall effects
[namely the Wiedemann-Franz law in the nonlinear regime
given by Eq. (14)], we compare the results for l ′

y (index z
for �k,z is suppressed in a 2D system) based on Sommerfeld
expansion in Eq. (13) with that from numerical calculations
based on Eq. (6). As shown in Fig. 3, the analytical results
(red dotted line) from Eqs. (13) and (14), coincide with the nu-
merical results (the rest of the data besides the red dotted line)
at low temperatures (T = 5–50 K). The numerical results and
the prediction from the modified Wiedemann-Franz law differ
from each other at higher temperatures (T = 100–300 K).
To verify the quadratic temperature dependence in Eqs. (13)
and (14), we plot the NLATHE coefficient l ′

y as a function
of (kBT )2 at different chemical potentials in Fig. 4. At low
temperatures (T � 50 K), the numerical (circles) and analyt-
ical (black lines) results are consistent with each other, while
they start deviating from each other around T = 60K with
μ = 1.05� (blue circles). The deviations in Figs. 3 and 4 are
due to the omission of the higher orders terms in temperature
[O(T 4)] in Eq. (13). These contributions to l ′

y can be ignored
in the regime of low temperatures. We have checked that our
results for NLATHE are robust against all the monotonous
modulation of the band gap � such as tuning effect by external

FIG. 3. Nonlinear anomalous thermal Hall coefficient l ′
y/(kBT )2

vs chemical potential μ at different temperatures T . The red dot-
ted line represents the analytical results based on the nonlinear
Wiedemann-Franz law [Eqs. (13) and (14)]. The rest of the data
points are results of numerical calculations based on Eq. (6). The in-
set is an enlargement of the plot around μ = � (black dash line). For
μ < �, the numerical results deviate from the modified Wiedemann-
Franz law valid in the nonlinear regime because of the absence of
higher orders temperature contributions [see Eq. (13)]. Here, the unit
for the y axes is τk2

B/h̄2; the other parameters are the same as in
Fig. 2.

field [47], finite-temperature effects such as electron-phonon
coupling [48], doping effect through the mixing of chalcogens
in MoX2 (X = S, Se, or Te) [49], etc., as well as strength of
the tilting parameter due to uniaxial strain [50–53].

FIG. 4. Nonlinear thermal Hall coefficient l ′
y plotted as a function

of (kBT )2 for different values of the chemical potential. The circles
are from numerical calculations based on Eq. (6), while the black
lines corresponding to each chemical potential are the analytical
results based on Eqs. (13) and (14). Here the units for y axes are
τk2

B/h̄2, the applied temperature T ∈ [5K, 100K] with a unit step
(1K), and all other parameters are the same as in Fig. 2.
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Discussion. We derive the fundamental relations among the
anomalous transport coefficients which replace the celebrated
Wiedemann-Franz law and Mott relation in the nonlinear
regime. Important by-products of these calculations include
the prediction of nonlinear anomalous thermal Hall effect [Eq.
(5)] and the persistence of the nonlinear anomalous Nernst
coefficient in the zero temperature limit [Eq. (15)]. Our analyt-
ical results are confirmed by numerical calculations on MoS2,
a TR invariant TMDC that has been intensively studied in
recent experiments. The nonlinear Wiedemann-Franz law and
Mott relation derived in this work are valid for topologically
nontrivial conductors with nonzero BCD.

Along with the BCD-induced nonlinear thermal Hall
current ( jQ

T )′a given in Eq. (5), there exist other second-
order contributions such as disorder-mediated contributions
[20,54] (nonlinear side jump and skew-scattering contribu-
tions), scattering time-independent contributions [20,55] and
Berry-curvature-independent contributions [17]. The BCD-
induced contributions to the nonlinear response dfunctions

discussed in this work are dominant in TR-invariant systems
in which the Berry-curvature-independent contribution, which
is nonzero only in the absence of both TRS and IS, discussed
in Ref. [24] vanishes. Moreover, the Berry-curvature-induced
contribution independent of scattering time which requires the
breaking of TRS to be nonzero also vanishes in TR symmetric
systems where the BCD-induced contributions are dominant.
In addition, experimentally, the external, disorder-mediated,
side-jump, and skew-scattering contributions to the nonlinear
response functions can be separated from the BCD-induced
contributions using a scaling formula as shown in Ref. [54].
The Wiedemann-Franz law and Mott relation derived in this
paper thus apply only to the BCD-induced anomalous part
of the nonlinear response functions which are nonzero in TR
symmetric systems and leave out the contributions that take
nonzero values only in systems with broken TRS.
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from ARO Grant No. W911NF-16-1-0182.
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