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The features of animal population dynamics, for instance, flocking and migration, are often synchronized for
survival under large-scale climate change or perceived threats. These coherent phenomena have been explained
using synchronization models. However, such models do not take into account asynchronous and adaptive
updating of an individual’s status at each time. Here, we modify the Kuramoto model slightly by classifying
oscillators as leaders or followers, according to their angular velocity at each time, where individuals interact
asymmetrically according to their leader/follower status. As the angular velocities of the oscillators are updated,
the leader and follower status may also be reassigned. Owing to this adaptive dynamics, oscillators may cooperate
by taking turns acting as a leader or follower. This may result in intriguing patterns of synchronization transitions,
including hybrid phase transitions, and produce the leader-follower switching pattern observed in bird migration
patterns.
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An intricate leader-follower dynamics associated with the
rankings of the agents is often observed in diverse areas,
including sports, such as team pursuit in speed skating [1]
and track cycling, and biological systems, such as bird
flocks [2–5], insect swarms [6,7], or fish schools [8]. In team
pursuits in speed skating, a team of three skaters races with
another team with the goal of overtaking the other team,
which starts on the opposite side of the rink. Team pursuit is
technically demanding; skaters in a team need to follow each
other closely and synchronously in a line to minimize the drag.
The leader faces the wind, whereas the followers encounter
less wind. To reduce the energy expended, the leader leaves
the front of the team and rejoins the team at the rear. This
switching behavior helps minimize the total energy cost of the
team. Otherwise, the leader will be exhausted quickly. Bird
flocks also exhibit similar switching dynamics during seasonal
long-distance migrations. It was recently found that juvenile
northern bald ibis cooperate by taking turns as leaders and
precisely matching their flying times in the trailing and lead-
ing positions [5]. This strategy of shuffling positions enables
the flock to withstand the physical exertion during migration
flights.

Attempts have been made to understand the movement
of groups of animals such as fish schools, bird flocks, and
insect swarms in terms of statistical mechanics using max-
imum entropy methods [9], agent-based simulations [10],
and analytically tractable models [11], including synchroniza-
tion models. The Vicsek model [2] provides useful insights
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into collective swarming behavior in nature, for example, in
bird flocks [4,8]. Agents can swarm by adapting the aver-
age motion of nearby agents, which may be interpreted as a
synchronization phenomenon. Moreover, the presence of an
actual leader agent can generally enhance the cohesive move-
ments of the Vicsek agents [12,13]. The Vicsek model shares
some features with the Kuramoto model (KM) in the aspect
that, as the interaction strength increases, a phase transition
occurs from the incoherent state to the coherent state, i.e., a
collective synchronous state. By contrast, whereas the Vicsek
model can exhibit rich spatiotemporal patterns in two [2,7,14–
16] or three dimensions [3], the KM is more suitable for
complex dynamics on a ring. Vicsek agents are subjected to
alignment rules, and the alignment arises in the Vicsek model
only at high density and low noise. KM on the other hand
can have varying interaction strengths between agents. The
two models have played complementary roles in the study of
collective behavior in natural systems.

However, both of the previous models are not sufficient for
describing the shuffling motion that often occurs inside a syn-
chronized biological cluster, by which the biological agents
can benefit, as suggested in the cases of the V-formation flight
of the juvenile northern bald ibis [5] and the speed skating
unit [1]. In this Rapid Communication, we focus on the pos-
sibility of shuffling, the temporal change in the microscopic
leader-follower status of the agents, while having maintained
the overall macroscopic synchronization cluster. In order to
have a change in leader-follower status, a leading agent must
be overtaken by another following agent. Such a switching
motion is something beyond the alignment motion, where just
the latter has often been focused previously. It is remarked that
although there are some synchronization models which ex-
plicitly introduce leaders and followers, however, each agent
usually takes a temporally fixed role as a leader or a fol-
lower [17–19]. In contrast, we take into account asynchronous
updating of an individual’s leader-follower status at each time.

2643-1564/2020/2(3)/032061(7) 032061-1 Published by the American Physical Society

https://orcid.org/0000-0003-0643-6959
https://orcid.org/0000-0002-9099-6395
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.032061&domain=pdf&date_stamp=2020-09-02
https://doi.org/10.1103/PhysRevResearch.2.032061
https://creativecommons.org/licenses/by/4.0/


JINHA PARK AND B. KAHNG PHYSICAL REVIEW RESEARCH 2, 032061(R) (2020)

Even though our model study may not be directly applicable
to real phenomena such as team pursuit in speed skating and
seasonal migrations of bird flocks, this study would open a
path to another class of Kuramoto dynamics: The dynamic
rule of each oscillator is updated depending on its current
dynamic state in a self-organized way.

Model. Here, we propose a discrete time two-state KM
with temporally switching dynamics in the leader-follower
states. In the model, all oscillators are classified into two
groups, the leader group L and follower group F , accord-
ing to their angular-velocity rankings at each time step. This

angular velocity could be interpreted as a leadership, or an
internal drive to become a leader, rather than as the proxy
for physical position. Each of the followers interact with all
the other oscillators, whereas each of the leaders interact with
only followers. According to this rule, circular motions of the
leaders are suppressed, in the sense that the leaders, unlike
the followers, do not have the advantage of being dragged by
others. Thus, this model is called the restricted KM (r-KM).
We calculate the angular velocity of each oscillator at each
instance as follows,

θi(t + �t ) =

⎧⎪⎨
⎪⎩

θi(t ) +
[
ωi + K

N

∑N
j=1 sin[θ j (t ) − θi(t )]

]
�t, for i ∈ F,

θi(t ) +
[
ωi + K

�hN�
∑�hN�

j∈F sin[θ j (t ) − θi(t )]
]
�t, for i ∈ L,

(1)

where θi(t ) and θ̇i(t ) ≡ [θi(t + �t ) − θi(t )]/�t denote the
angle and angular velocity of oscillator i, respectively. F and L
consist of the smallest and largest angular-velocity oscillators,
respectively, after the previous update. The intrinsic frequen-
cies {ωi} of each oscillator follow the Lorentzian distribution
g(ω) = γ /[π (γ 2 + ω2)] with γ = 0.5. K is the interaction
strength. N is the system size. �hN� (0 � h � 1) is the popu-
lation of followers. We repeat the update dynamics in (1) until
the system reaches a steady state. By steady state, we mean
stationarity of the magnitudes of the order parameters, whose
precise definitions will be followed later. As a result of this
updating, the leaders drag the followers, and the followers are
dragged by the leaders. The detailed rule is presented in Fig. 1.

It should be noted that the parameter h and the number of
elements in each group are fixed in time. Nevertheless, switch-
ing between leaders and followers occurs, if a follower’s

FIG. 1. Schematic illustration of the r-KM with three leaders and
four followers. All oscillators are classified into followers and leaders
with fraction h and 1 − h, respectively, according to their angular-
velocity rankings at each time. Each of followers interact with all the
other oscillators, whereas leaders interact with only followers. As a
result, the leaders drag the followers, and the followers are dragged
by the leaders. Hence, a leader-follower status switching may occur
if a follower overtakes a leader, as denoted by a pair of arrows.

angular velocity exceeds that of the leader. Thus, even though
the leader and follower groups are separate, their microscopic
compositions are repeatedly updated by switching oscillators
according to their angular-velocity rankings. We find that a
synchronization transition (ST) from an incoherent state to a
coherent state does not necessarily occur at a single transition
point Kc. Instead, multiple transitions and hybrid STs [20–23]
are possible depending on the control parameter h value, as it
will be explained more in detail later. Moreover, the oscillators
with intermediate values of the intrinsic frequency exhibit
rapid switching behavior between the two groups. By contrast,
those with extreme values of the intrinsic frequency rarely
switch unless the coupling constant is sufficiently large be-
yond the transition point Kc. Finally, the combined switching
intervals span a broad range of values and have a power-law
distribution.

The ST is characterized by complex order parameters de-
fined as

Z (t ) = Rei�t+ψ = 1

N

∑
i

eiθi ,

ZF (t ) = RF ei�F t+ψF = 1

�hN�
∑
i∈F

eiθi ,

and

ZL(t ) = RLei�Lt+ψL = 1

N − �hN�
∑
i∈L

eiθi , (2)

where R, RF , and RL are the magnitudes of phase coherences
of all of the oscillators, followers, and leaders, respectively. In
addition, Z = hZF + (1 − h)ZL. In the incoherent phase, R =
RF = RL = 0. In the coherent phase (R �= 0), either follower
group or both leader and follower groups are synchronized. It
is notable that the two groups do not necessarily entrain at the
same mean angular velocity in a coherent state. The leader-
follower entrainment may follow at a delayed transition point,
where the collective phases rotate at a common mean angular
velocity � = �F = �L, but with different phase separations
given by ψ , ψL, and ψF .
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FIG. 2. Three cases of ST in r-KM. Plots of the coherence order parameter R (left column) and traveling-wave order parameter � (right
column) vs K . (a), (b) When the number of followers is small (h = 0.3), two consecutive transitions occur at Kc1 and Kc2, from which R is
nonzero, and �F and �L converge to zero, respectively. (c), (d) When the number of followers or leaders has an intermediate value (h = 0.6),
the hybrid ST occurs with a critical exponent β ≈ 0.66 at Kc, from which R is nonzero, and � is zero. (e), (f) When the number of followers
is large (h = 0.8), consecutive transitions occur at Kc1, Kc2, and Kc3, from which RF increases, RL increases, and � is zero, respectively. In
the insets of (b), (d), and (f), the thin gray curves represent the time-averaged angular velocity ˙̄θi of each oscillator i in steady state vs K . The
curve is drawn for every 20 oscillators for visualization. The thick black curve represents �(K ) for all of the oscillators. Note that at Kc in
(d), sudden angular-velocity locking of a macroscopic O(N ) number of oscillators occurs. By contrast, in (b) and (f), a giant angular-velocity
cluster grows continuously by merging with other oscillators one by one. For all the panels, g(ω) = γ /[π (ω2 + γ 2)], with γ = 0.5, N = 103.

Numerical results. For numerical integrations we applied
the Heun’s method with a discrete time step size of �t = 0.01.
Natural frequencies ωi were regularly sampled from the
Lorentzian frequency distribution g(ω) = γ /[π (γ 2 + ω2)] so
that G(ωi ) are equally spaced, where G(ω) = ∫ ω g(ω′)dω′.
The width of the distribution was fixed to γ = 0.5, which
gives a continuous transition at Kc = 1 for the ordinary KM
(which corresponds to h = 1 of the r-KM). The traveling-
wave order parameters �, �L, and �F were obtained by
measuring the time-averaged rate of change in the com-
plex phases ψ , ψL, and ψF . Those collective phases were

sampled every two consecutive time steps to get rid of the
irrelevant high-frequency noises. Order parameters were time
averaged for a sufficiently long time after reaching a steady
state.

Here, the overall numerical simulation results are pre-
sented. The time-averaged coherence R is an order parameter
that determines the ST from the incoherent state to the co-
herent state in Figs. 2(a), 2(d) and 2(g). It is observed that
the STs may be categorized into three cases depending on
the magnitude of the control parameter h: (i) h < h
, (ii)
h
 < h � hu, and (iii) h > hu. We demonstrate that for cases
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(i) and (iii), two STs occur consecutively, whereas for case (ii),
a hybrid ST occurs. h
 ≈ 0.60 and hu ≈ 0.72 are estimated.

We first consider case (i), specifically h 	 0.5. In this case,
all of the followers initially have negative natural frequencies
ωi, whereas the majority of the leaders have positive ωi. It is
remarked that the distribution g(ω) is centered at zero. When
the coupling constant K is small, switching rarely occurs, and
the population arrangement is maintained. Thus, the group
angular velocity of the followers, �F , is negative, whereas that
of the leaders, �L, is positive; however, �L < |�F |, as shown
in Fig. 2(b). The two groups rotate in opposite directions. It
should be noted that �hN� followers interact with all the other
oscillators, whereas N − �hN� leaders interact only with the
followers. Owing to this rule, the synchronization of followers
is reinforced but it is weakly disturbed by the leader. Thus,
RF is larger than RL when K is small. In particular, when h
is small, the population of followers is smaller than that of
leaders, and the disturbance effect is stronger than when h is
large. Thus, the transition point Kc1 is larger for smaller h.
The order parameter begins to increase gradually from zero at
Kc1. In the subcritical regime K < Kc1, the average angular
velocities |�F | and �L decrease slowly as K increases to
Kc1. K > Kc1 is a traveling-wave phase. After Kc1, another
transition point exists at Kc2. Within the interval [Kc1, Kc2],
�F , and �L are entrained, and they then converge rapidly to
a stagnant value of the average angular velocity �, as shown
in Fig. 2(b). At Kc2, a cusp exists in the order parameter R
as the system is entrained [Fig. 2(a)]. As h is increased in (i)
but remains below 0.5, the population of followers becomes
more similar to that of leaders. Thus, Kc1 decreases. However,
Kc2 increases because |�F | becomes more similar to �L. The
cusp gradually fades as h increases. When h is close to 0.5, the
follower and leader populations are balanced, and |�F | ≈ �L

in the subcritical regime.
(ii) When h exceeds 0.5, the population balance breaks

down, and |�F | becomes smaller than �L in the subcriti-
cal regime, in contrast to case (i) [Fig. 2(e)]. Thus, as h
is increased, the disturbance strength becomes larger, i.e.,
the synchronization is more strongly suppressed, and thus
a larger transition point Kc is needed. As we observed in
the restricted Erdős-Rényi (r-ER) model [24,25], this r-KM
exhibits a hybrid ST in interval (ii). The order parameter R
behaves as R − R0 ∼ (K − Kc)β , where R0 is the jump in
the order parameter, and Kc is the transition point [20–23].
The exponent β is approximately β ≈ 0.75, independent of
h, which is contrary to the behavior in the r-ER model for
hybrid percolation transitions induced by cluster merging dy-
namics [24,25]. However, Kc depends on h: Kc increases as
h is increased. The phase and frequency STs occur at the
same transition point, Kc. �F and �L suddenly drop to zero
at Kc [Fig. 2(d)]. These behaviors are associated with the
pattern of sudden angular-velocity locking, as shown in the
inset. At K > Kc, the leader-follower angular velocity may
vary depending on the parameter values. It is a traveling-wave
phase but has small �.

(iii) For h > hu, the order parameter R exhibits multiple
transition behaviors [Fig. 2(e)]. In this regime, because h is
sufficiently large, the ST of the entire system is governed
mainly by the formation of a synchronized cluster of fol-
lowers. A continuous ST of the follower group occurs at

Kc1; however, a ST of the leader group follows at a different
transition point, Kc2, where Kc2 > Kc1. This is because the
leaders do not interact with each other directly, but gather
indirectly with the help of a sufficiently large mass of syn-
chronized followers. Although �F drops to zero at Kc1, the
leader population runs at a different angular velocity, �L �=
�F , until Kc3, where Kc3 > Kc1 [Fig. 2(f)]. Hence, [Kc1, Kc2]
is a chimera phase, and [Kc2, Kc3] is a standing-wave phase.
Finally, the leader group is entrained to the follower group;
�L suddenly drops to zero at Kc3, and the entire system
is frequency synchronized. The coherent, non-traveling-wave
phase lies beyond this point. The order parameter R shows
a corresponding increase by a small amount, exhibiting a
discontinuous transition. A similar consecutive transition fol-
lowed by a small jump transition has been observed in the
percolation transition in multilayer networks when the inter-
action between layers is weak [26]. However, the transition
point Kc1 of regime (iii) weakly varies on h, which may
be attributed to the finite-size effect of the transition point,
because this transition point is determined mainly within the
follower group and its population depends on h.

We set up self-consistency equations in the absence of
switching dynamics, in the Supplemental Material (SM) [27].
Followers and leaders are appointed according to their natural
frequencies {ωi}. The transition points are successfully cap-
tured, and the order parameter curves are consistent overall
with those obtained from the simulations; however, the critical
exponents are noticeably different. We attribute this incon-
sistency to the ignorance of leader-follower switching in the
self-consistency approach [27].

Next, we investigate microscopically the leader-follower
switching dynamics. The angular velocity and rank of each
oscillator change continually over time, as shown in Figs. 3(a)
and 3(c), respectively. This figure shows the angular velocity
of a given oscillator i in a system of size N = 1000 versus
time in the steady state. Note that for the oscillators with
intermediate ω ranks, although the changes in the angular
velocity θ̇i are small in Fig. 3(a), and the fluctuations are also
small in Fig. 3(b), the changes in their rankings are quite large
in Fig. 3(c), and the fluctuations are also large in Fig. 3(d),
particularly at both boundaries of the middle group. Moreover,
in Figs. 4(b) and 4(e), the oscillators with intermediate ω ranks
in the shaded region switch their status consecutively with
a probability close to unity, spending half of the total time
as leaders and the other half as followers. Their population
increases as K is increased in the supercritical regime. This
result seems to resemble the pattern of bird migration, where
all the birds act as a leader at roughly the same rate [5,28].
By contrast, oscillators on the low or high side of the ω

rankings rarely switch their leader-follower status unless the
coupling constant K is large enough that the middle class takes
over a wide range of population. Between the unchanging
high or low class and the switching middle class, there are
thin intervals of oscillators that switch frequently over the
follower-leader separation with probability q. Let us denote
the switch probability distribution as P(q) and assume that it
follows a power law, P(q) ∼ q−x. If we assume that the oscil-
lator motions are uncorrelated, IET distribution is calculated
as P(z) = ∫ 1

0 dqP(q)P(z|q) = ∫ 1
0 dqq−xq(1 − q)z−1 = B(2 −

x, z) ∼ z−(2−x), where P(z|q) is the conditional probability,
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FIG. 3. Trajectories of (a) angular velocity and (c) ranking as a function of time for given oscillators i, where the index i is ordered by
increasing natural frequency ωi. Steady-state fluctuation amplitudes of the angular velocity and ranking vs oscillator index i are shown in
(b) and (d), respectively. For a range of oscillators in the middle, angular velocities have small fluctuations. However, their rankings fluctuate
widely. Oscillators at the sides show large fluctuations in angular velocity but small fluctuations in ranking. The control parameters are set to
h = 0.7 and K = 1, which are near the transition point for the hybrid ST. In (b) and (d), the index of i is taken in 10 oscillator steps.

and B(2 − x, z) is the beta function [29]. The case x = 0
corresponds to the uniform probability distribution, where the
exponent of P(z) is two. A nonuniform distribution or the
effects of the correlations may change the precise value of
the exponent. Consequently, the IETs between two consecu-
tive switching events are heterogeneous, and their distribution
has a power-law tail, P(z) ∼ z−α [Figs. 4(a) and 4(d)]. This
heavy tail in the IET distribution arises from the dichotomous
dynamics and global sorting process. The IET distribution ex-
hibits crossover behavior between short and long IETs. Short
IETs are due to the oscillators in the thin intervals between the
lower and middle groups and between the upper and middle
groups. Long IETs are due to the oscillators in the lower group
which switch with small probability. Oscillators in the upper
group, on the other hand, do not switch. We find empirically
that the exponent of the IET distribution depends on the shape
of the frequency distribution g(ω), and also on the model
parameters K and h.

Discussion. For the ordinary KM (h → 1), the phase tran-
sition type is determined by the shape of the frequency
distribution g(ω). A unimodal or bimodal g(ω) yields a contin-
uous or discontinuous transition, respectively [30]. A hybrid
ST appears in some special marginal cases, such as flat g(ω)
classes [20–23] and a degree-frequency-correlated model on

a scale-free network with the degree exponent λ = 3 [31].
In these cases, the maximum competition arises among the
oscillators and suppresses the formation of a synchronization
seed cluster. Consequently, a macroscopic number of oscilla-
tors are suddenly entrained at a transition point. In contrast
to the previous models, the r-KM can produce a hybrid ST
if the parameter h is tuned to an appropriate value, even for
a unimodal g(ω). The reason is the asymmetric interactions
between the leader and follower groups and the tug-of-war
critical switching dynamics. Moreover, the r-KM exhibits var-
ious other ST patterns, e.g., multiple consecutive transitions.
The reason is that the leader and follower groups may be
regarded as double layers or communities, where multiple
transitions occur naturally when the interaction between the
two layers is asymmetric [26,32]. By contrast, traveling waves
are absent in the ordinary KM with symmetric g(ω). In the
r-KM, however, traveling waves are possible owing to the
asymmetric interactions between leader and follower groups,
which also appear in the KM with asymmetrically competing
interactions [21]. It is notable that the r-KM takes into account
the temporal adaptations of individual oscillators by allowing
oscillators to switch their leader/follower status. Hence, the
model produces interesting self-organized phenomena, where
we find a rapidly switching middle class that is half followers
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FIG. 4. Plots of (left column) the interevent time (IET) distributions of leader-follower switches for the r-KM, (middle column) each
oscillator’s frequency of swings, and (right column) participation rate as a leader for a subcritical coupling K = 0.5 and a supercritical coupling
K = 1.5, in regimes (top row) h = 0.6 and (bottom row) h = 0.8. There is an intermediate swinging class and populations on the sides, which
rarely switch. The IET distribution shows a crossover between two power laws. Boundary edges of the shaded boxes of the swing and leadership
contribute a short IET region. A long IET region is contributed by the low-ranked group, which also switches, but with a small probability.

and half leaders, as shown in Fig. 4. This type of temporal
organization equalizes the distribution of the duration times
in the follower and leader positions; this behavior is similar
to that observed in the flight patterns of migrating flocks of
birds [5]. Finally, we remark that Eq. (1) is invariant under
(θ, ω, g) ↔ (−θ,−ω, 1 − g). Hence, an inverse model of the
r-KM, with a limitation applied to the followers instead of
the leaders, yields an identical result except that g → 1 − g.
In addition, the model has rotational symmetry, and the order
parameter curve R(K ) is not affected by the translation of the
frequency distribution g(ω) → g(ω − �0), where the distri-
bution is centered at a nonzero mean, �0.

In conclusion, we proposed an oscillator model (the r-KM)
that includes leader-follower switching dynamics in addi-
tion to synchronization. This rank-based status reassignment,

which mimics adaptive behavior in complex systems, is in-
teresting to observe in synchronization models. This model
exhibits rich dynamical behavior that encompasses a hybrid
ST, a traveling-wave phase, standing waves, chimera states,
and a power-law IET distribution. These diverse patterns of
STs arise from the rich behavior of the model, which includes
asymmetric interactions, a multilayer leader-follower perspec-
tive, and temporal shuffling. Here, we studied the case of
Lorentzian distribution g(ω), but the results can be extended
to other distributions as well.
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