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We investigate the propagation of magnetic skyrmions on elastically deformable geometries by employing
imaginary time quantum field theory methods. We demonstrate that the Euclidean action of the problem carries
information of the elements of the surface space metric, and develop a description of the skyrmion dynamics
in terms of a set of collective coordinates. We reveal that curvature-driven effects emerge in geometries with
nonconstant curvature, which explicitly break the translational invariance of flat space. In particular, for a
skyrmion stabilized by a curvilinear defect, an inertia term and a pinning potential are generated by the varying
curvature, while both of these terms vanish in the flat-space limit.
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Introduction. The interplay between geometry, condensed
matter order, and topology has been a rich source of novel
physics throughout many disciplines, including thin mag-
netic materials [1], superfluid films [2], superconducting
nanoshells [3], and nematic liquid crystals [4]. Recent ad-
vances in materials technology have made it possible to fabri-
cate submicrometer-sized systems with complicated geometry
[5-8], and opened various possibilities toward tailoring phys-
ical phenomena at the nanoscale. In particular, considerable
effort has been devoted to synthesizing magnetic nanostruc-
tures with modified curvature [9,10], as they appear promising
elements in high-density magnetic memories [11,12].

The relation between topological defects and curved sur-
faces can be a source of new geometric effects [13—16].
Specifically to magnetism, the coupling between surface order
and curvature plays an important role in the stability and
dynamical properties of magnetization textures [17-20], and
the band structure of magnon modes [21,22]. This coupling
is particularly evident in two-dimensional systems known
to host topological excitations [23,24]. Among such excita-
tions, magnetic skyrmions, particlelike topological textures,
have attracted much attention due to potential applications in
magnetic information storage and processing devices [25,26].
Although skyrmion stability has been extensively studied
for a variety of curvilinear surfaces, including cylindrically
symmetric curved surfaces [27,28], spherical shells [29],
curvilinear defects [30], and curvature gradients [31], their
dynamics still need to be addressed. Similarly to the dynamics
of domain walls [32-34], it is expected that local changes in
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the geometry of the surface will result in remarkable changes
in the dynamic properties.

The present Rapid Communication aims to develop a for-
malism to describe the dynamics of a skyrmion propagating
on a magnetic surface with nontrivial geometry. Skyrmions
emerge as topological solutions of the magnetization field,
usually parametrized by a number of collective coordinates
of position. Here, we introduce a coupling of the skyrmion
with the underlying curvature and demonstrate that spaces
with nonconstant curvature generate an effective potential and
an inertial term for the skyrmion guiding center. In particular,
we explicitly calculate a position-dependent mass term for a
skyrmion stabilized by a curvilinear defect, which scales with
the skyrmion radius. Both the mass and the potential vanish in
the flat-space limit.

Field theory in curved space. We consider an arbitrary
curvilinear ferromagnetic insulating shell, with normalized
magnetization m valued on a unit sphere in Cartesian coordi-
nates, m = sin ® cos ®x + sin © sin Oy + cos Oz, described
by the imaginary time Euclidean action

B iS12
Sp = E/ dr/dA[%‘b(l — T + W(®, H)}. (H
o Jo o

Here, S is the magnitude of the spin, « is the lattice spacing,
IM=cosO, L is the film thickness, and the dot denotes a time
derivative, ® = 9, P, a convention we adopt from now on.
Also, we set /i = 1 throughout. The surface is parametrized
by the curvilinear coordinates (7, 17;), given here in dimen-
sionless units. We introduce / as a model-dependent mag-
netic length and d A = /|gldnidn, the surface element with
gl = +/Tdet[gu]] and g, the surface space metric. The
corresponding curvilinear vector components are denoted as
e; and e,, with e, - e, = §,5. The partition function is given
by a functional integral, Z = [ DODIIe~ 5. The magnetiza-
tion field can be decomposed in the local orthonormal basis
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as m = sin ®. cos ®.e; + sin O sin d.e, + cos O.n, where
n = e; X e, is the unit vector normal to the surface. We note,
however, that the dynamical part of the action (1) assumes that
the fields @ and IT are magnetization components in Cartesian
coordinates, a convenient basis to employ the transformation
properties of the SU(2) coherent-state representation used to
derive the path integral for the spin algebra [35-37].

Our current task is to describe the dynamics of topologi-
cally nontrivial magnetization textures, stabilized by the en-
ergy functional W, which for now we keep general. Magnetic
skyrmions are characterized by a finite topological charge
Q = (1/4m) [ g(m)d A, with the topological density

gm) = —=m - [(V,m) x (Vm)] @)
The index Q describes the degree of the map from an arbitrary
curvilinear surface into a sphere S? [29,38]. Here, €, is the
Levi-Civita tensor, V, = (gm,)’l/ 29,, and summation over
repeated indices is implied. Here, we consider a class of
surfaces in which the magnetization field obeys the relevant
homotopy group IT,(S?) = Z which ensures an integer topo-
logical charge [39], and surfaces with a topological excitation
characterized by a vanishing density g(m) away from the
skyrmion core. Q is conserved and integer valued for any
closed surface A (see Ref. [29]), as it corresponds to the dif-
ference of negatively and positively charged monopoles inside
that surface [40]. Here, we generalize earlier considerations
derived for vortices on planar films [41] to demonstrate that
the topological charge of a skyrmion on an arbitrary curvilin-
ear shell is preserved by the dynamics. The Euler-Lagrange
equation of Eq. (1) takes the form m + m x (§E/ém) = 0,
obtained upon replacing imaginary time t with real time ¢t =
—it, and E = (L/a)fW(m)dA. By using vector calculus
identities, the time evolution of the topological charge may be
written in the form of a local conservation law, ¢ = €4, V,(F -
Vym), resulting in the global conservation law Q = 0, for
any choice of the effective magnetic field F = 6E/ém and
the metric tensor g,,. The topological charge conservation
suggests that skyrmions maintain their solitonlike character
under rigid translations, in contrast to Bose-Einstein conden-
sates [42], where the standard notion of a soliton is lost in
the presence of translational symmetry-breaking terms and is
only maintained in homogeneous and isotropic spaces with a
constant curvature [43].

We now promote the collective coordinates of position to
dynamical variables by considering the spin field of a moving
skyrmion as m(r, 7) = mg[r — R(7)], where my is a static
solution of §Sg = 0 for R = 0. By inserting this ansatz into
the action Sg of Eq. (1) and considering small perturbations in
the path R, we arrive at

B . .
S = f dt[—iOR Ry — ReB) + VR, (3)
0

with Q =27SLI>Q/a®. The first term corresponds to
the well-known Magnus force [44,45] proportional to the
skyrmion velocity, while the geometric potential V originates
from the energy term WVW. Next, one can consider fluctua-
tions around the skyrmion configuration as m(r, ) = mg[r —
R(7)] 4+ dm[r — R(7), t], and perform finite perturbation
theory in terms of ém. In the flat-space limit, the interaction of
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FIG. 1. Skyrmion profile with a topological charge Q = 1, re-
alized in a curvilinear concave Gaussian defect, with the skyrmion
center located at the defect center.

the skyrmion with the surrounding magnon modes gives rise
to a mass term when potentials that break translational sym-
metry arising from defects, nonuniform magnetic fields, and
spatial confinement [46—49] are present. In these studies, the
external potential is treated perturbatively, and the resulting
mass is proportional to UZ, with Uy the potential strength. The
presence of a mass term for skyrmions subjected to magnetic
circular disks has been experimentally reported in Ref. [50].
Below we demonstrate, without employing perturbative meth-
ods, that in a curvilinear surface with nonconstant curvature,
such as a curvilinear defect depicted in Fig. 1, the skyrmion-
magnon interaction gives rise to a position-dependent mass,
while both the mass and the pinning potential vanish in the
flat-space limit.

Curvilinear defect. In the following, we consider an energy
of the form E = (L/a) [ Wd A, with

W =J[Vem-V,m+1— (m-n) +d&), )

realized in a curvilinear defect originally introduced in
Ref. [30], with details repeated here for completeness. The
magnetic length of the model is [ = 4/J/K, where J in
units of energy denotes the exchange coupling and K is the
anisotropy coupling. We introduce the dimensionless d =
D/+/JK as the coupling of the Dzyaloshinskii-Moriya inter-
action, &, = (m-n)V -m —m - V(m - n), originating from
inversion-symmetry breaking [18,19,29]. The Gaussian de-
fect is determined by z(r) = er*’2/2’5, with r the radial
coordinate, Uy the amplitude, and ry the width of the de-
fect [see Fig. 2(b) for details of the considered geome-
try]. The two principal curvatures k; = g(r)3z”(r) and k, =
g(r)7/(r)/r determine the properties of the surface, where
g(r) = 1/4/1+ 7/(r)%. The local orthonormal basis {e;, €, n}
is defined by unit vectors expressed in the Cartesian basis
as e; = g(r){cos ¢, sin ¢, 7/(r)}, e, = {—sin ¢, cos ¢, 0}, and
n = g(r){—7/(r)cos ¢, —7'(r)sin ¢, 1}. Here, r is the radial
and ¢ the azimuthal coordinate [see Fig. 2(c)]. Finally, in-
stead of r, the field configuration is expressed in terms of a
coordinate s along the arc of the Gaussian, and r = r(s) is
determined by the set of equations 7/(s)*(1 + z'[r(s)]*) = 1
and r(0) = 0. Figures 2(b) and 2(c) summarize the properties
of the curvilinear geometry.
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FIG. 2. (a) Skyrmion profile ®.(s) for two skyrmion radii, a large ®; and a small one ®;, with chosen Uy = -3,y =1, and d = 1.1,
while a vertical cross-section view of the magnetization profile is depicted for both skyrmion sizes. (b) The geometry of the Gaussian defect
determined by the function z(r) = er*rz/ 210 The curvilinear basis is indicated by the vectors {e;, e,, n}, while X(7) denotes the collective
coordinate in the arc direction, and (7) in the azimuthal direction. (c) Upper view of the curvilinear surface, where r denotes the radial

coordinate, and ¢ is the azimuthal angle of rotations.

In terms of the parametrization m = sin ®, cos ®.e; +
sin ©, sin ®.e, + cos O.n, the static stable solutions deter-
mined by 6E /60, = 0 and §E /6P, = O correspond to &, =
0, 7 and the rotationally symmetric solution ®,. = ®.(s) with
boundary conditions ®.(0) = 0 and ©.(c0) = 0, 27, satisfy-
ing the equation

V2@, — sin ©®.E/2 + Cr'(d — 2k ) sin> ©./r = C(k| + k}).
(5)

Here, C=cos®, ==+1, V20,= (r®.)/r, and E=
1+ r?/r* —kj +d (ki + ka). Magnetization profiles of
skyrmions, obtained by a numerical solution of Eq. (5),
are depicted in Fig. 2, for Uy= -3 and ro =1, and
d = 1.1 [30]. For this choice of parameters, both of these
solutions are characterized by Q = g(r)cos®./2|F =1
and no displacement instability is present. The large radius
skyrmion ®; (red line) is the state with the lowest energy
E = —9.1JL/«, the small radius skyrmion ®; (green line) has
E =32.3JL/a, and the uniform state has £ = 7.5JL/« [30].
This is in contrast to the planar skyrmion with Q = 1, which
always appears as an excitation above the ferromagnetic
background.

For the specific geometry considered here, we find
that the fields in Cartesian coordinates are related to
the ones in curvilinear as ® = ¢ (for ®. =0) and II =
g(r)I, — Z'(r)y/1 — T12]. We now consider deviations of the
field ®. = @Y + &, with |§] < 1 and ®? = 0 for the remain-
der of this Rapid Communication. The action (1), up to second
order in &, is

B
Sp =S+ (L/a) fo dr / dATE +ELE). (6)

where S§ =L [, 4[GSI?/a®)®o(1 — TT) + Wy(T1,)], with
®( = ¢, and we assume B-periodic in time fluctuating fields,
£(0) = £(B). Here, we introduce J = (iSI12/a®)I1.. In the
planar film limit g(r) = 1, 7/(r) = 0, and IT = I1.. The de-
tailed forms of the energy functional ), and the operator

L are given in Ref. [51]. It is worth mentioning that once
we introduce collective coordinates of position as Oy (r, T) =
®o[r — R(7)] and Ty(r, t) = [o[r — R(z)], SY is given
by (3), which can be written in the equivalent form SV =
fr[—iQE(r)2Q(t) + V(2)], with X the collective coordinate
along the arc of the defect, 2 in the azimuthal direction [see
Fig. 2(b)], and V(X) presented below. We focus on the dy-
namics of a skyrmion located at the center of the defect, with
constrained dynamics 2~ 0 and SY~L ft, A Wo(Ile[s —
) x> [ V(D).

We integrate out the £ fluctuations from the parti-
tion function Z by noting that the path integral mea-
sure is replaced by D® — D&, and that the integral can
be written in a Gaussian form by shifting the fluctuating

M 1075 kg]

10

¥ [nm]

FIG. 3. Curvature-induced mass M as a function of the col-
lective coordinate ¥ in physical units. X represents the distance
between the center of the defect and the center of the skyrmion. M,
(M) denotes the mass for the large (small) radius skyrmion, and the
vertical dashed line indicates the defect width ry.
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FIG. 4. Pinning potential V' as a function of the collective coor-
dinate X, representing the distance between the center of the defect
and the center of the skyrmion, in dimensionless units. The vertical
dashed line indicates the defect width ry, while the horizontal red line
indicates the energy of the ferromagnetic background.

fields by £ =& +1/27 L‘gl. The partition function takes
the form Z = [ DIl[e~S/ det[(L/a)L¢], with the new action
givenby S = SY — (1/4)J o L‘E_IJ , where we introduce the
compact notation 7 o ,Cg'j = (L/a)fo’g dt [dSdS' J(r, 1)
L’gl(r, r')J (r’, t). The operator £g1 can be expanded in the
space of the eigenfunctions W, solutions of the eigenvalue
problem LW, = €,¥,. The dynamical part of the action con-
tains terms O(I1%), which correspond to inertia terms for the
collective coordinate of translations in the arc direction, 1. =
IT.[s — X(7)]. Since the model is not translational invariant,
3(7) is energy dependent and the eigenenergies of L are
positive €, > 0 [30]. We then find that

B
Se =/ dT[%M(E)EZ—l—V(E)}, A
0

with a position-dependent mass term given by M(X) =
(S2LI* /20%) > IM,(2)|?/€,, and matrix elements M,(X) =
f oI [s — ]V, (r)d A. As expected, due to the lack of
translation symmetry, the effective mass depends on the
background geometry and thus on the collective coordi-
nate X. We assume that the fluctuations have a larger
wavelength than the skyrmion radius, such that the geo-
metric potentials arising from the underlying varying cur-
vature become the dominant terms in the inertia inte-
gral. In this limit £~ [JU(s)]™", with U(s) = ©k +
sin O cos O ko' /r + (cos® O, — 1)(ki — k3). We then arrive
at the simplified form

S2LI* [ [8,IT.(s — )]
2J o’ U(s)

The dependence of M on the collective coordinate %,
which represents the distance between the center of the defect

M(Z) ~ dA. ®)

and the center of the skyrmion, is summarized in Fig. 3.
Both M and X are given in physical units, with L = 3,
=40, a =5 A, and J =2 meV. As expected, we find
that M decreases as the skyrmion departs from the defect
center, suggesting that the mass vanishes once translation
symmetry is restored. It is also apparent that M grows with
the skyrmion size, as M; > M;, where M, is the mass
calculated for the large (small) radius skyrmion, respectively.
The role of fluctuations around the field IT will give rise to
mass renormalization terms that are described in detail in
Ref. [51].

To complete the description, we must also examine the
pinning potential, defined as

L
Vi) =~ / WolIle(s — 2)1d A, €))

where explicit formulas for W, are provided in Ref. [51].
The potential is depicted in Fig. 4, calculated for the large
radius skyrmion ®;, as a function of the distance between the
defect and skyrmion center. It is apparent that a local bend
on the surface is a source of pinning, in analogy to curvature-
induced pinning potentials already predicted for domain walls
in magnetic nanowires [33,52,53]. The energy of the planar
skyrmion for ¥ > 1 is larger than of the ferromagnetic state
(red solid line), suggesting that the skyrmion with Q = 1 is no
longer the ground state, but appears as an excitation above the
uniform background.

We should emphasize that, although the mass M vanishes
when the skyrmion is displaced away from the defect (thus
when the translational symmetry is restored locally), the value
of M predicted from (8) diverges when k;, k; — 0. In this
limit, global translational symmetry is recovered, and the
collective coordinates represent the zero-energy modes asso-
ciated with translations. To properly quantize the skyrmion
system, one needs to not only elevate R to a dynamical
variable, but also introduce gauge fixing constraints in the
path integral, to remove the singularities that originate from
overcounting degrees of freedom [54-57]. Thus, divergences
are treated by imposing the so-called rigid gauge, a constraint
that requires that the zero modes are orthogonal to the fluc-
tuating fields. For our purposes, it suffices to note that the
theory constructed here assumes a finite curvature, while the
skyrmion propagation in a two-dimensional (2D) planar film
has been treated elsewhere [46]. Our present investigation
suggests that curvature in thin magnetic fields introduces other
ways to tailor not only the static but the dynamic properties
of magnetic topological particles as well, an effect that we
anticipate to be of high importance for nanomagnetism appli-
cations.
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