
PHYSICAL REVIEW RESEARCH 2, 032052(R) (2020)
Rapid Communications

Integrability and dark states in an anisotropic central spin model
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Central spin models describe a variety of quantum systems in which a spin- 1
2 qubit interacts with a bath of

surrounding spins, as realized in quantum dots and defect centers in diamond. We show that the fully anisotropic
central spin Hamiltonian with (XX) Heisenberg interactions is integrable. Building on the class of integrable
Richardson-Gaudin models, we derive an extensive set of conserved quantities and obtain the exact eigenstates
using the Bethe ansatz. These states divide into two exponentially large classes: bright states, where the qubit
is entangled with the bath, and dark states, where it is not. We discuss how dark states limit qubit-assisted spin
bath polarization and provide a robust long-lived quantum memory for qubit states.
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Introduction. With the advent of new quantum technolo-
gies, there is increasing interest in using small quantum
systems to control and coherently manipulate mesoscopic
environments [1–6]. In the simplest setting, a single spin- 1

2
qubit controls a surrounding bath of spins, extending the
available degrees of freedom and turning the detrimental
effects of the bath into a useful resource. These systems
are modeled by central spin (or spin star) Hamiltonians,
as schematically illustrated in Fig. 1. Central spin models
have broad applicability in quantum information [7,8], and
quantum metrology and sensing [9,10], and describe the in-
teractions between nitrogen-vacancy centers and nuclear spins
in diamond [11,12] and the hyperfine interaction in quantum
dots [13–15].

The central spin �S0 typically interacts with the bath spins �Si

through anisotropic Heisenberg interactions ∝Sx
0Sx

i + Sy
0Sy

i +
α Sz

0Sz
i . The fully isotropic XXX model (α = 1) is common

in systems with emergent spherical symmetry, e.g., quantum
dots in semiconductors with s-type conduction bands [13,14],
while the fully anisotropic XX model (α = 0) arises in
resonant dipolar spin systems in rotating frames [16–22].
Crucially, the fully isotropic XXX model is integrable, be-
longing to the class of XXX Richardson-Gaudin integrable
models [23–25]. Integrability guarantees an extensive set of
conserved quantities and allows all eigenstates to be exactly
obtained using Bethe ansatz techniques, which has led to
various studies of the equilibrium and dynamical properties
of the XXX model [10,26–30]. However, generic central spin
models with α �= 1 are not known to be integrable.
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In this Rapid Communication, we show that the fully
anisotropic XX model (α = 0) is integrable and exhibits a rich
eigenstate structure. Its Hamiltonian describes a central spin- 1

2
qubit in an external magnetic field ω0, interacting with a bath
of L spins in a uniform field ω,

H = ω0Sz
0 + ω

L∑
i=1

Sz
i +

L∑
i=1

gi(S
+
0 S−

i + S−
0 S+

i ). (1)

The interaction strengths gi are taken to be inhomogeneous
and the bath spins can have arbitrary spin si (see Fig. 1).
Since H conserves total spin projection Sz = Sz

0 + ∑
i Sz

i ,
we set ω = 0 without loss of generality. To establish the
integrability of H , we present an extensive number of con-
served charges and construct the exact eigenstates using the
Bethe ansatz [23]. We note that Jivulescu et al. previously
used Bethe ansatz techniques to construct a subset of exact
eigenstates [31,32], but did not show that H is integrable.

Remarkably, the eigenstates of the XX model separate into
two exponentially large classes with distinct entanglement
structure. Dark states |D〉 have a product state (unentangled)
structure |↓〉0 ⊗ |D−〉 or |↑〉0 ⊗ |D+〉, where the central spin
is fully polarized along the z direction and the bath state
satisfies [33–37] (

L∑
i=1

giS
±
i

)
|D±〉 = 0. (2)

Dark states are independent of ω0 and form degenerate man-
ifolds with energy ±ω0/2 in every Sz sector. In contrast,
bright states |B〉 exhibit qubit-bath entanglement and are
given by linear combinations of definite central spin projec-
tion c↓ |↓〉0 ⊗ |B−〉 + c↑ |↑〉0 ⊗ |B+〉. These states explicitly
depend on ω0, and arise in pairs exhibiting level repulsion in
the eigenspectrum of H (schematically shown in Fig. 2).

Conserved charges. The conserved charges of the Hamil-
tonian H in Eq. (1) follow from the class of integrable
XXZ Richardson-Gaudin models [23–25] (see the explicit
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FIG. 1. Schematic representation of the central spin model. A
central spin- 1

2 particle interacts with an environment of L spin-si

particles with interaction strengths gi, i = 1 . . . L.

derivation below), and are given by

Qi = − 2Sz
0Sz

i + 1

2
(S+

i S−
i + S−

i S+
i )

+
L∑

j = 1
j �= i

[
gig j

g2
i − g2

j

(S+
i S−

j + S−
i S+

j ) + 2 g2
j

g2
i − g2

j

Sz
i Sz

j

]
,

i = 1 . . . L. (3)

These satisfy [H, Qi] = 0 and [Qi, Qj] = 0,∀i, j = 1 . . . L.
Interpreting H as Q0, the conserved charges are bilinear in
the spin operators and the number of linearly independent
conserved charges exactly equals the number of spins in
the system (L + 1). The system is thus Richardson-Gaudin
integrable [24,38]. An additional conserved charge that helps
establish integrability is given by

Q̃ = −2Sz
0

L∑
i=1

g2
i S

z
i + 1

2

L∑
i, j=1

gig j (S
+
i S−

j + S−
i S+

j ), (4)

which can be obtained as a linear combination of the con-
served charges, Q̃ = ∑L

i=1 g2
i Qi. The charge Q̃ relates directly

to the square of the Hamiltonian

Q̃ = H2 − ω2
0/4, (5)

Dark
Bright

En
er
gy

FIG. 2. Schematic representation of the energy spectrum as a
function of the central field ω0, exhibiting highly degenerate dark
states (black lines) and bands of bright states (red lines). The dashed
lines highlight an example pair of bright states exhibiting level
repulsion near resonance ω0 = ω = 0.

using the spin- 1
2 properties of the central spin. Such

quadratic relations between conserved charges are prevalent
in Richardson-Gaudin systems [39–43].

Supersymmetry. The conserved charge Q̃ is the Hamil-
tonian of a N = 2 supersymmetric (SUSY) and integrable
quantum theory [44–48], as it can be rewritten as

Q̃ = G+G− + G−G+, (G±)2 = 0, (6)

with G± = ∑
i giS

±
i S∓

0 Hermitian conjugate supercharges sat-
isfying [Sz

0,G±] = ∓G±. The eigenstates of Q̃ can be chosen
to have fixed central spin magnetization 〈Sz

0〉 = ±1/2 since
[Q̃, Sz

0] = 0. The supersymmetry imposes a specific structure
on the eigenspectrum of Q̃. The (degenerate) ground-state
manifold has eigenvalue zero and is spanned by singlet states
annihilated by both G+ and G−. States with a nonzero eigen-
value are twofold degenerate and arise as so-called superpart-
ners |ψ−〉 = |↓〉0 ⊗ |B−〉 and |ψ+〉 = |↑〉0 ⊗ |B+〉, satisfying
G± |ψ±〉 ∝ |ψ∓〉 and G∓ |ψ±〉 = 0.

While the eigenstates of Q̃ at finite (nonzero) energy are
not necessarily eigenstates of H , the zero-energy eigenstates
of Q̃ are guaranteed to be eigenstates of H with eigenvalue
±ω0/2. It is precisely these zero modes that are the dark
states. The remaining states in the spectrum of H will arise
as pairs of bright states, since the interaction term ∝(G+ G†)
only couples superpartners: Two degenerate eigenstates of Q̃
with a nonzero eigenvalue �2 will split into nondegenerate
states with energies ±

√
ω2

0/4 + �2 in the spectrum of H (see
Fig. 2).

Dark and bright states. All eigenstates of H can be ex-
pressed in terms of generalized spin raising operators acting
on a vacuum state. To distinguish dark and bright states, we
assume Sz < 0 and take the vacuum to be the state with all
spins maximally down [49]. Consider the Bethe states with N
spin excitations on top of the vacuum state |0〉 = |↓〉0 ⊗L

i=1|−si〉,
|ψ (v1, v2, . . . , vN )〉 = G+(v1)G+(v2) · · · G+(vN )|0〉, (7)

with generalized spin raising operators that depend on (possi-
bly complex) parameters v1, v2, . . . , vN as

G+(v) =
L∑

i=1

gi

1 − g2
i v

S+
i . (8)

As no spin raising operators act on the central spin, the central
spin points along −z in these states.

In the regime Sz � 0, the only allowed dark states are
those with central spin down, which are exactly of the form
of Eq. (7). Namely, dark states satisfy

H |D〉 = −ω0

2
|D〉 , |D〉 = |ψ (v1, v2, . . . , vN )〉, (9)

provided the rapidities v1 . . . vN satisfy the Bethe equations

L∑
i=1

sig2
i

1 − g2
i va

−
N∑

b�=a

1

vb − va
= 0, (10)

for a = 1 . . . N . Importantly, these rapidities, and hence the
structure of dark states, only depend on {gi} and not on ω0.

The bright states, on the other hand, can be written as a
linear combination of two Bethe states of the form (7), with
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FIG. 3. Energy E and central spin expectation value 〈Sz
0〉 for

the pair of bright states corresponding to the ground state and the
highest excited state for a central spin system with L = 100 and
N = L/4, where (gi )−2 = i and si = 1/2, ∀i = 1 . . . L. Dashed lines
denote E = ±ω0/2.

∑
i 2si(gi )2 − ∑

a 2/va ≈ 69.9787, and Bethe
equations were solved using the methods developed in Ref. [40].

central spin down and up, respectively,

|φ(E ; v1, v2, . . . , vN−1)〉
= |ψ (0, v1, v2, . . . , vN−1)〉

+
(

E + ω0

2

)
S+

0 |ψ (v1, v2, . . . , vN−1)〉

=
[
G+(0) +

(
E + ω0

2

)
S+

0

]
|ψ (v1, v2, . . . , vN−1)〉,

(11)

with rapidities now satisfying

E2 = ω2
0

4
+

(
L∑

i=1

2sig
2
i −

N−1∑
a=1

2

va

)
, (12)

1 + va

L∑
i=1

sig2
i

1 − g2
i va

− va

N−1∑
b�=a

1

vb − va
= 0, (13)

for a = 1 . . . N − 1. The bright states satisfy

H |B〉 = E |B〉 , |B〉 = |φ(E ; v1, . . . , vN−1)〉. (14)

While the rapidities v1, . . . , vN−1 do not depend on ω0, the
quadratic equation for the energy E does. As such, each
solution for v1 . . . vN−1 leads to two possible solutions for E
exhibiting level repulsion.

Interestingly, combining the Hellmann-Feynman theorem
with Eq. (12) returns

〈
Sz

0

〉 =
〈

∂H

∂ω0

〉
= ∂E

∂ω0
= 1

4

ω0

E
, (15)

allowing the energy of any eigenstate to be uniquely related
to its central spin polarization, as illustrated in Fig. 3 for a
pair of bright states. Three limits are clearly reproduced: At
resonance (ω0 = 0) the central spin polarization vanishes ex-
actly, and for ω0 → ±∞ the central spin is polarized as ±1/2.
For dark states, E = ±ω0/2 returns the expected value of
〈Sz

0〉 = ±1/2, such that this relation holds for all eigenstates.
We end this section with a few comments. For Sz < 0,

the solutions to Eqs. (10) and (13) respectively identify dark
states in which the central spin points along −z, and bright
states. For Sz = 0, the Bethe equations (10) do not admit any

solutions, and consequently all the states in the spectrum are
bright. More generally, the Bethe equations (10) do not admit
any solutions if Sz � 0. Nevertheless, the spectrum for Sz > 0
has bright and dark states, with the central spin along +z in
the dark states [50]. The dark states now arise as additional
solutions to the Bethe equations in Eq. (13) in which some of
the rapidities are zero. In this regime, dark state energies are
not given by E , but by +ω0/2.

Explicit derivation. The structure of the conserved charges
can be understood starting from Q̃ rather than H . To this end,
we rewrite Q̃ as

Q̃ =(G−G+)
(

1
2 + Sz

0

) + (G+G−)
(

1
2 − Sz

0

)
. (16)

Above, G± ≡ G±(0) = ∑L
i=1 giS

±
i , and (1/2 ± Sz

0) projects
the central spin along the z direction. Hamiltonians of the form
G±G∓ arise in the study of topological superconductivity
and superfluidity [51–53], neutron pairing [54], and Sachdev-
Ye-Kitaev-like models [55]. These are Richardson-Gaudin
integrable, and all results for their eigenstates and conserved
charges can be found in, e.g., Refs. [24,25,38,55–58].

The conserved charges of G−G+ are known to be

Q(−+)
i = S−

i S+
i + 2

L∑
j �=i

g2
j

g2
i − g2

j

Sz
i Sz

j

+
L∑

j �=i

gig j

g2
i − g2

j

(S+
i S−

j + S−
i S+

j ), (17)

which mutually commute and commute with G−G+. The con-
served charges Q(+−)

i of G+G− immediately follow from those
of G−G+ through spin inversion symmetry, since mapping
S± → S∓ and Sz → −Sz leaves the su(2) algebra invariant
and maps G−G+ → G+G−. The conserved quantities of Q̃
then follow by combining these with the appropriate projec-
tion operators from Eq. (16) as

Qi = Q(−+)
i

(
1
2 + Sz

0

) + Q(+−)
i

(
1
2 − Sz

0

)
. (18)

Using the spin- 1
2 properties of the central spin, Eq. (18)

simplifies to Eq. (3). It can be checked that, not only do these
conserved charges satisfy [Qi, Qj] = 0,∀i, j, but they also
satisfy [H, Qi] = 0,∀i.

The eigenstates of H can be similarly derived from the
connection with the eigenstates of Q̃. The eigenstates of
G+G− can be written as two kinds of Bethe states of the
form (7), depending on the number of zero rapidities (see, e.g.,
Ref. [55]). The first kind are zero-energy (singlet) eigenstates
where all rapidities are nonzero and satisfy Eq. (10),

G+G− |ψ (v1, . . . , vN )〉 = 0. (19)

The action of Q̃ reduces to the action of G+G− on these
states because Sz

0 = −1/2 in the vacuum state in Eq. (7).
As such, the zero-energy eigenstates of G+G− with central
spin down are zero-energy eigenstates of Q̃, and are thus the
dark states |D〉. The condition G−|D〉 = 0 (2) follows directly
from Eq. (19) since G+G− is positive definite. The zero modes
of Q̃ with central spin up and their properties are similarly
obtained from the zero modes of G−G+.
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The second kind of eigenstates of G+G− have one zero
rapidity and nonzero positive eigenvalues,

G+G− |ψ (0, v1, . . . , vN−1)〉

=
(

L∑
i=1

2sig
2
i −

N−1∑
a=1

2

va

)
|ψ (0, v1, . . . , vN−1)〉, (20)

where the nonzero rapidities satisfy Eq. (13). Furthermore,
the state |ψ (v1, . . . , vN−1)〉 is an eigenstate of G−G+ with
the same eigenvalue as in Eq. (20). Both states can be made
into degenerate eigenstates of Q̃ by applying the proper central
spin projectors and Q̃ has doubly degenerate eigenstates

|ψ−〉 = G+(0)|ψ (v1, . . . , vN−1)〉,
(21)

|ψ+〉 = S+
0 |ψ (v1, . . . , vN−1)〉,

with the same number of spin excitations N . These are related
through G±S∓

0 |ψ±〉 ∝ |ψ∓〉, such that H only couples these
states to each other. The eigenvalue equation for H in this
two-dimensional space leads to the quadratic equation (12)
for the states (11). In the language of SUSY, the doublet states
constituting bright states are coupled through G±. The dark
states are clearly annihilated by G+ = G+S−

0 since they have
central spin down by construction and by G− = G−S+

0 since
they are annihilated by G−, leading to singlet states.

The degenerate pairs of states (21) are eigenstates for
each separate conserved charge Qi. This follows from the
observation that

Q(+−)
i G+(0) = G+(0)Q(−+)

i , (22)

such that if |ψ (v1, . . . , vN−1)〉 is an eigenstate of Q(−+)
i , then

G+(0) |ψ (v1, . . . , vN−1)〉 is an eigenstate of Q(+−)
i with the

same eigenvalue. Their eigenvalues follow from the known
eigenvalues of the conserved charges of either G+G− or
G−G+ (e.g., Ref. [55]). The eigenvalue qi of Qi for the dark
states is given by

qi = 2 si

⎛
⎜⎜⎜⎝

N∑
a=1

1

1 − g2
i va

+
L∑

j = 1
j �= i

s jg2
j

g2
i − g2

j

⎞
⎟⎟⎟⎠, (23)

and for the bright states by

qi = 2 si

⎛
⎜⎜⎜⎝1 +

N−1∑
a=1

1

1 − g2
i va

+
L∑

j = 1
j �= i

s jg2
j

g2
i − g2

j

⎞
⎟⎟⎟⎠. (24)

Counting of states. The number of dark states can be
obtained either by using dimensionality arguments or by
counting the number of solutions to the Bethe equations. We
focus on a system with a bath of L spin- 1

2 particles and Sz < 0;
generalizations fall outside the scope of this Rapid Communi-
cation. Dark states with N � L/2 spin excitations have central
spin down and live within a

(L
N

)
-dimensional subspace of the

Hilbert space. By Eq. (2), the dark states are projected by
G− onto the zero vector of the

( L
N−1

)
-dimensional subspace

of N − 1 spin excitations. The corresponding dark-state man-
ifold thus consists of precisely those

(L
N

) − ( L
N−1

)
orthogonal

states with no parallel projection. This is exactly the number
of solutions to the Bethe equations (10) for dark states; the
number of solutions to such equations in Richardson-Gaudin
models is well studied in the literature [23,42,59]. A similar
expression for the number of dark states was presented in
Ref. [33].

For bright states, the number of distinct solutions to
Eq. (13) is given by

( L
N−1

)
[58,60], and each solution for

the set v1, v2, . . . , vN−1 leads to two possible solutions for E
in Eq. (12) and a pair of bright states. Combined, the total
number of eigenstates is given by[(

L

N

)
−

(
L

N − 1

)]
+ 2

(
L

N − 1

)
=

(
L + 1

N

)
, (25)

returning the expected number of eigenstates in each Sz sector
following the completeness of the Bethe ansatz for spin- 1

2
Richardson-Gaudin systems [42]. It follows from the binomial
coefficients that the number of both dark and bright states
grows exponentially with bath size L.

Discussion. We established a family of integrable
Richardson-Gaudin central spin models with anisotropic XX
interactions by deriving the full set of conserved charges and
Bethe eigenstates. Such models arise routinely in physical
dipolar systems under resonance conditions [16–22], where
our results are expected to be applicable. The eigenstates can
be divided in two classes, dark or bright, depending on their
qubit-bath entanglement properties.

Dark states exhibit no qubit-bath entanglement and can be
used to store qubit states for quantum memory. Reference [33]
proposed a scheme to store (and retrieve) an arbitrary qubit
state in the state of the bath using adiabatic passage in the
XXX model with weak inhomogeneous couplings g j . This
scheme immediately generalizes to the XX model, even in the
presence of strong inhomogeneities. Starting from a product
state in which the central spin is in the desired qubit state and
the environment in a dark state, the qubit state can be encoded
in a superposition of dark and bright states [taking, e.g., large
positive ω0 values in Eq. (11)]. Since the dark component of
the wave function is independent of ω0, an adiabatic passage
to large negative values of ω0 transfers the qubit state to the
bath as

(u |↓〉0 + v |↑〉0) ⊗ |D−〉
= u |↓〉0 ⊗ |D−〉 + v |↑〉0 ⊗

∑
B+

|B+〉 〈B+|D−〉

ω0→−∞−−−−−→ |↓〉0⊗
[
u |D−〉+v G+ ∑

B+
eiφB |B+〉 〈B+|D−〉

]
,

where φB are the relative phases accrued during the passage.
The final bath state serves as a robust memory for the qubit
state; the qubit state can be retrieved by symmetrically revers-
ing the process and accounting for the phases φB. This invites
quantum memory applications in defect center or dot systems
well described by the XX model.

Dark states are also known to limit hyperpolarization
protocols which use a central qubit to transfer polarization
to/from a bath [15]. In such protocols, the qubit is repeat-
edly polarized and manipulated (e.g., by tuning the field ω0)
to induce qubit-bath exchange interactions. Since qubit-bath
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polarization exchanges are only possible in bright states, the
bath polarization saturates to a value determined by the popu-
lated dark states. Several experiments have found saturation
at high (above 60%) spin bath polarizations [61–63], and
strategies to overcome the limitations imposed by dark states
have been proposed [34,35]. The explicit structure of dark
states presented here may allow for the development of other
hyperpolarization protocols with high saturation values of the
bath polarization.

Given that the system is integrable, all eigenstates are
nonthermal, not just the dark states. The bright states exhibit
highly nonthermal expectation values, e.g., 〈Sz

0〉 = 0 at res-
onance (15), where the central spin is maximally entangled
with the bath. The effect on the dynamics of 〈Sz

0(t )〉 is partic-
ularly pronounced. Considering, e.g., a system at resonance
with an initially polarized state 〈ψ (t = 0)|Sz

0|ψ (t = 0)〉 =
1/2, the long-time average of the observable 〈Sz

0(t )〉 follows
as

〈
Sz

0(t )
〉 = 1

2

∑
D

|〈ψ (t = 0)|D〉|2. (26)

All dynamics of 〈Sz
0(t )〉 are due to the dephasing of the bright

states, whereas the nonthermal steady-state value retaining

memory of the initial polarization is the rms average of the
overlaps of the initial state with the (exponential number of)
dark states. This is consistent with the integrability of the XX
model. Integrable models are known to exhibit nonergodic
behavior at long times and long-lived correlations due to the
presence of conservation laws [64–66]. For the XX model, our
expression for the conserved quantities (3) suggests that not
only Sz

0, but also observables such as Sz
0Sz

i , may not thermalize
at long times.

The Bethe ansatz also allows for exact theoretical and
numerical studies in system sizes beyond the reach of exact
diagonalization [24,29,30,67–71], providing different avenues
for the study of nonequilibrium dynamics in central spin
models.
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