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High-energy γ-photon polarization in nonlinear Breit-Wheeler pair production and γ polarimetry
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The interaction of an unpolarized electron beam with a counterpropagating ultraintense linearly polarized
laser pulse is investigated in the quantum radiation-dominated regime. We employ a semiclassical Monte Carlo
method to describe spin-resolved electron dynamics, photon emissions and polarization, and pair production.
Abundant high-energy linearly polarized γ photons are generated intermediately during this interaction via
nonlinear Compton scattering, with an average polarization degree of more than 50%, further interacting with
the laser fields to produce electron-positron pairs due to the nonlinear Breit-Wheeler process. The photon
polarization is shown to significantly affect the pair yield by a factor of more than 10%. The considered signature
of the photon polarization in the pair’s yield can be experimentally identified in a prospective two-stage setup.
Moreover, with currently achievable laser facilities the signature can serve also for the polarimetry of high-energy
high-flux γ photons.
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Rapid advancement of strong laser techniques [1–4] en-
ables experimental investigation of quantum electrodynamics
(QED) processes during laser-plasma and laser-electron beam
interactions. Nowadays, ultrashort ultrastrong laser pulses can
achieve peak intensities of about 1022 W/cm2, with a duration
of about tens of femtoseconds and an energy fluctuation
≈ 0.01 [5–7]. In such laser fields, QED processes become
nonlinear, involving multiphoton processes [8]: A γ photon
can be generated via nonlinear Compton scattering [9–11], or
similarly a γ photon can create an electron-positron pair in
the interaction with a strong laser wave in the nonlinear Breit-
Wheeler (BW) process [12]. These processes have been exper-
imentally observed in Refs. [13–15] and recently were con-
sidered in all-optical experimental setups [16–20]. Presently,
there are many theoretical proposals aiming at γ -ray and
pair production with ultrastrong laser fields of achievable or
almost achievable intensities [21–28] and even avalanche-like
electromagnetic cascades in future extreme laser intensities
�1024 W/cm2 [29–36].

Recently, it has been realized that the radiation reaction
due to γ photon emissions in laser fields can be harnessed to
substantially polarize electrons [37–43] or to create polarized
positrons [44,45], while it has been known for a long time
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that an electron beam cannot be significantly polarized by a
monochromatic laser wave [46–48]. Polarization properties
of electrons, positrons, and γ photons in ultrastrong laser-
electron beam interaction have been investigated comprehen-
sively in Refs. [41,44,49]. It is known that an efficient way
of the polarization transfer from electrons to high-energy
photons can be realized via linear Compton scattering; see,
e.g., Refs. [50,51]. The extension of this technique into non-
linear regime is possible [47,52–54]. In the extreme non-
linear regime, it will allow us to obtain circularly polar-
ized brilliant γ rays via nonlinear Compton scattering from
longitudinally spin-polarized electrons [49], highly sought
in detecting schemes of vacuum birefringence in ultrastrong
laser fields [55–57].

Significant efforts have been devoted to the investigation
of pair production channels in ultrastrong laser-electron beam
interaction [21,22,24–32]. General theory for the pair produc-
tion by polarized photons in a monochromatic plane wave
is given in Ref. [58]. A particular case of the multiphoton
BW process with linearly polarized (LP) γ photons of MeV
energy and moderately strong x-ray laser field is considered
in Ref. [59]. The role of the γ -photon polarization within
the BW process in a constant crossed field is considered in
Ref. [60], applying a spin-averaged treatment for the photon
emission by an electron. While the latter gives a hint about
the photon polarization effect, it is not straightforwardly
extendible to the realistic setups with tightly focused laser
beams. Most simple expressions for probabilities of the polar-
ization effects in pair production process have been obtained
in local constant field approximation (LCFA) [61,62]. They
show that the pair production probability depends strongly on
the photon polarization and that photons emitted via nonlinear
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FIG. 1. (a) Scenario of nonlinear BW pair production. A LP
laser pulse, polarized in the x direction and propagating along the
+z direction, collides head on with an electron beam, generating
LP γ photons, and further these pairs “e+” and “e−” indicate
positron and electron, respectively. (b) Angle-resolved positron den-
sity log10(d2N+/dε+dθx) (GeV−1 mrad−1) vs the deflection angle
θx = px/pz and the positron energy ε+, with accounting for the pho-
ton polarization. (c) Positron density dN+/dε+ vs ε+ in the cases of
including (red solid) and excluding (blue dash-dotted) the photon po-
larization. The green dashed curve shows the relative deviation �+ =
[(dN+/dε+)Inc.Pol. − (dN+/dε+)Exc.Pol.]/(dN+/dε+)Exc.Pol.. The laser
and electron beam parameters are given in the text [in the paragraph
beginning below Eq. (1)].

Compton scattering are, in general, polarized (the LCFA
probabilities have been successfully tested in experiments of
pair production in channeling process, where the strong fields
are produced within crystal plane and axises [63–65]). From
the latter, one may expect that during the ultrastrong laser-
plasma interaction the polarization of intermediate particles
will strongly influence the pair production process. There-
fore, we underline that for the quantitative correct predic-
tions of pair production yields in laser-plasma interaction,
the polarization-resolved treatment of intermediate particles
is necessary.

In this Rapid Communication, the BW pair production
process in a realistic laser-electron beam interaction setup is
investigated in the quantum radiation-dominated regime. An
unpolarized ultrarelativistic electron beam is considered to
head-on collide with an ultrastrong LP tightly focused laser
pulse, which results in radiation of highly LP high-energy γ

photons via nonlinear Compton scattering. Further, generated
polarized γ photons interact with the laser fields creating
electron-positron pairs within the nonlinear BW process;
see the interaction scenario in Fig. 1(a). We apply a fully-
polarization-resolved Monte Carlo simulation method devel-
oped in Refs. [41,49] to describe the spin-resolved electron
dynamics, polarized photon emissions, and pair production by
the latter (see also Ref. [66] for linear and weakly nonlinear
regimes). We elucidate the substantial role of intermediate
polarization of photons on the pair’s yield and show how the
photon polarization signature can be detected in a two-stage

setup, using laser fields of different linear polarizations and
different intensities in these stages. Moreover, our results sug-
gest an interesting application in high-resolution polarimetry
of high-energy and high-flux LP γ rays through the pair yield.

Note that the high-resolution polarimetry of high-energy γ

rays is an important problem in astrophysics and high-energy
physics, which can be employed, e.g., to determine the nature
of the emission mechanisms responsible for blazars, γ -ray
bursts (GRBs), pulsars, and magnetars and to address prob-
lems in fundamental physics [67–70]. Current polarimetries
for high-energy γ photons mainly employ the principles of
Compton scattering and Bethe-Heitler pair production by the
Coulomb fields of atoms, with an accuracy of about several
percents [69,70]. The former is not efficient at photon energies
larger than 100 MeV because of the kinematic suppression
of the Compton rate at large scattering angles; in the lat-
ter the photon flux and polarimetry angular resolution are
restricted by the convertor material (damage threshold and
multiple scattering), because, in particular, multiple scattering
in a converter material decreases significantly the angular
resolution of polarimetry [68–72]. Our polarimetry concept
via nonlinear BW pair production working in a small duty
cycle (determined by the laser pulse) is specifically designed
for high-flux GeV γ photons and provides a competitive
resolution.

We consider the quantum radiation-dominated regime,
which requires a large nonlinear QED parameter χe ≡
|e|√−(Fμν pν )2/m3 � 1 (for electrons and positrons) [8] and
R ≡ αa0χe � 1 [73]. Significant BW pair production requires

the nonlinear QED parameter χγ ≡ |e|
√

−(Fμνkν
γ )2/m3 � 1

(for γ photons) [8,74]. Here, E0 and ω0 are the laser field
amplitude and frequency, respectively, p and kγ are the 4-
momenta of electron (positron) and photon, respectively, e
and m are the electron charge and mass, respectively, Fμν is
the field tensor, α is the fine structure constant, and a0 =
|e|E0/mω is the invariant laser field parameter. Relativistic
units with c = h̄ = 1 are used throughout.

In our Monte Carlo method, we treat spin-resolved elec-
tron dynamics semiclassically and photon emission and pair
production quantum mechanically in LCFA [8,74–76], valid
at a0 � 1 (for the emitted photon energies in the region
k− � χe/a3

0 p−, with k− = ω − kz and p− = ε − pz being the
photon and electron light-cone energies, respectively [77]).
At each simulation step, the photon emission is calculated
following the common algorithms [78–80] and the photon
polarization following the Monte Carlo algorithm [49]. The
photon Stokes parameters (ξ1, ξ2, ξ3) are defined with respect
to the axes ê1 = â − v̂(v̂â) and ê2 = v̂ × â [81], with the
photon emission direction n̂ along the ultrarelativistic electron
velocity v, v̂ = v/|v|, and the unit vector â = a/|a| along
the electron acceleration a. After the photon emission, the
electron spin state is determined by the spin-resolved emission
probabilities [41]. Between photon emissions, the spin preces-
sion is governed by the Thomas-Bargmann-Michel-Telegdi
equation [82–84]. The electron spin dynamics simulated by
our method is in accordance with the results of the CAIN

code [66], applicable for simulating the electron-laser as well
as beam-beam collisions. Note that the latter use a slightly
different Monte Carlo algorithm for spin evolution (the spin
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quantization axis after the photon emission is chosen along
the average spin direction, with further quantum mechanical
spin rotation due to the probability of no photon emissions).

We describe the polarized photon conversion to electron-
positron pair by the probabilities of the pair production. The
latter, summing over the pair spins, is derived in the leading-
order contribution with respect to 1/γe via the QED operator
method of Baier-Katkov [62]:

d2Wpair

dε+dt
= αm2

√
3πε2

γ

{
IntK 1

3
(ρ) +

(
ε2
+ + ε2

−
ε+ε−

− ξ3

)
K 2

3
(ρ)

}
,

(1)

where ε− and ε+ are the energies of created electron and
positron, respectively, with the photon energy εγ = ε− + ε+,
ρ ≡ 2ε2

γ /(3χγ ε+ε−), IntK 1
3
(ρ) ≡ ∫ ∞

ρ
dxK 1

3
(x), and Kn is the

n-order modified Bessel function of the second kind. In this
relativistic setup, the emitted γ photon is assumed to propa-
gate along the radiating electron momentum, and the pair is
assumed to do so along the parent γ -photon momentum. Note
that by averaging over the photon polarization one obtains the
known pair production probability W Exc.Pol.

pair [74] and Wpair =
W Exc.Pol.

pair − ξ3Wξ . When including polarization in Eq. (1), the
Stokes parameters are transformed from the photon emission
frame (ê1, ê2, n̂) to the pair production frame (ê′

1, ê′
2, n̂), where

ê′
1 = [E − n̂ · (n̂ · E) + n̂ × B]/|E − n̂ · (n̂ · E) + n̂ × B| and

ê′
2 = n̂ × ê′

1, with the electric and magnetic field components
E and B; see Ref. [85].

The impact of the photon polarization on the BW pair pro-
duction is quantitatively demonstrated in Figs. 1(b) and 1(c).
The employed laser and electron beam parameters are the
following. A realistic tightly focused Gaussian LP laser
pulse [85,86] propagates along +z direction (polar angle
θl = 0◦), with peak intensity I0 ≈ 3.45 × 1021 W/cm2 (a0 =
50), wavelength λ0 = 1 μm, pulse duration τ = 15T0 with
period T0, and focal radius w0 = 5 μm. A cylindrical unpolar-
ized electron beam propagates along the −z direction (polar
angle θe = 180◦), with initial kinetic energy ε0 = 10 GeV,
angular divergence �θ = 0.3 mrad, energy spread �ε0/ε0 =
0.06, beam radius we = λ0, beam length Le = 5λ0, emittance
εe ≈ 3 × 10−4 mm mrad, electron number Ne = 5 × 106, and
density ne ≈ 3.18 × 1017 cm−3 with a transversely Gaussian
and longitudinally uniform distribution. The electron beam
parameters are typical for laser-plasma acceleration [87]. The
pair production and radiation reaction are significant at these
parameters as χe ≈ 2.47, Max(χγ ) ≈ 2.34, and R ≈ 1, while
avalanche-like cascades are suppressed.

Our simulations show that radiated γ photons are
dominantly LP with an average polarization of ξ3 ≈ 55.64%.
The further produced pairs are characterized in Fig. 1(b). The
transverse angular spread of the positrons is about 90 mrad,
and the energies are mainly in the region of 0.2 GeV � ε+ �
4.4 GeV. Integrating over the angular distribution, we show
the energy distribution of positrons in Fig. 1(c). When the
intermediate photon polarization is accounted for, the pair
(positron) yield decreases. The relative difference reaches
the maximum of |�+| ≈ 13.6% at ε+ ≈ 0.4 GeV, and the
average relative deviation �̃+ = (N Inc.Pol.

+ − NExc.Pol.
+ )/

NExc.Pol.
+ ≈ −13.44%. For the given parameters, the positron

FIG. 2. (a) Normalized pair production probability W̃pair , inte-
grating over ε+ and scaled by its maximal value at (χγ , ξ3) = (10, −1)
in the demonstrated parametric region, vs χγ and ξ3. (b) W̃pair with
χγ = 2.34 (corresponding to χγ of Fig. 1), scaled by its maximal
value at (ε+/εγ , ξ3) = (0.5, −1) in the demonstrated parametric
region, vs ε+/εγ and ξ3. (c) ξ3 (red) and density log10(dNγ /dεγ )
(blue) of emitted γ photons, which eventually split to pairs, vs
εγ . (d) W̃pair vs ε+/εγ for the cases of including polarization with
ξ3 = 25.91% (red solid) and excluding polarization (i.e., ξ3 = 0, blue
dash-dotted), respectively. The green dashed curve indicates the rel-
ative deviation of the pair creation probabilities �pair = (W̃ Inc.Pol.

pair −
W̃ Exc.Pol.

pair )/W̃ Exc.Pol.
pair . Other laser and electron beam parameters are the

same as those in Fig. 1.

number is N Inc.Pol.
+ ≈ 1.36 × 106 ≈ Ne × 27.2%, and thus,

the deviation of about 13.44% is remarkable but cannot
be directly measured in an experiment. We propose the
experimental observation of the discussed effect in a
two-stage setup discussed below.

The physical reason for the intermediate polarization effect
is analyzed in Fig. 2. According to Eq. (1), Wpair depends on
the parameters ξ3, χγ , and ε+/εγ . As illustrated in Figs. 2(a)
and 2(b), Wpair continuously decreases (increases) with the
increase of ξ3 (χγ ), and has a symmetric distribution with
respect to ε+/εγ . Intermediate γ photons, which are radiated
by the electrons and eventually split to pairs, are LP with
an average polarization ξ3 ≈ 25.91% (lower than that of all
emitted γ photons), as demonstrated in Fig. 2(c), and the
corresponding pair production probability is smaller than that
excluding polarization, in particular, in the region of 0.2 �
ε+/εγ � 0.8 in Fig. 2(d). Consequently, the pair yield of
consistently including the photon polarization is much smaller
than that with averaging over the polarization, as shown in
Fig. 1(c).

This photon polarization effect is robust with respect to
the laser and electron beam parameters. As the laser field
parameter a0 varies from 40 to 60, the laser pulse duration
from 12 to 18 cycles, and the initial kinetic energy of the
electron beam ε0 from 8 to 10 GeV, the pair production param-
eter �̃+ changes less than 10% [85]. It stays almost identical
for the cases of larger angular divergence of �θ = 1 mrad,
larger energy spread �ε0/ε0 = 0.1, and different colliding
angle θe = 175◦ [85]. In the case of employing a circularly
polarized laser pulse, the average polarization of emitted γ

photons by the unpolarized electron beam is rather small, and
consequently, the considered effect cannot be identified [85].
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FIG. 3. (a) Two-stage scenario for detection of the considered
effect of the photon polarization. In stages I and II, the laser fields
have different LP along x̂1 and x̂2, and different intensities, a(I )

0 = 20
(Max(χγ ) ≈0.91) and a(II )

0 = 50, respectively; φ is the rotation angle
of the polarization x̂2 with respect to x̂2. (b) log10(d2Nγ /dεγ dθx) vs
θx and εγ , generated in stage I. (c) log10(dNγ /dεγ ) (blue), calculated
by integrating d2Nγ /dεγ dθx in panel (b) over θx from −25 mrad
to −10 mrad, and the corresponding ξ3 (red) vs εγ . (d) dN+/dε+
vs ε+, produced in stage II, in the cases of including polarization
with φ = 0◦ (red solid, x̂2 ‖ x̂1) and 90◦ (blue solid, x̂2 ⊥ x̂1) and
excluding polarization with φ = 0◦ (black solid) and 90◦ (green
dashed), respectively; (e) �̃+ vs φ. Other laser and electron beam
parameters are the same as those in Fig. 1.

Experimental verification of the intermediate photon po-
larization can be carried out in a all-optical two-stage setup,
which is similar to those generally used to probe vacuum
birefringence [55,56], and a similar setup has been real-
ized with crystals [63–65]. In both stages of our setup, LP
laser pulses are used, but with different polarization direc-
tions. In stage I, a relatively low laser intensity a(I)

0 = 20
[Max(χγ ) ≈ 0.91] is used for γ -photon production via non-
linear Compton scattering [see Fig. 3(b)], which can produce
much higher flux γ rays than the linear Compton scattering
and suppress the pair creation, while in stage II a higher laser
intensity a(II )

0 = 50 is used for pair production via the nonlin-
ear BW process. When the laser polarization direction in stage
II is parallel to that in stage I (φ = 0◦, x̂2 ‖ x̂1), the pair yield
of including polarization is much smaller than that excluding
polarization, N Inc.Pol.

+ < NExc.Pol.
+ , with �̃+ ≈ −14.23% [see

Fig. 3(d)] because ξ3 in this frame is positive with ξ3 ≈
55.54% [see Fig. 3(c)]. When the polarization direction in
stage II is rotated by φ = 90◦, ξ3 of γ photons in the rotated
frame becomes negative, ξ3 ≈ −55.54%. Consequently, we
have N Inc.Pol.

+ > NExc.Pol.
+ , with �̃+ ≈ 12.52% [see Fig. 3(d)].

It is clear that in the case of neglecting the photon polarization,
the rotation of the laser polarization in stage II would not
affect the pair yield. We can explain also why the absolute
value |�̃+| in the case of φ = 0◦ is slightly larger than that

FIG. 4. Polarimetry for high-flux high-energy γ photons. (a) The
asymmetry parameterA, defined in the text, vs ξ3. (b) Wξ /W Exc.Pol.

pair vs
χγ by summing over ε+/εγ . The average energy of γ photons εγ =
4.32 GeV (corresponding to εγ in Fig. 1), with an angular divergence
�θγ = 0.3 mrad and an energy spread �εγ /εγ = 6%. The scattering
laser parameters are the same as those in Fig. 1.

of φ = 90◦. The reason is that the pair production probability
is Wpair = W Exc.Pol.

pair − ξ3Wξ in a single formation length, but
within n formation lengths it is Wn = 1 − (1 − Wpair )n = 1 −
[1 − (W Exc.Pol.

pair − ξ3Wξ )]n, which is asymmetric with respect

to ξ3. Thus, the dependence of �̃+ on the rotation angle φ

demonstrated in Fig. 3(e) can be a measurable experimental
signature of the considered photon polarization effect.

Finally, we investigate to which extent the nonlinear Breit-
Wheeler process can be used for polarimetry for high-flux
multi-GeV γ photons. A γ photon beam collides head on with
an ultrastrong LP laser pulse, and the interaction scenario is
similar to stage II in Fig. 3(a). The procedure of determining
the LP Stokes parameters ξ1 and ξ3 of the given photon
beam is the following. For the ξ3 determination, the laser
polarization first is fixed along the x direction, and the positron
(pair) yield N+|φ=0◦ is measured. Then, the laser polarization
is rotated by 90◦, and again N+|φ=90◦ is measured, which
is different from N+|φ=0◦ since ξ3 changes with the rotation
of the laser polarization; see similar interpretation in Fig. 3.
Thus, ξ3 can be deduced by an asymmetry parameter

A = N+|φ=0◦ − N+|φ=90◦

N+|φ=0◦ + N+|φ=90◦
, (2)

and the relation of A to ξ 3 is shown in Fig. 4(a). In the same
way, the Stokes parameter ξ1 can be determined via another
asymmetry parameter A′, first fixing the laser polarization
along the axis of φ = 45◦ and then rotating by 90◦ (φ =
135◦).

The resolution of the polarization measurement can
be estimated via the statistical uncertainty δA/�A =
1/(�A

√
N+) [88], where the total number of pairs N+ =

RpairNγ is determined by the pair production rate Rpair ≈
37.98% and �A = Max(A) − Min(A) ≈0.4634, calculated
with the given parameters. For instance, in the case of the
laser-driven polarized γ rays [49], we have Nγ ≈ 106, and
the resolution is about 0.35%. As the photon flux increases,
the resolution increases accordingly. The resolution improves
as well with the increase of the pair yield, which takes place
when increasing χγ (see analysis in Fig. 2), and with the
increase of the asymmetry parameter �A ∼ Wξ /W Exc.Pol.

pair .
The latter, however, decreases with larger χγ [see Fig. 4(b)].
Because of the opposite behaviors of N+ and �A with the
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variation of χγ ∝ a0εγ , the resolution is quite stable with
respect to the changes of the laser intensity and the γ -
photon energy. Moreover, the resolution does not vary much
and remains well below 1% with a shorter or longer laser
pulse, a larger energy spread �εγ /εγ = 0.1, a larger angular
divergence �θγ = 1 mrad, and a different colliding angle
θγ = 175◦ [85]. The proposed polarimetry based on the BW
process avoids limitations of γ -ray polarimetry via the BH
process [68–72] with respect to the γ -ray flux and angular
resolution, imposed by the convertor material in the latter.

In conclusion, the impact of intermediate photon polariza-
tion on nonlinear BW pair production during LP laser-electron
beam interaction is investigated in the quantum radiation-
dominated regime. The photon polarization is shown to sig-
nificantly affect the pair yield by a factor of more than 13%.
Thus, for accurate Monte Carlo simulations of laser-electron

beam interaction it is crucial to treat the electron spin and
polarization of intermediate particles, even for simulations of
those processes where the polarization of the final particles
is not in the center of interest. Our analysis suggests that the
considered signature of the photon polarization is experimen-
tally detectable in a two-stage all-optical setup. Moreover, we
provide a polarimetry method specifically designed for high-
flux high-energy γ rays in the GeV range, which provides
competitive resolution with currently feasible laser facilities,
and is likely to be useful in astrophysics and high-energy
physics.
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