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Stability of ionic liquid modeled by composite Coulomb-Yukawa potentials
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An ionic liquid modeled as a densely packed lattice with composite ion-specific Coulomb-Yukawa pair
interactions tends to be unstable near a planar electrode, given the Yukawa potential mediates an effective
short-range attraction of the ions. We present a comprehensive mean-field model, accounting for ion-specific
electrode-ion interactions and for the propagation of the Yukawa field into the electrode. The surface instability
precedes the spinodal instability of the ionic liquid and may thus lead to hysteresis and to a large differential
capacitance in the metastable region of the phase diagram, but not necessarily to oscillations of the net charge
density.
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When used as electrolytic capacitors and supercapacitors,
ionic liquids utilize properties of the electric double layer
(EDL) [1–3]. While EDLs formed in dilute electrolytes are
well understood, their counterparts at high ion concentra-
tions or in the absence of solvent are dominated by ion-ion
correlations, which are notoriously difficult to model [4–7].
An exception is the solvable model of a lattice Coulomb
gas in one dimension, which offers insights into the role of
correlations and the emergence of phase transitions between
ordered and disordered states [8,9]. Other systematic model-
ing efforts employ computer simulations [10] or use density
functional theory [11–13]. There is also a class of models that
attempt to incorporate ion-ion correlations and still preserve
the conceptual simplicity of mean-field approaches [14–21].
A premier example for the latter is the incorporation of a
nonlocal dielectric constant by Bazant, Storey, and Kornyshev
(BSK) [22] into the lattice-based [23] mean-field model of
the EDL. Indeed, the BSK model maps to a lattice-based
mean-field model for a specific composite Coulomb-Yukawa
potential, where the Yukawa potential adds a short-ranged
attraction to the long-ranged Coulomb interactions [24]. The
competition between short-ranged attraction and long-ranged
repulsion may render an ionic liquid unstable in the vicinity
of an electrode, with a diverging differential capacitance
marking the onset of a phase transition. Limmer [25] has
implemented the short-ranged attraction by a phenomeno-
logical Landau-Ginzburg approach and Downing et al. [26]
through a Bragg-Williams free energy. Chao and Wang [27]
generalize the BSK model and show that it too predicts a
phase transition near an electrode. However, like BSK, they
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neglect the penetration of the Yukawa field into the elec-
trode, leading to an incomplete boundary condition. Here,
we present a comprehensive lattice-based mean-field model
for an ion-specific composite Coulomb-Yukawa pair potential
and analyze its structural and thermodynamic predictions.
Our mean-field description involves two fields but remains
simple enough to afford analytic predictions of all relevant
thermodynamic properties. It is also complete in the sense
that it allows for arbitrary Yukawa interactions between anion-
anion, anion-cation, and cation-cation pairs as well as between
ions and the electrode.

Consider a solvent-free ionic liquid that consists of mono-
valent anions and cations of comparable size with a composite
Coulomb-Yukawa interaction potential as function of ion-ion
distance r: uaa/kBT = lB/r + ae−κr/r for an anion-anion pair,
uac/kBT = −lB/r + be−κr/r for an anion-cation pair, and
ucc/kBT = lB/r + ce−κr/r for a cation-cation pair, where kBT
denotes the thermal energy unit (Boltzmann constant times
absolute temperature) and lB the Bjerrum length. The three
interaction strengths of the Yukawa potential contributions,
a, b, c, introduce ion specificity and, as has been suggested
previously [22,27–31], account for steric effects and/or ion-
ion correlations. We express them conveniently by the matrix
Ah = {{a, b}, {b, c}}. The real-valued constant κ denotes the
inverse decay length of the Yukawa potential. We employ a
lattice model [23,32] where every lattice site is occupied by
exactly one ion (a cation or an anion) and where we identify
the volume ν of a lattice site with the volume of a single ion,
the same for anions and cations. We also define the inverse
length λ through λ2 = 4π lB/ν.

Coulomb and Yukawa interactions can be described by
associated potentials, a scaled Coulomb potential �e and two
Yukawa potentials, �a for anions and �c for cations. Two
distinct Yukawa potentials are needed in the general case
where the lattice is allowed to also be populated by void sites
and where Ah is not singular [31]. For an ionic liquid with a
single planar electrode immersed at position x = 0 and the x
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axis pointing normal into the bulk, the three potentials �e(x),
�a(x), and �c(x) satisfy three nonlinear differential equations
[33]

1

λ2
� ′′

e = φ0

q
(e�e−�a − e−�e−�c ),

(1)(
� ′′

a − κ2�a

� ′′
c − κ2�c

)
= −4π

ν

φ0

q
Ah

(
e�e−�a − q

e−�e−�c − q

)
.

Here, φ0 is the bulk volume fraction of cations and anions,
q = 1 + φ0(e�e−�a + e−�e−�c − 2) is a partition sum, and a
prime denotes a derivative with respect to x. Equations (1) are
valid at the mean-field level and must be solved with respect
to the boundary conditions [33]

� ′
e(0) = −λ2ν

σe

e
,

(2)(
� ′

a(0) − κ�a(0)

� ′
c(0) − κ�c(0)

)
= −4πAh

(
σa

σc

)
,

where σe is the electrostatic surface charge density of
the electrode and e the elementary charge. Furthermore,
σa and σc denote the surface densities of sources for the
Yukawa potential, which describe preferential, ion-specific
interactions of the ions with the electrode. All three potentials
vanish in the bulk, at x → ∞.

A densely packed ionic liquid has all lattice sites occupied
by ions; this corresponds to φ0 = 1/2. In this case, which
is our focus, the equations for the two Yukawa potentials in
Eqs. (1) are no longer independent, suggesting to define a
single new potential �h = (�c − �a)/2. Equations (1) then
become

1

λ2
� ′′

e = tanh(�e + �h),
(3)

� ′′
h − κ2�h = −α2 tanh(�e + �h),

with the Yukawa interaction strength α, defined through α2 =
(2b − a − c) π/ν. Note that α is real valued if the Yukawa
interactions mediate an effective attraction, 2b > a + c. The
boundary conditions, Eqs. (2), read

� ′
e(0) = −λse, � ′

h(0) − κ�h(0) = −κsh, (4)

where we have defined the scaled surface charge density se =
λνσe/e and the corresponding scaled surface source density
for the Yukawa potential sh = 2π [σc(c − b) − σa(a − b)]/κ .
Equations (3) and (4) also follow from minimizing the free
energy F per unit area A of the electrode,

F
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(5)

with respect to �e, �h, φc, and φa. The local volume fractions
φc and φa of the cations and anions, respectively, satisfy
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FIG. 1. The real-valued ω̃1 and ω̃2 (left branch, for α̃ < λ̃ − 1),
and the real and imaginary parts of ω̃1 = ω̃r + iω̃c and ω̃2 = ω̃r −
iω̃c (right branch, for λ̃ − 1 < α̃ < λ̃ + 1) as a function of α̃ for
fixed λ̃ = 2 (blue), λ̃ = 6 (red), and λ̃ = 10 (gray). The real part
ω̃r is shown by solid lines and the imaginary part ω̃c by dotted
lines. At the branching point ω̃1 = ω̃2 = ω̃r and ω̃c = 0. The color-

matching vertical dashed lines mark the point α̃ =
√

1 + 2λ̃ where
the differential capacitance diverges.

φc + φa = 1 in a densely filled lattice. The integral in the
first line of Eq. (5) extends over all space to account for
the necessary existence of the fields inside the electrode, for
x < 0. In that region, the Coulomb field remains constant
whereas the Yukawa field decays exponentially. The integral
in the second line describes the ion mixing entropy. The last
two integrals account for interactions of the Coulomb and
Yukawa potentials with the ions (for x > 0) and with the
sources on the electrode surface (at x = 0).

The limit of small potentials allows us to linearize Eqs. (3)
and reexpress them in terms of a fourth-order equation for the
(scaled) Coulomb potential,

� ′′′′
e − (κ2 + λ2 − α2)� ′′

e + κ2λ2�e = 0. (6)

Its solution �e(x) = A1e−ω1x + A2e−ω2x, which adopts the
bulk value �e(x → ∞) = 0, is associated with the two in-
verse characteristic lengths ω1 and ω2 that satisfy the algebraic
relations

ω2
1 + ω2

2 = κ2 + λ2 − α2, ω2
1ω

2
2 = κ2λ2. (7)

It is useful to introduce scaled quantities, λ̃ = λ/κ , α̃ = α/κ ,
ω̃1 = ω1/κ , and ω̃2 = ω2/κ . The latter two, ω̃1 = ω̃1(λ̃, α̃)
and ω̃2 = ω̃2(λ̃, α̃), are fully determined by λ̃ and α̃ according
to Eq. (7). Figure 1 shows how ω̃1 and ω̃2 depend on α̃ for
fixed λ̃ = 2 (blue), λ̃ = 6 (red), and λ̃ = 10 (gray).

We find for the electrostatic surface potential �0 =
�e(0) = A1 + A2 the explicit expression

�0 = (ω̃1 + ω̃2 − λ̃)se − λ̃

ω̃1 + ω̃2 + λ̃ + 1
sh, (8)
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where

ω̃1 + ω̃2 =
√

(1 + λ̃)2 − α̃2 (9)

is real and positive as long as the bulk of the ionic liquid is
structurally stable (for α̃ < 1 + λ̃).

The differential capacitance Cdiff = dσe/d�0 is the deriva-
tive of the surface charge density σe with respect to the
electrostatic surface potential �0 = �0 × kBT/e. We define a
scaled (dimensionless) differential capacitance and calculate
it from Eq. (8):

C̄diff = Cdiff

λεε0
= 1( d�0

dse

) = 1√
(1 + λ̃)2 − α̃2 − λ̃

. (10)

Stability of the ionic liquid at the electrode requires C̄diff > 0.
It can immediately be observed that C̄diff diverges if

α̃ =
√

1 + 2λ̃, (11)

which is displayed in Fig. 1 as vertical dashed lines, corre-
sponding to the three values λ̃ = 2 (blue), λ̃ = 6 (red), and
λ̃ = 10 (gray). Any choice of α̃ with 0 < α̃ < 1 + λ̃ will give
rise to a positive real λ̃ at which C̄diff diverges. We discuss
special cases encountered for growing α:

(1) α̃ = 0 leads to ω̃1 = 1, ω̃2 = λ̃, and C̄diff = 1, thus re-
covering the classical lattice-based Poisson-Boltzmann result
[32] in the absence of Yukawa interactions.

(2) α̃ = λ̃ − 1 implies ω̃1 = ω̃2 =
√

λ̃ to transition from
being both real valued to being complex conjugate numbers.
Double-exponential decay is thus replaced by damped oscilla-
tions of the electrostatic potential �e(x). For λ̃ < 4 we obtain
C̄diff = 1/(2

√
λ̃ − λ̃).

(3) α̃ = λ̃ reproduces the BSK model [22] lB = −a =
−c = b and thus models the specific interaction potential
uaa = ucc = −uac = kBT lB(1 − e−κr )/r. For λ̃ < 1 + √

2 we
obtain C̄diff = 1/(

√
1 + 2λ̃ − λ̃).

(4) α̃ =
√

λ̃2 + 1 implies the complex conjugates ω̃1/2 =√
λ̃/2 (1 ± i) to have the same magnitudes of their real and

imaginary parts. For λ̃ < 2 this leads to C̄diff = 1/(
√

2λ̃ − λ̃).
(5) α̃ = λ̃ + 1 marks the spinodal boundary, where ω̃1 =

iλ̃ and ω̃2 = −iλ̃ transition from complex conjugate to imag-
inary numbers, indicating the onset of oscillations and thus a
structural instability of the ionic liquid in its bulk.

Stability of the ionic liquid in the bulk demands α̃ < λ̃ + 1.
Yet, already for α̃ =

√
1 + 2λ̃ the differential capacitance di-

verges, which marks the onset of an instability at the surface of
the electrode. The surface instability always precedes the bulk
instability. Following phase separation, for α̃ >

√
1 + 2 λ̃, the

ionic liquid will always exhibit damped oscillations of its
local net charge density if λ̃ < 4. For λ̃ > 4, there is a range√

1 + 2λ̃ < α̃ < λ̃ − 1, where the electrode triggers a phase
transition, yet without oscillations of the local net charge
density.

For the BSK model [22], α̃ = λ̃ (corresponding to −a =
−c = b = lB), the differential capacitance diverges for λ̃ =
λ/κ = 1 + √

2. Recalling the definition λ2 = 4π lB/ν and
using the values κ = 1 nm−1 and ν ≈ 1 nm3 (which are
both determined by the ion size), we find that lB = ν(1 +√

2)2κ2/(4π ) = 0.46 nm would already lead to a diverging
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FIG. 2. Scaled surface charge density se = λνσe/e as a function
of the electrostatic surface potential �0 for α̃ = 0 (gray), α̃ = √

21
(blue), α̃ = 9 (green), α̃ = √

101 (black), and α̃ = 11 (red). Solid
lines represent solutions of the nonlinear model according to Eqs. (3)
and (4). Broken lines mark the slopes at the points of inflection.
The blue open circle (b) is located at position {�0, se} according to
Eq. (12). All curves are calculated for λ = 10/nm and κ = 1/nm, as
well as sh = 0 (a) and sh = −2π × 2.5 (b).

C̄diff . Because this is even smaller than the Bjerrum length
in water, we conclude that the choice −a = −c = b = lB
leads to the prediction of a generic surface instability of ionic
liquids.

If we do not assume −a = −c = b = lB but instead fix the
Bjerrum length lB ≈ 8 nm as well as κ = 1 nm−1 and ν ≈
1 nm3, then we find λ = √

4π lB/ν = 10 nm−1 and thus λ̃ =
10. The gray curves in Fig. 1 correspond to that case. Bulk
and surface instability at the electrode occur at α̃ = λ̃ + 1 =
11 and α̃ =

√
1 + 2λ̃ = √

21 ≈ 4.6, respectively. The latter is
marked by the gray vertical dashed line in Fig. 1.

In Figs. 2 and 3 we expand our analytic results for the lin-
earized model by a numerical analysis of the nonlinear model,
as characterized by Eqs. (3) and (4). As in the preceding para-
graph, we are using the generic choices λ = 10/nm and κ =
1/nm, and for α we scan through a set of relevant values:

gray curves: α̃ = 0;
blue curves: α̃ =

√
1 + 2λ̃ = √

21 ≈ 4.58; here C̄diff di-
verges;

(a)
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FIG. 3. C̄diff as a function of �0 for α̃ = 0 (gray), α̃ = √
21

(blue), α̃ = 9 (green), α̃ = √
101 (black), and α̃ = 11 (red). All

curves are calculated for λ = 10/nm and κ = 1/nm, as well as
sh = 0 (a) and sh = −2π × 2.5 (b).

032040-3



GUILHERME VOLPE BOSSA AND SYLVIO MAY PHYSICAL REVIEW RESEARCH 2, 032040(R) (2020)

green curves: α̃ = λ̃ − 1 = 9, corresponding to case (2)
above;

black curves: α̃ =
√

λ̃2 + 1 = √
101 ≈ 10.05, correspond-

ing to case (4) above;
red curves: α̃ = λ̃ + 1 = 11, corresponding to case (5)

above.
Figure 2 shows the relation between scaled surface charge

density se and surface potential �0 for sh = 0 (a) and sh =
−2π × 2.5 (b). The condition σc(c − b) = σa(a − b) implies
sh = 0 [Fig. 2(a)], which renders the linearized model valid
in the vicinity of the point �0 = se = 0. Indeed, the slopes
(dashed lines) of the calculated curves (solid lines) at �0 =
se = 0 correspond exactly to C̄diff = dse/d�0 according to
Eq. (8). The slope is positive for α̃ = 0 (gray line), increases
to infinity at α̃ = √

21 (blue line), and then adopts negative
values thereafter (green, black, red lines). For sh = −2π ×
2.5 [Fig. 2(b)] there exists, strictly speaking, no point in the
vicinity of which the linear model is valid. Curves corre-
sponding to different α̃ do not intersect at a single point.
To a good approximation, however, they do, and we can
calculate that point writing Eq. (8) as �0 = f (α̃)se + g(α̃)sh.
From 0 = d�0/dα̃ = f ′(α̃)se + g′(α̃)sh we deduce se =
−[g′(α̃)/ f ′(α̃)]sh and �0 = −{ f (α̃)[g′(α̃)/ f ′(α̃)] + g(α̃)}sh.
This location depends only weakly on α̃ as long as α̃ � λ̃.
We may chose α̃ = 0 or, more conveniently, the critical value
α̃ =

√
1 + 2λ̃, which leads to the simple result

se = − λ̃

(1 + 2λ̃)2
sh, �0 = − λ̃

1 + 2λ̃
sh. (12)

This point also approximates the point of inflection, where the
diverging differential capacitance marks the onset of the phase
transition near the electrode. The blue open circle in diagram
(b) of Fig. 2 indicates the location defined in Eq. (12).

Figure 3 shows the scaled differential capacitance C̄diff =
dse/d�0 calculated from Fig. 2 for sh = 0 [diagram (a)] and
sh = −2π × 2.5 [diagram (b)]. The gray line, where α̃ = 0,
corresponds to the well-known bell-shaped profile [32] of
the lattice model in the presence of only Coulomb interac-
tions, C̄diff = | tanh �0|/

√
2 ln (cosh �0). The blue line, where

α̃ = √
21, marks the onset of the ionic liquid’s instability

at the electrode surface: C̄diff diverges at �0 = −shλ̃/(1 +
2λ̃). Spatially oscillating ion densities start developing at
the green line (where α̃ = 9). The two characteristic lengths
of these oscillations become equal at the black line (where
α̃ = √

101). Eventually, at the red line (where α̃ = 11), the
characteristic length corresponding to the exponential decay
grows to infinity, indicating the crossing of the spinodal line
beyond which the ionic liquid is locally unstable. Between the
blue and red line (

√
21 < α̃ < 11), the ionic liquid is subject

to a first-order phase transition in the vicinity of the electrode.
That is, the surface charge density undergoes a discontinuous
jump as a function of the surface potential, which in the
thermodynamically stable case leads to the lower branch of
C̄diff for the curves marked green, black, and red. If the system
transitions into the metastable case, C̄diff grows further.

The BSK model [22] applies to the special case α̃ = λ̃ that
represents the specific Coulomb-Yukawa interaction potential

uaa = ucc = −uac = kBT lB(1 − e−κr )/r. Based on the single
potential � = �e + �h BSK state the modified Poisson equa-
tion � ′′ − � ′′′′/κ2 = −λ2(φc − φa) and electrostatic energy
U per unit area A of the electrode,

U

AkBT
= 1

2λ2ν

∫
dx

(
� ′2 + 1

κ2
� ′′2

)
. (13)

The corresponding equations of our present approach [see
Eq. (5)] are −� ′′

e /λ2 = φc − φa and � ′′
h − κ2�h = λ2(φc −

φa) as well as

U

AkBT
= 1

2λ2ν

∫
dx

[
� ′2

e − (
� ′2

h + κ2�2
h

)]
. (14)

It is straightforward to show that both approaches are equiv-
alent. The boundary condition at the electrode surface,
� ′′′(0) = 0, used in the BSK model [22], has recently been
restated [24] to be � ′′′(0) − κ� ′′(0) = 0, which enforces
continuity of the Maxwell stress at the charged electrode.
Our present approach produces the more general boundary
condition

� ′′′(0) − κ� ′′(0) = λ2κ2ν(σc − σa), (15)

which follows upon noting sh = −λ2ν(σc − σa)/κ and insert-
ing �h = � ′′/κ2 into Eq. (4). The additional term ∼(σc − σa)
appears in the presence of asymmetric Yukawa interactions of
the cations and anions with the electrode (σc �= σa).

Chao and Wang [27] employ two potentials, Coulomb and
Yukawa, to model the composite pair interaction uaa = ucc =
−uac = kBT lB(1 − we−κr )/r, where w is a dimensionless pa-
rameter. This generalizes the BSK model to capture the more
general case a = c = −b = wlB and thus α = √

wλ. Chao
and Wang obtain the same spinodal as we do in our work.
However, their boundary condition for the Yukawa potential,
� ′

h(0) = 0 [instead of Eq. (4)], is the same as that used in the
BSK model [22]; it does not employ σe and σc and, more im-
portantly, ignores the penetration of the Yukawa potential into
the electrode. This overestimates the instability of the ionic
liquid at the electrode surface [leading to a diverging C̄diff

already for α̃ =
√

1 + λ̃ instead of α̃ =
√

1 + 2λ̃ according
to Eq. (11)]. Despite these differences, the ability of the model
from Chao and Wang [27] to account for experimentally
observed hysteresis effects [34,35] applies analogously to our
present model.

In summary, we present a comprehensive mean-field de-
scription of an ionic liquid with ion-specific, composite
Coulomb and Yukawa interactions on a densely packed lattice.
The additional Yukawa contribution serves as a representation
of ion-ion correlations and/or of ion-specific short-range non-
electrostatic ion-ion interactions. Our model generalizes the
BSK model [22] and provides a straightforward derivation of
the boundary conditions on the electrode. The linearized limit
affords simple analytic results for all structural and thermody-
namic properties, including the differential capacitance which
diverges at the onset of the ionic liquid’s instability near an
inserted electrode.
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