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Coexistence of localized and extended phases: Many-body localization in a harmonic trap
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We show that the presence of a harmonic trap may in itself lead to many-body localization for cold atoms
confined in that trap in a quasi-one-dimensional geometry. Specifically, the coexistence of delocalized phase in
the center of the trap with localized region closer to the edges is predicted with the borderline dependent on the
curvature of the trap. The phenomenon, similar in its origin to Stark localization, should be directly observed
with cold atomic species. We discuss both the spinless and the spinful fermions; for the latter we address Stark
localization at the same time as it has not been analyzed up until now.
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Introduction. For a long time, it has been believed that
many-body systems tend to thermalize as expressed by eigen-
state thermalization hypothesis [1,2]. The many-body local-
ization (MBL) phenomenon (for reviews, see [3—0]) is a direct
counterexample; for a sufficiently strong disorder, the system
preserves the memory of its initial state. However, recent
examples of many-body quantum so-called scar states [7,8],
Hilbert-space fragmentation [9-12], and lack of thermaliza-
tion in gauge theories [13—15] reveal strong nonergodic be-
haviors even in the absence of disorder. Another example
considers Stark localization, where the presence of a static
electric field resulting in a tilt in the many-body system may
lead to localization [16,17].

It seems that the more many-body physics is explored the
less ergodic the many-body dynamics turns out to be. The
present work provides another example of such a situation. We
consider finite system sizes only. Such systems are directly
amenable to experimental studies [18-27]. In this way we
also stay away from a current vivid debate about the very
existence of MBL in the thermodynamic limit [28-32]. We
consider one-dimensional (1D) chains with chemical poten-
tials quadratically dependent on position. Such a situation
is quite common in quasi-1D situations realized in optical
lattices [33,34], where a tight confinement in directions per-
pendicular to a chosen one is due to illumination by strong
laser beams with Gaussian transverse profiles. Those profiles
may be well approximated as a harmonic trap along the
considered direction [33]. Thus we shall consider models with
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Hamiltonians being
L2

A
H=HO+Htrap=HO+_ Z 127 (D
I=—L/2

where A is the curvature of the harmonic trap and [ is the site
index (we assume unit spacing between sites of the chain).
Hj is the model Hamiltonian considered, which may repre-
sent the Heisenberg chain (equivalent to interacting spinless
fermions), bosons represented by the Bose-Hubbard model,
or spinful fermions with the Hubbard Hamiltonian. In contrast
to the study of [17], where small quadratic potential has been
considered on top of the dominant uniform linear potential, we
consider the effect of a harmonic trap alone, which as we shall
show acts differently in different parts of the system. Let us
mention that such a model, for sufficiently big curvatures, may
lead to a local quadruple conservation [9]; thus it belongs to a
class of fracton systems where a generically slow subdiffusive
approach to thermalization is expected [11,12]. For complete-
ness, we mention that very slow dynamics was predicted also
for harmonic trap quenches for the noninteracting case [35].
The results presented here are limited to moderate timescales
where we observe no traces of the very slow thermalizing
dynamics expected in the harmonic trap [11].

Heisenberg spins or spinless fermions. As the simplest
possible model, first we consider the Heisenberg chain, where
H, becomes

L/2—1 L/2
Ho=J ) Si-Sma+ ) s, @
I=—L/2 I=—L/2

with S;’s being spin-1/2 operators and /; is a diagonal dis-
order (a magnetic field along the z axis) drawn from random
uniform distribution in the [—W, W] interval. We set J = 1 to
be the unit of energy. The harmonic trapping potential in this
case is given by Hyp = %‘ ILL i L2 ZZSZZ. The Hamiltonian (2)
is a paradigmatic model for MBL studies [36,37]; it maps to
an interacting chain of spinless fermions via Jordan-Wigner
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FIG. 1. Mean gap ratio 7 for the Heisenberg chain of L = 16
sites. Left: 7 as a function of the disorder amplitude and curvature A.
In the absence of external curvature A = 0 the crossover to localized
regime occurs for W = 2.3 for such a small system. Above A = 0.3,
the system seems, on the basis of mean gap ratio value, localized for
arbitrary W. Right: 7 as a function of scaled energy € and curvature
A at disorder strength W = 0.5. The rescaled energy is defined as
€ = (E — Enin)/(Emax — Emin), Where Eni, (Engy) 1S the energy of
the ground (highest excited) state and E denotes the energy of the
corresponding eigenstate. The blue and red lines are contours for
7 = 0.46 and 0.42, respectively, and serve as a guide to the eyes for
distinguishing apparently localized and ergodic phases.

transformation. A typical random matrix theory (RMT) based
measure is the gap ratio defined as a minimum of the ratio
of consecutive level spacings, r, = min{xf’v—r‘, X%} with s, =
E,;1 —E, and E, being the energy eigenvalue. The mean
gap ratio is 7 & (.53 for a delocalized system, well described
by Gaussian orthogonal ensemble (GOE), while 7 = (.38
for Poisson spectra characteristic for integrable, localized
cases [38]. We find that for a sufficiently large curvature A the
mean gap ratio takes the latter value regardless of the disorder
amplitude (see Fig. 1 for L = 16). The figure resembles that
observed for Stark localization [16].

To get insights into the physics observed, let us consider
the time dynamics. We prepare the chain in the separable state
with every second spin being up and down respectively as
1, 4,71, ..., ) and observe whether this spin-wave arrange-
ment is preserved in time evolution. For small disorder and
small A the system thermalizes (upper row in Fig. 2). For
larger A a different picture emerges; while at the center of
the chain delocalization still occurs, at a sufficient distance
from it we observe preservation of the initial spin texture, i.e.,
localization.

One can easily, a posteriori explain this phenomenon.
For a given distance [y from the center the local static field
can be expressed as F = zf_zo(%l(%) = [pA. If this local field
exceeds the border of Stark localization [16,17], the part of the
system localizes, while the region close to the center remains
extended. Therefore, unlike the usual Stark localization, one
can always find localized regions for any finite values of A
for large enough systems under harmonic trapping potential.
The dashed lines in Fig. 2 give the Stark localization border,
as predicted in [16] to be F & 2, which nicely fits numerical
data.

While Fig. 2 clearly shows the coexistence of localized
(close to edges) and delocalized (in the center of the trap)
regions, this finding seems to be in contradiction with the
mean gap ratio data of Fig. 1, which indicates that 7 takes the
value close to Poissonian-like for A = 0.4. Such a value may
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FIG. 2. Site-observed spin dynamics, as measured by the local
expectation values (Sj) for the L = 50 Heisenberg chain with no
disorder. For small A the system “thermalizes” and initial spin-wave
configuration is destroyed by interactions. For larger curvature, one
clearly observes the coexistence of delocalized (in the center) and
localized regions (at the edges). The black dashed lines give the
border of localization as given by Stark localization prediction with
F. ~2][l16].

correspond to a fully localized case, but also to a superposition
of independent spectra. Therefore, a logical consequence is
that the eigenstates are either localized close to the edges
or extended over the central region, such that the mean gap
ratio value comes as a result of the superposition of three
independent spectra, only two of them being localized.

The simulations of time evolution are performed using a
time-dependent variational principle (TDVP) algorithm using
MPS ansatz [39-42]. More specifically, we use a hybrid vari-
ation of the TDVP scheme mentioned in [14,42-44], where
we first use a two-site version of TDVP to dynamically grow
the bond dimension up to a prescribed value, say xmax- When
the bond dimension in the MPS is saturated to xmax, we shift
to the one-site version to avoid any errors due to truncation
in singular values that appears in the two-site version [42,43].
The final results are produced with yxy.x = 512, so that the
maximum allowed value of the entanglement entropy at any
given bond in the bulk of the system is In xmax = In(512).

Instead of spin profiles, one may look at the entanglement
entropy growth in time (see Fig. 3). We see that entropy
grows rapidly in the central region, while remaining low in
the localized parts. In the delocalized center the entropy grows
fast, and therefore, the simulations in this region may not be
accurate. However, as we move towards the boundaries of
the system, the results with yn.x = 512 become “exact,” even
within the delocalized region. We confirm this by performing
the same simulations with xn.x = 384. The bottom row of
Fig. 3 shows such a comparison of results with xy.x = 512
and 384 for the L = 50 Heisenberg chain with A = (0.2 and
0.4. Here, we only compare bonds that are in the delocalized
part, as we always get converged results in the localized
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FIG. 3. Time dynamics of the entanglement entropy for A = 0.2
(left column) and A = 0.4 (right column) for the Heisenberg chain
with the initial spin-wave state and without any disorder. Top row:
Spatial profiles of time-evolved entropy measured across every bond.
The entanglement grows rapidly in the central region remaining
relatively low at the edges behind borders (depicted by black dashed
lines) given by the Stark localization criterion. Bottom row: The
growth of entanglement entropy with time measured across selected
bonds (marked by red dash-dotted lines in the top row). Solid lines
show the results for MPS bond dimension xn.x = 512, while thicker
dashed lines are for xm.x = 384. The black dashed lines show the
maximum allowed value In 512 of entanglement entropy by the MPS
ansatz with y,.x = 512 and the green dotted lines in the bottom left
figure are straight lines in the logarithmic scale and are there as a
guide to the eyes.

regions even for ym.x = 384. The comparison of TDVP data
with numerically exact results obtained using Chebyshev ex-
pansion of the time evolution operator [45-47] for L = 20 is
presented in [48].

Quite surprisingly, the entanglement entropy can also show
logarithmic growth in time, even in the delocalized regions
when the effect of trapping potential becomes strong. For
example, in the case of A = 0.2, entropy in the central bond
grows rapidly in time and approaches the maximum allowed
value by the MPS ansatz [In(512) in this case]. On the other
hand, the entropy in the bonds 30 and 32 shows a logarithmic
growth, despite being on the delocalized side of the system.
The entanglement growth in the case of A = 0.4 is greatly
modified by the harmonic trap even in the central bond. This is
indeed very unusual dynamics where delocalized parts behave
as systems showing MBL in terms of entropy growth. The
plausible explanation of this behavior comes from the fact
that entanglement entropies between nearby sites cannot differ
much due to the local Hilbert space dimension being equal
to 2 for spins. Thus logarithmic slow growth in time in the
localized region also affects sites that are in the neighborhood
of the border between localized and delocalized sites.

One important point to mention is that to observe clear
signatures of MBL for the pure linear lattice tilt, either
a small disorder or a slight curvature has to be added to

FIG. 4. Left: Gap ratio statistics for a static electric field problem
for spinful fermions with interaction strength U = 1 as a function of
scaled energy € and static field amplitude F for disorder strength
W = 0.5. The plot corresponds to the six-fermion system in L =
12 lattice sites (quarter filling) with the number of up and down
fermions being equal. The transition to Poisson statistics is smooth
and extended over a range of static field F values. Stark localization
is observed for sufficiently large F'. Right: The gap ratio statistics for
spinful fermions in the harmonic trap for disorder strength W = 0.5.
Other parameters are the same as in the left panel. The blue and
red lines in both the figures are contours for 7 & 0.46 and 0.42,
respectively, and serve as a guide to the eyes for distinguishing
localized and ergodic phases.

the potential [16,17] to avoid thermalization due to fracton
dynamics [49]. For our harmonic potential the local field
changes from site to site, which apparently suffices to avoid
subdiffusive thermalization. Another interesting point is that
the observed results do not warrant a finite-size scaling, as for
a fixed value of A the central region remains almost invariant
and simply additional localized sites are added in the edges
with increasing system size. For illustration, we put the results
for L = 20 in [48].

Spinful fermions: Stark localization. Since the interactions
between spinless fermions are hard to realize experimentally
in a standard cold atom in optical lattice setting, we consider
the spinful case, represented by the Hubbard model, as in
experiments [18,21]. The curvature-free part Hy is

Hy=—-J Z(@;U@HIG +Hc)+U ZﬁlTﬁll + Zh[ﬁlg,

lo 1 l,o

(3)
with [ € [—L/2, L/2]. As before, we set J = 1 to be the unit
of energy and consider U = 1 throughout this communication
unless otherwise stated. Let us first consider the Stark local-
ization problem under linear potential as it was only addressed
for spinless fermions [16,17] until now. Thus, we add to the
Hamiltonian a tilt term F ), [(fs + ;) and analyze the
gap ratio statistics. The corresponding 7 statistics is shown
in Fig. 4(a) for the L = 12 quarter-filled chain (i.e., Ny =
N, = L/4). To obtain this plot we break the SU(2) symmetry
of the Hamiltonian by adding a local magnetic field to the
Hamiltonian via the term Hyeax = B(ng 24 — npyp) ) with B =
0.5 following the prescription and discussion in [50]. We
observe that, in comparison to spinless fermions [16], the
crossover seems quite broad, possibly due to the small system
size taken. To get a more precise critical value of F, we
consider the time evolution of a staggered density-wave state
[1,0,1,0,1,0,,....) for larger system sizes and measure
the density correlation C(t) = DY, [(t) — pl[7;(0) — p],
where #;(t) = (4 +7;y), p is the average number of

032039-3



CHANDA, YAO, AND ZAKRZEWSKI

PHYSICAL REVIEW RESEARCH 2, 032039(R) (2020)

32 Ty 1.0 32— 1.0
2 SSzsfralan| I — 2 2 = | F = 2.5
= 0.8 = 0.8
24 - 24 =
¢ 20 s 06 20 s 0.6
=16 = =16 =
i = 04 7 = 0.4
12 = 12 =
8 : 0.2 8 = 0.2
4 SR 4 — pi
0.0 ] 0.0
QPN D AN \Q\\ ?)QQ \Q\\\\ QRN D AN \Q\\ QJQ\\ \QQQ
Time Time
32 - 10 g0
BE =
- 08 «
24 = 2015
s z
20 = ;=
8 H 08 o
=16 = 20.10
v — 04 =
12 - 0
8 = 0o =005
= SR
1 - - 0.0 0.00
QDY D AN AN QD oD \\3\\% 1

Time

FIG. 5. Top row and bottom left panel: Time dynamics of spinful
fermions for the initial staggered density-wave state without any
disorder for three static field amplitudes, F', across the crossover.
The localization is complete for F = 3, while for intermediate field
values a partial localization is observed with some fraction of parti-
cles accumulating near the bottom of the effective potential. Bottom
right panel: Time-evolved density correlator C() at large times as a
function of F'. We discard four sites from the boundaries to minimize
their effects. We take the inflection point of the curve at F, ~ 2.8 as
a critical field amplitude. All data are for L = 32 obtained using a
TDVP algorithm.

particles per site, and the constant D is chosen so that C(0) =
1. The illustration of such time dynamics for the L = 32 sites
system is shown in Fig. 5. We observe that for the high field
value, e.g., F = 3, the localization is almost complete (bottom
left panel). On the other hand, at lower fields, we observe a
partial localization [as revealed also by standard local densi-
ties 71;(t); see top row of Fig. 5]. The bottom right panel of
Fig. 5 shows large time values of the density correlator C(¢)
and its derivative %. We approximate critical F, from the
inflection point of C(¢), as obtained from the maximal value
of its derivative, to be F,. ~ 2.8 for the disorderless scenario.

Spinful fermions: Localization under harmonic trap. Hav-
ing established the estimate for the critical field amplitude
corresponding to the crossover to localized phase, we may
turn again to the harmonic confinement case. Thus we again
consider (1) now for spinful fermions (3), with Hy,p =
‘% Zg{uz I>(Ay4 + fiy} ). The right panel of Fig. 4 shows level
spacing statistics for the quarter-filled L = 12 chain in such
case and Fig. 6 depicts the time dynamics of the density profile
for different curvatures of the harmonic potential with the
staggered density-wave state being the initial one. We observe
that, as in the spinless fermions case, while in the center of the
trap apparent fast “thermalization” occurs, closer to the edges
the effective electric field coming from the curvature of the
trap leads to localization. The dashed lines give the estimate of
the threshold assuming the F = [jA condition with F, = 2.8
from the previous analysis.
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FIG. 6. Top row: Time-evolved density profile of spinful
fermions for the initial staggered density-wave state under harmonic
potential with no disorder. Bottom row: Time dynamics of entan-
glement entropy measured across every bond for the same systems
as in the top row. All the figures are for the quarter-filled L = 32
chain. Black dashed lines give the physical border of localization as
predicted by the Stark localization with F, ~ 2.8.

We may also analyze the time-evolved entanglement en-
tropy in different regions. While in the center of the trap the
entropy grows linearly with time and soon saturates due to
insufficient bond dimension of the MPS ansatz rendering the
results in this region not accurate, the entropy beyond the lo-
calization boundary given by /p > F /A (and symmetrically for
negative [y) seems to grow logarithmically providing further
evidence for many-body localization in the outer regions.

The corresponding spin dynamics is also interesting. As
in the standard MBL case, we observe a subdiffusive decay of
initial spin configuration for the initial staggered density-wave
state, characteristic of the remaining SU(2) symmetry of the
problem [51-53]. Visualization of this effect can be seen from
the profile of spin degrees of freedom in Fig. 7, where a slow
spreading of the delocalized region in the spin sector at later
times can be observed.
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FIG. 7. Time-evolved profile of local spin operator Sf = (74 —
f1,)/2 of spinful fermions for the initial staggered density-wave state
under harmonic potential with no disorder. Other specifications are
the same as in Fig. 6.
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Conclusions. We have shown that many-body localization
behavior can be observed in the presence of the harmonic trap
and in the absence of the disorder. The effect is due to a local
static field that induces, for sufficient curvatures, Stark lo-
calization as recently shown for spinless fermions [16,17,49]
and announced in the spinful case [54]. Since the effect has
a lower bound on the curvature, the central region of the trap
remains delocalized. Thus a harmonic trap makes a possible
realization of a very interesting situation—coexistence of
delocalized and MBL phases in a single system. Let us stress
that on the experimentally relevant timescales considered by
us, we do not observe any traces of the slow subdiffusive
thermalization predicted due to fracton hydrodynamics [11].
Finally, let us also mention that the harmonic trap may play
some role in the experiments on MBL performed in optical

lattices (e.g., [18,21]) as the residual trap due to Gaussian
beam profiles is most probably present there. While in these
experiments disorder-induced effects play a dominant role, the
residual harmoniclike trap may affect the details of the time
dynamics for large systems. This aspect is the subject of a
current research. Finally, we note that the effect is not limited
to harmonic trap but can be generalized to arbitrary potentials
with nonvanishing first-order derivatives.
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