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Transport controlled by Poincaré orbit topology in a driven inhomogeneous lattice gas
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In periodic quantum systems which are both homogeneously tilted and driven, the interplay between drive
and Bloch oscillations controls transport dynamics. Using a quantum gas in a modulated optical lattice, we
show experimentally that inhomogeneity of the applied force leads to a rich variety of dynamical behaviors
controlled by the drive phase, from self-parametrically-modulated Bloch epicycles to adaptive driving of
transport against a force gradient to modulation-enhanced monopole modes. Matching experimental observations
to fit-parameter-free numerical predictions of time-dependent band theory, we show that these phenomena can
be quantitatively understood as manifestations of an underlying inhomogeneity-induced phase-space structure,
in which topological classification of stroboscopic Poincaré orbits controls the transport dynamics.
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Spatially periodic quantum systems exhibit an oscillatory
response to static forces [1,2]. Any applied modulation can in-
teract with Bloch oscillations, resulting in phenomena ranging
from super-Bloch dynamics [3] to high-harmonic generation
[4]. In this Rapid Communication, we experimentally ex-
plore the consequences of breaking the position-independent
character of Bloch oscillations with an inhomogeneous field,
which qualitatively transforms the phase-space structure of
the system and generates an array of transport phenomena.
The recently observed position-space character of Bloch os-
cillations [5] plays a key role, admixing an intrinsic self-
parametric modulation to all Bloch oscillators.

The experiments we describe use a quantum gas in an
optical lattice. Cold-atom experiments have long provided a
flexible platform for exploring Bloch oscillations and related
fundamental features of transport in crystals [3,5–10]. Mod-
ulated effective electric fields have been used to investigate
Wannier-Stark ladder resonances [11], modulation-assisted
tunneling [12,13], coherent spatial mode manipulation [14],
and super-Bloch oscillations [3], complementing related the-
oretical studies [15–20], and parametric lattice modulation
has been applied to the study of quantum ratchet behavior
[21,22], Bloch transport in hybridized Floquet bands [23,24],
and topological pumping phenomena [25–28].

An overview of the experimental context of driven-lattice
transport appears in Fig. 1: modulating the lattice depth near
the Bloch frequency gives rise to an asymmetric parametri-
cally varying “convective” group velocity and net transport
during a Bloch cycle. The experiments begin with an optically
trapped Bose-Einstein condensate (BEC) of 105 7Li atoms
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adiabatically loaded into a one-dimensional (1D) optical lat-
tice with lattice spacing d = 532 nm, laser wave vector kL =
π/d , and recoil energy ER = h̄2k2

L/2m, with m the mass of
7Li. Interatomic interactions are set to zero by Feshbach
tuning. All comparisons with theory are based on a Gaussian
ensemble of spatial width σx = 50d and momentum width
σk = 0.1kL; this non-Heisenberg-limited σk is associated with
the BEC experiencing inhomogeneous axial forces and con-
sequent momentum broadening during the adiabatic lattice
load. The condensate starts in the crossed optical dipole trap
at a position away from the center of a harmonic potential
created by external electromagnets, so that when the dipole
trap beams are abruptly turned off the atoms feel an inho-
mogeneous force and begin Bloch oscillating. At t0 = 9.3 ms
the BEC reaches the edge of the Brillouin zone and we begin
sinusoidal modulation of the lattice beam intensity. Following
the removal of the optical dipole trap, the system is described
by the Hamiltonian

H = p2

2m
+ V (t )

2
cos(2kLx) + 1

2
mω2x2 − Fx. (1)

The magnetic trap frequency is ω = 2π× 15.5 Hz, with initial
local force F = h/TBd and Bloch period TB = 16.75 ms. The
time-varying lattice depth V (t ) is

V (t ) =
{

V0[1 + α sin(ϕ)], −t0 < t < 0
V0[1 + α sin(ωDt + ϕ)], t � 0.

(2)

For all runs, the drive frequency is ωD = 2π× 53.56 Hz; in
the case of chirped driving, this is the frequency at t = 0.
The modulation depth is held at α = 0.24 with average lattice
depth V0 = 4.3 ER. We also denote the angular Bloch fre-
quency ωB = 2π/TB, drive period TD = 2π/ωD, and tunnel-
ing J . The critical parameter we manipulate to drive different
dynamical behaviors is the initial drive phase ϕ.

Figure 2 shows data taken for drive phases experimentally
found to be optimal for long-range pumping of the BEC both
with and against the applied force. The results demonstrate
pumping of the BEC over 200 lattice sites in just five Bloch
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FIG. 1. Transport in a modulated lattice. (a) Comparison be-
tween convective (solid) and static (dashed) group velocity for a
Bloch-oscillating ensemble with resonantly modulated tunneling.
The shaded area indicates net spatial motion over a cycle. Insets: Ex-
aggerated real-space potential, with tunneling indicated by the length
and direction of the arrow. (b) Corresponding convective (solid) and
static (dashed) energy bands. (c) Ordered sequence of absorption
images demonstrating transport against an applied force by a chirped
adaptive drive (details in text). (d) Theoretically predicted density
evolution under the same conditions as panel (c).

cycles; the large increase in magnitude of transport rate as
compared to Ref. [3] can be attributed mainly to the low mass
of 7Li. We observe optimal pumping along the direction of
applied force at ϕ = π/2; as discussed below, this disagrees
starkly with a theoretical description based on a homogeneous
effective electric field, which predicts optimal transport along
the direction of force for ϕ = 0 and optimal transport against
the force for ϕ = π .

The observed dynamics are highly asymmetric in the drive
phase. Modulating at ϕ = 3π/2, exactly out of phase with the
experimentally observed optimal condition for force-aligned
pumping, does not produce directed transport. In experiments
with a modulation phase of ϕ = π , the cycle-averaged ve-
locity actually changes sign, as shown in Fig. 2(b). This
phenomenon is similar to super-Bloch oscillations, though
here the evolving relative phase between drive and Bloch
oscillation does not result from a static detuning, but instead
from a self-parametric modulation due to the spatial variation
in Bloch frequency. Put differently, the force inhomogeneity
eliminates the possibility of a global Wannier-Stark reso-
nance, giving rise to slow oscillatory transport as a natural
dynamical mode.

An adaptive driving protocol can recover directed mono-
tonic pumping against an applied force even without a true
Wannier-Stark resonance. Figures 2(b) and 1(c) show exper-
imental measurements of transport produced by an adaptive
drive which includes a chirped drive frequency. Intuitively,
the chirp can be understood as stroboscopically maintain-
ing the local Wannier-Stark resonance condition for a set
of unevenly spaced ladders, or alternatively as optimizing
the cycle-averaged spatial transport sketched in Fig. 1(a) by

FIG. 2. Directed Floquet-Bloch transport in an inhomogeneous
force field. (a) Measured (points) and numerically predicted (line)
mean atomic position as a function of time for a drive phase ϕ =
π/2. The applied force points towards larger positive displacements.
(b) Similar measurements (points) and numerical theory (lines) for
an initial drive phase ϕ = π . A time-invariant drive frequency yields
epicyclic motion due to force inhomogeneity (squares). An adaptive
drive using a frequency chirp suppresses this behavior and extends
the range of transport [triangles, and images in Fig. 1(c)].

accounting for the average change in ωB per cycle. These
data were taken with a chirp rate of 115 Hz/s, causing an
increase of ωD by 2π × 2.15 Hz each drive cycle. We believe
the slight deviation between theory and experiment for the
adaptive driving protocol results from a systematic drift in
the experimentally applied initial force F . While here a linear
chirp is shown to be effective for a linearly varying force, the
results suggest that higher-order, nonmonotonic, and piece-
wise adaptive driving protocols could serve as flexible tools
for engineering transport in arbitrary force landscapes.

Next we discuss a simple analytic model of directed
transport for a homogeneous force; this provides a useful
framework for highlighting and understanding the qualita-
tively different phenomena introduced by force inhomogene-
ity. We consider a tight-binding model in the single-band
approximation. For a sufficiently low-frequency drive we can
define a time-dependent ground band dispersion E (k, t ) =
−2J[V (t )] cos(kd ), with tunneling J a function of the time-
dependent lattice depth V , and k the quasimomentum. In the
semiclassical picture, the BEC moves at the group velocity

vg(t ) = 2J[V (t )]d

h̄
sin [k(t )d], (3)

where k(t ) denotes the time-dependent quasimomentum. For
weak modulation, J varies to first order in time as J[V (t )] ≈
J (V0)[1 − α0 sin(ωDt + ϕ)], with scaled modulation index
α0 = α|J ′(V0)|V0/J (V0); the prime indicates partial differen-
tiation with respect to lattice depth, and for our experimental
parameters α0 ≈ 1.15α as computed using Mathieu parameter
relations for the band edges [29]. Under this approximation,
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FIG. 3. Effect of the inhomogeneity-induced phase-space structure on transport. (a) Stroboscopic Poincaré map for a homogeneous force at
6-Hz detuning between drive and Bloch oscillation, showing super-Bloch-like oscillations wrapping the Brillouin zone. For panels (a) and (b) an
11 × 11 grid of initial conditions spanning 400 lattice sites and the whole Brillouin zone was numerically evolved and plotted stroboscopically
out to 200 TD (longer than our longest experiment times). The colorbar indicates drive phase ϕ, or, equivalently, initial quasimomentum. Inset:
Stroboscopic Poincaré map on identical axes out to 6 TD for zero detuning, for a single initial position over the whole quasimomentum range;
trajectories unwrap, yielding linear vertical transport and two invariant quasimomenta. (b) Stroboscopic Poincaré map at the same detuning,
for an inhomogeneous force matching our experimental conditions. Note the emergence of nontrivial fixed points and topologically distinct
classes of orbits. (c) Short-time portrait of the evolution of an ensemble for ϕ = π/2 (blue time) and 3π/2 (red time), yielding stable transport
and rapid spreading, respectively, as a result of the different fixed-point characteristics. The plotted sample is a 21 × 21 grid spanning 1-σ in
both position and momentum. The time colorbars match the definition of t in Eq. 1 after adding 0.25 (blue) and 0.75 TD (red).

the cycle-averaged spatial transport is

�x ≈ −2α0J (V0)d

h̄

∫ TD

0
sin(ωDt + ϕ) sin

[ ∫ t

0
ωB(t ′)dt ′

]
dt .

(4)

For a homogeneous force, ωB(t ) is a constant, and thus the
quasimomentum evolves as k(t ) = (ωBt + π )/d . The π offset
is introduced to match our experimental protocol. For resonant
driving ωD = ωB, the average velocity is

vg = α0v0

2
cos(ϕ). (5)

On average the atoms travel at half the characteristic velocity
v0 = 2J (V0)d/h̄ scaled by the modulation index α0 and the
alignment between drive and Bloch cycles cos(ϕ). It is clear
that ϕ = 0 and π yield maximum pumping down and up the
potential, respectively.

For small detuning between drive and Bloch frequencies,
this homogeneous model predicts transport over many periods
resulting from the effective evolution of ϕ. It is useful to
compare and contrast these parametrically driven dynamics
to super-Bloch oscillations [3]: both can be schematically
understood as resulting from modulation of the Wannier-Stark
length l = 2J/F , by modulation of either the numerator (this
Rapid Communication) or the denominator (Ref. [3]). In the
language of nonlinear dynamics, the distinction is between
forced and parametrically excited oscillators, and our exper-
iment is a quantum mechanical analog of a parametrically
excited pendulum [30–32], with angle mapped to quasimo-
mentum and angular momentum mapped to position, in the
regime of purely rotating solutions.

While the intuitive mechanism for Floquet-pumped trans-
port in an inhomogeneous force field can still be conceptu-
ally understood with this homogeneous framework, our mea-
surements deviate qualitatively from these predictions as ωB

acquires parametric time dependence from the time-varying

position. The observed optimal phase for force-directed
pumping [Fig. 2(a)] is in clear disagreement with the constant-
force prediction of ϕ = 0; in fact, Eq. (5) predicts a mean
velocity of zero for ϕ = π/2. The effect of force inhomo-
geneity is even more pronounced when attempting Floquet
pumping against the potential gradient: as shown in Fig. 2(b),
we observe a rapid change of the transport direction and no
symmetry between opposite-phase drives.

The breakdown of the theory based on a constant effective
electric field motivates the search for a more complete theoret-
ical description of driven Bloch dynamics in inhomogeneous
fields. As a key result of this Rapid Communication, we show
that the qualitatively different dynamics observed arise from a
rich underlying inhomogeneity-induced phase-space structure
which exhibits a topological transition in the character of
stroboscopic Poincaré orbits. To see this, we use a Floquet
map formalism, analyzing the phase-space trajectories stro-
boscopically with respect to the drive. Figure 3(a) shows the
calculated Poincaré map for a spatially uniform force and
nonzero drive detuning. Super-Bloch-like oscillatory behavior
is evident: the detuning generates a uniform quasimomentum
shift for every point in phase space, and mediates the evolving
phase in the sinusoidal arguments of Eq. (4), leading to an
oscillatory profile of position versus quasimomentum. The
sign of the quasimomentum shift is determined by whether
the drive is red or blue detuned, and the constant nature of
the detuning ensures that the Floquet trajectories all wrap the
phase-space cylinder. On resonance, a transition occurs where
all trajectories unwrap as the quasimomentum shift vanishes,
and each point undergoes a vertical shift in the position
direction determined by Eq. (5); this is accompanied by the
emergence of two fixed lines in the map for quasimomenta
corresponding to initial drive phases of π/2 and 3π/2. The
inset of Fig. 3(a) shows the map for a resonant drive with start-
ing points at only one initial position, revealing the invariant
quasimomenta.
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FIG. 4. Phase-dependent spatial dynamics as a probe of the stroboscopic Poincaré map. (a), (c) Time sequence of absorption images of
an atomic ensemble subjected to drive phases of (a) ϕ = 3π/2 and (c) ϕ = π/2. These two phases are predicted to give rise to topologically
distinct Poincaré orbits with qualitatively different transport dynamics, as shown in Fig. 3(c). (b), (d) Numerical simulations of the 1D density
evolution under the same conditions as panels (a) and (c). The simulated density is averaged over independent, Gaussian-weighted 1D trials at
varying lattice depths corresponding to transverse variation of beam intensity. (e) The second moment of the density distribution is plotted vs
time for initial drive phases ϕ = 3π/2 (circles) and π/2 (squares). Solid lines show simulated second moment evolution, accurately capturing
the asymmetric enhancement and suppression of curvature-induced monopole modes.

In the presence of force inhomogeneity, the fixed lines
mentioned above become fixed points where the drive meets
the (position-dependent) Wannier-Stark resonance condition,
yielding a strikingly different stroboscopic Poincaré map, as
shown in Fig. 3(b). The fixed points near k = −0.5 and 0.5kL

are centerlike and saddlelike, respectively. Here super-Bloch-
like transport breaks down and the system admits a class of
motion not present in Fig. 3(a), namely, regular cyclic orbits
about the k = −0.5kL fixed point. In the stroboscopic map,
these orbits have a distinct topology as closed loops which
do not wrap the Brillouin-zone cylinder; this emerges due to
the possibility of the now implicitly time-dependent detuning
changing its cycle averaged sign, something not possible in
the homogeneous force case. A topologically distinct class of
super-Bloch-like trajectories wrapping the Brillouin zone is
observed at positions sufficiently far away from the resonance
point.

The Floquet map serves as a powerful intuitive tool for
understanding and predicting the results of inhomogeneity in
the effective electric field. As shown in Fig. 3(c), the exper-
imental ϕ = π/2 condition is represented by an ensemble
which starts near the stable fixed point, and the observed
dc transport represents a partial cycle of the circulatory be-
havior in which the position spread of the ensemble is not
significantly changed, approximating the motion of a rigid
body. A drive phase of ϕ = 3π/2, in contrast, corresponds
to an ensemble starting near the saddlelike fixed point. In
this case the Floquet map dynamics predict rapid divergence
along the unstable axis of the fixed point, with the ensem-
ble stretching in phase space and splitting up among orbits
confined at the positional extremes. This corresponds to a
maximal violation of rigid-body-like dynamics, exhibiting
oscillations and growth in higher moments of the spatial
distribution.

Our experimental observations confirm these predictions of
the stroboscopic Poincaré map. Figures 4(a) and 4(c) compare
experimental image sequences of BEC evolution for drive
phases of ϕ = 3π/2 and π/2, respectively. In the ϕ = 3π/2
data, an initially localized distribution is observed to rapidly
spread, eventually delocalizing over 600 lattice sites in a
highly non-normal distribution. Here, the drive acts to amplify
the curvature-induced breathing mode, eventually splitting the
cloud largely into two regions of higher density near the
edge of the distribution. Note that these dynamics correspond
in detail to the predicted ϕ = 3π/2 evolution illustrated in
Fig. 3(c). In contrast, the data for a drive phase ϕ = π/2,
shifted by exactly π , reveal surprisingly stable wave-packet
transport given the presence of both significant force inho-
mogeneity and a strong drive. In this case, the drive serves
the dual role of preserving the wave-function spatial mode
and inducing transport. Both cases exhibit good agreement
with numerical simulations of squared-wave-function evolu-
tion shown in Figs. 4(b) and 4(d). The match to theory is
quantitative as well as qualitative: Fig. 4(e) compares the
evolution of the second moment of the position distribution
to numerical theory for both drive phases. For ϕ = 3π/2, the
second moment oscillates and grows rapidly before saturating
at nearly four times the initial value. This is in stark contrast
to the ϕ = π/2 case, in which the data display little to no
variation of the second moment over the entire interval.

In conclusion, we have shown that the combination of
an inhomogeneous force with periodic modulation drives
rich dynamical behaviors beyond those of a pure-Bloch or
super-Bloch oscillator. Good agreement with numerical cal-
culations supports our interpretation of the inhomogeneity-
induced dynamics as arising from a fundamental change in
the phase-space structure of the Hamiltonian giving rise to
distinct topological classes of Poincaré orbits. These results
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point the way to a general protocol for controlling transport
and density evolution with lattice amplitude modulation even
in uncontrolled force environments. Potential future applica-
tions of these techniques include the generation of spatially
squeezed states, new models for solid-state high-harmonic
generation, and control elements for continuously trapped
atom interferometry. Since force metrology is an important
use of atomic Bloch oscillations, these results have direct
relevance for applications in which the force environment
is both uncontrolled and inhomogeneous. Inclusion of static
or modulated interatomic interactions is an exciting possible
direction for future work [33,34], as is the effect of quasiperi-
odic or multiple-frequency driving. Such a platform would
be well suited for exploring the correspondence between the

breakdown of classical orbit regularity and nonergodic many-
body dynamics.
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