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Optimal mean first-passage time for a Brownian searcher subjected to resetting:
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We study experimentally and theoretically the optimal mean time needed by a free diffusing Brownian particle
to reach a target at a distance L from an initial position in the presence of resetting. Both the initial position and
the resetting position are Gaussian distributed with width σ . We derived and tested two resetting protocols, one
with a periodic and one with random (Poissonian) resetting times. We computed and measured the full first-
passage probability distribution that displays spectacular spikes immediately after each resetting time for close
targets. We study the optimal mean first-passage time as a function of the resetting period and rate for different
values of the ratio b = L/σ and find an interesting phase transition at a critical value b = bc. For bc < b < ∞,
there is a metastable optimum time which disappears for b < bc. The intrinsic difficulties in implementing these
protocols in experiments are also discussed.
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When searching for a lost object in vain for a while, intu-
ition tells us that maybe one should stop the current search and
restart the search process all over again. The rationale behind
this intuition is that a restart may help one to explore new
pathways, thus facilitating the search process. This intuition
has been used empirically before in various stochastic search
algorithms (such as simulated annealing) to speed up the
search process [1–4]. More recently, in the physics literature,
this fact was demonstrated explicitly by studying the mean
first-passage time (MFPT) for a single particle (searcher) to a
fixed target in various models, in the presence of resetting (for
a recent review, see Ref. [5]).

Searching a target via resetting is an example of the
so-called intermittent search strategy [6] that consists of a
mixture of short-range moves (where the actual search takes
place) with intermittent long-range moves where the searcher
relocates to a new place and starts a local search in the new
place. More precisely, let there be a fixed target at some
point in space and a particle (searcher) starts its dynamics
from a fixed initial position in space. The dynamics of the
particle may be arbitrary, e.g., it may be simply diffusive
[7,8]. Resetting interrupts the natural dynamics of the particle
either randomly at a constant rate r [7,8] or periodically
with a period T [9,10], and sends the particle to its initial
position. The dynamics starts afresh from the initial position
after each resetting event. The MFPT to find a target, located
at a fixed distance away from the initial position, typically
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shows a unique minimum as a function of r (or T for peri-
odical resetting). These studies have led to the paradigm that
resetting typically makes the search process more efficient,
and, moreover, there often exists an optimal resetting rate r∗
(or period T ∗) that makes the search time minimal [7,8].

While this “optimal resetting” paradigm has been tested
and verified in a large number of recent theoretical and
numerical studies [9,11–28] (see also the review [5]), it still
needs to be verified experimentally (see, however, the recent
preprint [29], where the authors use a holographic optical
tweezer setup. Their resetting protocols though are quite dif-
ferent from ours). The purpose of this Rapid Communication
is to report an experimental realization using optical laser
traps and a subsequent test and verification of this optimal
resetting paradigm. The goal of the experiment is not just
to mimic the theoretical models, but we will see that de-
signing an experiment with a realistic resetting protocol is
challenging. Moreover, our experimental protocol led us, in
turn, to study different models that exhibit interesting and rich
phenomena associated with resetting, namely metastability
and a phase transition in the MFPT as a function of resetting
rate and period.

Experimental setup. We have implemented an optimal
search protocol with a Brownian particle which is period-
ically or randomly reset using optical tweezers [30]. We
use a silica microsphere of radius R = 1 μm (±5%) im-
mersed in pure water. The fluid chamber is designed to
have very few particles in the measuring volume which al-
lows us to take long measurements. A near-infrared laser
with wavelength λ = 1064 nm is focused into the chamber
through an oil immersion objective [Leica 63× and 1.4 nu-
merical aperture (NA)] to create an optical trap. The par-
ticle is trapped in the (x, y) plane by a harmonic potential
with stiffness κ . The stiffness is controlled by changing
the optical power in the chamber directly by laser current
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FIG. 1. Top panel: Sketch of the optical trap and a Brownian
trajectory in the 2D plane (x, y) with resetting. Bottom panel: Typical
1D Brownian trajectory with periodic resetting (red colored area) at
time T = 0.5 s. The equilibrium standard deviation of the trapped
particle σ = 43 nm is shown (dotted lines). The target (red square
1 μm away from the center of the trap) is reached when x crosses the
red line for the first time.

modulation (up to 10 kHz) or by means of an electro-optical
modulator (EOM).

The position of the particle in the (x, y) plane can be
tracked (see Fig. 1) either by a white light imaging on a cam-
era (maximum speed around 1000 frames per second) or from
the deviation of a red laser on a quadrant photodiode (QPD)
with a bandpass around 1 MHz. The accuracy of the measured
position of the bead center is less than 1 nm for the QPD
and about 2 nm for the camera. The bead was a few microns
from the bottom surface of the cell to avoid errors in position
reading due to sedimentation. Henceforth, for simplicity, we
will focus only on the x component of the particle’s position,
i.e., the one-dimensional (1D) trajectory. We can thus follow
the particle position during its free diffusion and after a time
T reset its position by turning on the optical trap which allows
us to realize different protocols.

Periodic resetting protocol. The experimental protocol
leads us to study a model of diffusion in (effectively) one
dimension subjected to periodic resetting. We consider an
overdamped particle in thermal equilibrium inside a harmonic
trap with potential U (x) = κ x2/2, where the stiffness κ is
proportional to the trapping laser power. This means that the
initial position x0 is distributed via the Gibbs-Bolzmann distri-
bution which is simply Gaussian: P (x0) = e−x2

0/2σ 2
/
√

2πσ 2,
with the width σ = √

kBT /κ where T is the temperature. We
also consider a fixed target at location L. At time t = 0, the
trap is switched off for an interval T and the particle un-
dergoes free diffusion (overdamped) with diffusion constant
D = kBT /�. At the end of the period, the particle’s position
is reset (see Fig. 1). Performing the resetting of the position
poses the real experimental challenge.

In standard models of resetting one usually assumes in-
stantaneous resetting [5], which is, however, impossible to

achieve experimentally. There have been recent theoretical
studies that incorporate a “refraction” period before the par-
ticle’s position is reset [20,31–33]. In our experiment, we
have an analog of this refraction period: After the period
T , we switch on the optimal harmonic trap and we let the
particle relax back to its equilibrium thermal distribution. This
relaxation can, in principle, be made arbitrarily fast using,
e.g., the recently developed “engineered swift equilibration”
(ESE) technique [33–37]. In our experiment we determine the
characteristic relaxation time inside the trap τc = �/k. During
the period [T, T + τeq] with τeq � 3τc, we do not make any
measurement. In other words, even if the particle encounters
the target during the relaxation period, we do not count that
event as a first-passage event. Thus in this setup, the thermal
relaxation mimics the instantaneous resetting, with one major
difference, however. We do not reset it to exactly the same
initial position—rather, the new “initial” position at the end of
the time epoch T + τeq is drawn from the Gibbs-Boltzmann
distribution P (x0). At time T + τeq, we again switch off the
trap and we let the particle diffuse freely for another period
T , followed by the thermal relaxation over period τeq. The
process repeats periodically. During the free diffusion, if the
particle finds the target at L, we measure the first-passage time
t f . Note that the first-passage time t f is the net “diffusion”
time spent by the particle before reaching the target (not
counting the intermediate relaxation periods τeq). Averaging
over many realizations, we then compute the MFPT 〈t f 〉, for
fixed target location L and fixed resetting period T .

The MFPT for this protocol can be computed exactly, as
detailed in the Supplemental Material [38]. Our main result
can be summarized in terms of two dimensionless quantities,

b = L

σ
and c = L√

4DT
. (1)

The parameter b quantifies how far the target is from the
center of the trap in units of the trapped equilibrium standard
deviation. The second parameter c tells us how frequently we
reset the particle compared to its free diffusion time. We show
that the dimensionless MFPT τ can be expressed as a function
of these two parameters b and c,

τ = 4D〈t f 〉
L2

= w(b, c), (2)

where

w(b, c) =
∫ 1

0 dv
∫ ∞
−∞ du e−u2/2 erf

(
c√
v
|1 − u/b|)

c2
∫ ∞
−∞ du e−u2/2 erfc(c |1 − u/b|) . (3)

While it is hard to evaluate the integrals explicitly, w(b, c)
can be easily plotted numerically to study its dependence on
b and c, as discussed later. Going beyond the first moment
〈t f 〉 and computing the full probability density function (PDF)
of the first-passage time t f is also of great interest [39–42].
Indeed, we computed the PDF F (t ) of t f (see Supplemental
Material [38]) and the result is plotted in Fig. 2. For small b,
we found striking spikes in F (t ) just after each resetting event.
We show in the Supplemental Material [38] that setting t =
n T + � with n = 0, 1, 2, . . . and � → 0+, the first-passage
density F (t = n T + �) displays a power-law divergence (the
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FIG. 2. Experimental (blue histogram) and theoretical (red line)
PDF F (t ) of the first-passage time. We measured 1.2 × 104 first-
passage times for b = 2 and c = 1 (T = 8.6 ms). The spikes occur
just immediately after t = n T where n = 0, 1, 2, . . .. Inset: The PDF
F (t ) vs t (theoretical) for b = 2.2 to 2.8 at c = b/2 (i.e., T constant)
that demonstrates that the spikes disappear rapidly with increasing
b. The PDF F (t ) is normalized such that

∫ ∞
0 F (t )dt = 1 with dt =

3.5 × 10−4 s.

spikes) as � → 0+,

F (t = n T + �) � An(b)�−1/2, (4)

with an amplitude An(b) that can be computed explicitly [38].
We find that as b increases, An(b) decays rapidly and the
spikes disappear for large b = L/σ (see the inset of Fig. 2).
Instead, for large b, F (t ) drops by a finite amount after each
period (as seen in the inset). In theoretical models of resetting
to a fixed initial position (σ = 0 or b → ∞), these spikes
are completely absent and hence they are characteristic of the
finiteness of σ .

In order to test experimentally these results we realized a
periodic resetting protocol and measure the statistics of first-
passage times. The diffusion coefficient (typically D � 2 ×
10−13 m2/s) is measured during the free diffusion part and the
width of the Gaussian (typically σ � 40 nm) when the particle
is back at equilibrium. These independent and simultaneous
measures allow us to overcome experimental drifts which may
appear. In Fig. 2 we show the experimentally obtained PDF of
104 measured first-passage times for b = 2 and c = 1. We also
compared with our theoretical prediction [38]. We observe a
very good agreement with no free parameter.

To analyze the MFPT, we start with the limit b 	 1 of
Eq. (3), i.e., L 	 σ . This limit corresponds to the case when
the target is much farther away compared to the typical fluc-
tuation of the initial position. In this case, taking the b → ∞
limit in Eq. (3), we get

w(c) = w(b → ∞, c)

= erf (c) + 2c[e−c2
/
√

π − c erfc(c)]

c2 erfc(c)
, (5)

FIG. 3. w(c) ≡ w(b → ∞, c) vs c curve (see also Fig. 4). The
solid black line represents the theoretical formula for w(c) in Eq. (5),
while the dots denote the experimental data with b = 30 (red dots)
and b = 5 (yellow square). The dotted lines show w(b, c) with b =
5 for small c (c � 0.6) in yellow, and with b = 30 for higher c in
red. The error bars are given by the standard deviation of the MFPT
distribution divided by the square root of the number of events.

where erf (c) = (2/
√

π )
∫ c

0 e−u2
du and erfc(c) = 1 − erf (c).

In Fig. 3, we plot w(c) vs c and compare with our exper-
imental data and find good agreement with no adjustable
parameter. Typically, to have a good estimate of the MFPT, we
follow the particle for a few hours which allows us to detect
between 1000 and 10 000 first-passage times, depending on
the values of b and c. The standard deviation of first-passage
times is of the same order as the MFPT. We see a distinct
optimal value around c∗ = 0.74, at which w(c∗) = 5.3. Our
results thus provide a clear experimental verification of this
optimal resetting paradigm. Let us remark that the authors in
Ref. [9] studied periodic resetting to the fixed initial position
x0 = 0 and obtained the MFPT by a different method than
ours. Our b → ∞ limit result in Eq. (5) indeed coincides
with that of Ref. [9], since when σ � L, our protocol mimics
approximately a resetting to the origin.

What happens when b = L/σ is finite? Remarkably, when
we plot w(b, c) in Eq. (3) as a function of c for different
fixed values of b, we see that w(b, c) decreases as c increases,
indeed achieves a minimum at c1(b), then increases, achieves
a maximum at c2(b), and then decreases monotonically as c
increases beyond c2(b) (see Fig. 4). When b → ∞, the max-
imum at c2(b) → ∞ and one has a true minimum. However,
for finite b, the “optimal” (minimal) MFPT at c = c1(b) is thus
actually a metastable minimum and the true minimum occurs
at c → ∞, i.e., when the resetting period T → 0. Physically,
the limit T → 0 corresponds to repeated (almost continu-
ously) resetting and since the target position and the initial
location are of the same order, the particle may find the target
simply by resetting, without the need to diffuse. Interestingly,
this metastable minimum exists only for b > bc ≈ 2.3. When
b < bc, the curve w(b, c) decreases monotonically with c and
there is only a single minimum at c → ∞, or equivalently
for T → 0. Thus the system undergoes a “first-order” phase
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FIG. 4. The scaled MFPT τ = w(b, c) vs c curves and experi-
mental data for b = 3 (brown curve and purple dots), b = 2.3 (orange
curve and blue dots), and b = 2 (blue curve and yellow dots), for
the periodic resetting protocol. The dotted curve recalls the b → ∞
limit. The theoretical curves are obtained from Eq. (3). The scaled
MFPT has two different behaviors depending on how far is the target.
If b > bc ≈ 2.3, the MFPT τ exhibits a local minimum, whereas it
decreases monotonically for b lower than the critical value bc.

transition as b = L/σ is tuned across a critical value bc ≈ 2.3,
from a phase with a metastable optimum at a finite c = c1(b)
to one where the only minimum occurs at c → ∞. This phase
transition is well reproduced by the experimental data points.
The deviation from theoretical predictions for high values of
c is due to the limited experimental acquisition rate (here,
50 000 Hz) that prevents us from detecting very fast events
and thus leads to an overestimation of the MFPT as confirmed
by our numerical simulations. This phase transition was rather
unexpected and came as a surprise.

Random resetting protocol. It turns out that this metasta-
bility and the phase transition is rather robust and exists
for other protocols, such as Poissonian resetting where the
resetting occurs at a constant rate r. Here, the dimensionless
variables are b = L/σ and c = √

r/D L and the scaled MFPT
τ = 4D〈t f 〉/L2 again becomes a function w2(b, c) of b and
c [analog of Eq. (3)]. In this case, we get a long but explicit
w2(b, c) (see Supplemental Material [38] for details). In Fig. 5
we plot w2(b, c) vs c for different values of b together with the
experimental data. We have a good agreement between theory
and experiment and here again the deviation at high c comes
from a limited experimental acquisition rate. Once again, we
see that there is a metastable minimum that disappears when
b decreases below a critical value bc ≈ 2.53. When b →
∞, there is only a single minimum at c∗ = 1.593 62 where
w2(∞, c∗) = 6.176 55. Thus this phenomenon of metastabil-
ity and phase transition in MFPT seems to be robust.

FIG. 5. Scaled MFPT τ = w2(b, c) vs c curves and experimental
data points for b = 2, 2.3, 2.7, and 3 (from bottom to top) in the
case of Poissonian resetting. The metastable minimum disappears for
b < bc ≈ 2.53.

Conclusions. We have studied both theoretically and ex-
perimentally the role of the variance of the resetting position
on the optimal time needed for a Brownian bead to reach
a specific immobile target. We have applied two different
protocols, one with a periodic and another with a random
resetting time. We found that both present a metastable mini-
mum for b > bc (where bc depends on the protocol), showing
that this transition could be a universal feature of MFPT
protocols for resetting. For the periodic protocol, we also
computed and measured the full PDF of the first-passage
time and found that it displays striking spikes after each
resetting event, a clear effect of the finiteness of the variance
of the initial position. The experimental data agree well with
theoretical predictions, but the experiment is not a mere test
of the theory. Indeed, we point out a series of experimental
difficulties that one has to consider when one applies such
theoretical predictions in real systems. On one side, when
the particle is free for a very long time (small c) there are
problems of sedimentation that must be taken into account
because they may influence greatly the final result. On the
very short times (large c) we have shown that finite sampling
time affects the results, because if the first passage is not
detected, it leads to an overestimation of the first-passage
time. It is clear that at very fast sampling rates the model will
fail and probably the role of inertia, which has been always
neglected, should be taken into account in future theoretical
developments.
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[14] L. Kuśmierz, S. N. Majumdar, S. Sabhapandit, and G. Schehr,
Phys. Rev. Lett. 113, 220602 (2014).

[15] S. Reuveni, M. Urbakh, and J. Klafter, Proc. Natl. Acad. Sci.
USA 111, 4391 (2014).

[16] T. Rotbart, S. Reuveni, and M. Urbakh, Phys. Rev. E 92,
060101(R) (2015).

[17] C. Christou and A. Schadschneider, J. Phys. A: Math. Theor.
48, 285003 (2015).

[18] L. Kuśmierz and E. Gudowska-Nowak, Phys. Rev. E 92, 052127
(2015).

[19] A. Nagar and S. Gupta, Phys. Rev. E 93, 060102(R)
(2016).

[20] S. Reuveni, Phys. Rev. Lett. 116, 170601 (2016).
[21] A. Pal and S. Reuveni, Phys. Rev. Lett. 118, 030603 (2017).

[22] A. Chechkin and I. M. Sokolov, Phys. Rev. Lett. 121, 050601
(2018).

[23] S. Belan, Phys. Rev. Lett. 120, 080601 (2018).
[24] M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 51,

475003 (2018).
[25] A. Masó-Puigdellosas, D. Campos, and V. Méndez, Phys. Rev.

E 99, 012141 (2019).
[26] J. Masoliver and M. Montero, Phys. Rev. E 100, 042103 (2019).
[27] X. Durang, S. Lee, L. Lizana, and J.-H. Jeon, J. Phys. A: Math.

Theor. 52, 224001 (2019).
[28] A. Pal and V. V. Prasad, Phys. Rev. E 99, 032123 (2019).
[29] O. Tal-Friedman, A. Pal, A. Sekhon, S. Reuveni, and Y.

Roichman, arXiv:2003.03096.
[30] A. Bèrut, A. Imparato, A. Petrosyan, and S. Ciliberto, J. Stat.

Mech. (2016) 054002.
[31] M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 52,

01LT01 (2019).
[32] A. Pal, L. Kusmierz, and S. Reuveni, Phys. Rev. E 100,

040101(R) (2019).
[33] D. Gupta, C. A. Plata, and A. Pal, Phys. Rev. Lett. 124, 110608

(2020).
[34] I. A. Martinez, A. Petrosyan, D. Guery-Odelin, E. Trizac, and

S. Ciliberto, Nat. Phys. 12, 843 (2016).
[35] D. Guery-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui,

S. Martinez-Garaot, and J. G. Muga, Rev. Mod. Phys. 91,
045001 (2019).

[36] C. A. Plata, D. Guery-Odelin, E. Trizac, and A. Prados, Phys.
Rev. E 99, 012140 (2019).

[37] M. Chupeau, B. Besga, D. Guery-Odelin, E. Trizac,
A. Petrosyan, and S. Ciliberto, Phys. Rev. E 98, 010104(R)
(2018).

[38] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.2.032029 for details on how the the-
oretical predictions plotted in Figs. 2–4 have been obtained,
both for periodic and random resetting.

[39] S. N. Majumdar, Curr. Sci. 77, 370 (1999).
[40] S. Redner, A Guide to First-Passage Processes (Cambridge

University Press, Cambridge, UK, 2001).
[41] S. N. Majumdar, Physica A 389, 4299 (2010).
[42] A. J. Bray, S. N. Majumdar, and G. Schehr, Adv. Phys. 62, 225

(2013).

032029-5

https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1007/s10115-007-0094-2
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1751-8113/44/43/435001
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1088/1742-5468/2016/08/083401
https://doi.org/10.1088/1751-8113/46/18/185001
https://doi.org/10.1103/PhysRevE.87.012116
https://doi.org/10.1088/1751-8113/47/28/285001
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1073/pnas.1318122111
https://doi.org/10.1103/PhysRevE.92.060101
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1103/PhysRevE.92.052127
https://doi.org/10.1103/PhysRevE.93.060102
https://doi.org/10.1103/PhysRevLett.116.170601
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1103/PhysRevLett.120.080601
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1103/PhysRevE.99.012141
https://doi.org/10.1103/PhysRevE.100.042103
https://doi.org/10.1088/1751-8121/ab15f5
https://doi.org/10.1103/PhysRevE.99.032123
http://arxiv.org/abs/arXiv:2003.03096
https://doi.org/10.1088/1742-5468/2016/05/054002
https://doi.org/10.1088/1751-8121/aaf080
https://doi.org/10.1103/PhysRevE.100.040101
https://doi.org/10.1103/PhysRevLett.124.110608
https://doi.org/10.1038/nphys3758
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1103/PhysRevE.99.012140
https://doi.org/10.1103/PhysRevE.98.010104
http://link.aps.org/supplemental/10.1103/PhysRevResearch.2.032029
https://doi.org/10.1016/j.physa.2010.01.021
https://doi.org/10.1080/00018732.2013.803819

