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We show that optical excitation of the Mott insulating phase of the one-dimensional Hubbard model can
create a state possessing two of the hallmarks of superconductivity: a nonvanishing charge stiffness and long-
ranged pairing correlation. By employing the exact diagonalization method, we find that the superposition of
the η-pairing eigenstates induced by the optical pump exhibits a nonvanishing charge stiffness and a pairing
correlation that decays very slowly with system size, in sharp contrast to the behavior of an ensemble of thermally
excited eigenstates, which has a vanishing charge stiffness and no long-ranged pairing correlations. We show
that the charge stiffness is indeed directly associated with the η-pairing correlation in the Hubbard model. Our
finding demonstrates that optical pumping can actually lead to superconducting-like properties on the basis of
the η-pairing states.
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A fundamental goal of nonequilibrium physics is to use
strong light-matter interactions to create new quantum phases
[1–4]. Recent experimental observation of possible light-
induced superconductivity [5–9] has attracted much atten-
tion and stimulated many theoretical studies [10–17]. These
studies focus mainly on the possibility that a light pulse can
change the Hamiltonian from one with a nonsuperconducting
state into one with a superconducting phase anticipated in
equilibrium. In contrast, in this paper, we show that optical
excitation of the Mott insulating phase of the one-dimensional
(1D) Hubbard model excites the system into a state char-
acterized by two of the hallmarks of superconductivity: a
nonvanishing charge stiffness D and a pairing correlation
Pi j = 〈ĉ†

i,↓ĉ†
i,↑ĉ j,↑ĉ j,↓〉

i �= j
that decays very slowly with system

size. The components of this state are present in the spectrum
but do not give rise to superconducting properties in thermal
equilibrium; in other words optical excitation reveals a hidden
pairing state.

Kaneko et al. [18] showed previously that optical pumping
the Mott insulating phase of the Hubbard model created a
state characterized by a pairing correlation Pi j , whose Fourier
transform exhibited a very strong peak at the wave vector
q = π , indicating that a pair density wave state was cre-
ated [18]. The pair density wave state was attributed to the
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preferential creation, by the nonequilibrium drive, of Yang’s
η-paired states [19]. Subsequent work has demonstrated that
η-pairing can be induced by other protocols including in-
jection of doublon-hole pairs [20,21] and effect of dissi-
pation [22,23]. These η-pairing states are characterized by
the operators η̂+ = ∑

j (−1) j ĉ†
j,↓ĉ†

j,↑, η̂− = (η̂+)†, and η̂z =
1
2

∑
j (n̂ j,↑ + n̂ j,↓ − 1), where the operators obey the standard

SU(2) commutation relations and the operator η̂+ creates
in effect a paired state with a staggered pairing amplitude
[19,24]. Since the Hubbard Hamiltonian commutes with
the operator η̂2 = 1

2 (η̂+η̂− + η̂−η̂+) + η̂2
z , Hubbard eigen-

states are simultaneously eigenstates of η̂2, and Yang has
shown that a Hubbard eigenstate with a nonzero value
of 〈η̂2〉 has long-ranged pairing correlations 〈η+

i η−
j 〉

i �= j
=

(−1)i+ j 〈ĉ†
i,↓ĉ†

i,↑ĉ j,↑ĉ j,↓〉 [19].
While previous work reveals that the pump electric field

induces η-pairing states [18], actual superconducting prop-
erties were not established. In this paper, we employ an
eigenstate analysis and systematic finite-size scaling to show
that the photoinduced η-pairing state has nonzero charge
stiffness and long-ranged pairing correlations, in contrast, for
example, to any thermodynamic ensemble average over states
at half-filling, which would yield an ensemble with no charge
stiffness [25–28]. We also determine the optimal pump profile
for the η pairing and clarify its system size dependence.

We here study the 1D Hubbard model with the nearest
neighbor hopping th and on-site interaction U > 0:

Ĥ = −th

L∑

j=1

∑

σ

(ĉ†
j,σ ĉ j+1,σ + H.c.) + U

L∑

j=1

n̂ j,↑n̂ j,↓, (1)
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FIG. 1. Charge stiffness Dm of the eigenstates |ψm〉 (eigenener-
gies εm) in the half-filled Hubbard chain calculated by the ED method
for L = 10 (N↑ = N↓ = 5) at U = 20th. The colors of the points
indicate the values of η.

where ĉ j,σ (ĉ†
j,σ ) is the annihilation (creation) operator for an

electron at site j with spin σ (=↑,↓) and n̂ j,σ = ĉ†
j,σ ĉ j,σ . We

specialize to the half-filled case with the number of electrons
in each spin channel, Nσ = L/2 (number of sites L is taken to
be even). Since [Ĥ, η̂2] = [Ĥ, η̂z] = 0, any eigenstate of Ĥ is
also the eigenstate |η, ηz〉 of η̂2 and η̂z with the eigenvalues
η(η + 1) and ηz, respectively. At half-filling, the allowed
eigenvalues |η, ηz〉 are η = 0, 1, 2, . . . , L/2 and ηz = 0.

A time-dependent external field A(t ) is introduced via the
Peierls substitution thĉ†

j,σ ĉ j+1,σ → theiA(t )ĉ†
j,σ ĉ j+1,σ . We use

a pump pulse given as A(t ) = A0e−(t−t0 )2/(2σ 2
p ) cos [ωp(t − t0)]

with amplitude A0, frequency ωp, and pulse width σp centered
at time t0 (>0) [29]. We assume that for t = 0 the system is in
the Mott insulating ground state and evolve the state forward
in time using Ĥ(t ), which is Ĥ with the time-dependent hop-
ping. We employ the time-dependent exact diagonalization
(ED) method [30,31] for a finite-size cluster with periodic
boundary conditions (PBC), and the state at time t is indicated
by |�(t )〉. For t − t0 � σp, the resulting state is projected onto
the eigenstates |ψm〉 (eigenenergies εm) of the unperturbed
Hubbard model, obtained by full (exact) diagonalization. For
each eigenstate, we directly calculate the η-pairing eigenvalue
η(η + 1). We compute the charge stiffness [32] for each
eigenstate |ψm〉 from

Dm = L

2

∂2εm(
)

∂
2

∣∣∣∣

=0

, (2)

with twisted boundary conditions (TBC), where the phase

 is introduced via a vector potential Atwist = 
/L [33,34].
Details of the method and TBC are given in the Supplemental
Material [35].

Figure 1 shows the calculated stiffnesses Dm for all eigen-
states in the half-filled Hubbard chain at a large value of
the interaction U . The eigenstates are grouped into sectors
corresponding to different numbers of doubly occupied sites.
Significantly, most of Dm for the η-pairing eigenstates (η > 0)
are positive, but most of Dm for the non-η-pairing eigenstates

FIG. 2. (a) All eigenenergies εm and eigenvalues η for the eigen-
states |ψm〉 of the half-filled Hubbard Hamiltonian Ĥ at U = 20th

and L = 10 (N↑ = N↓ = 5) with PBC. The color of each point
indicates the weight | 〈ψm|�(t )〉 |2 of the eigenstate |ψm〉 in the
photoinduced state |�(t )〉 at t = 40/th for A(t ) with A0 = 0.3,
ωp = 19.36th, σp = 2/th, and t0 = 10/th. (b) Time evolution of
〈η̂2〉 (t )/L = 〈�(t )|η̂2|�(t )〉 /L for the same model parameters in
(a). (c) Total weight w(η) of | 〈ψm|�(t )〉 |2 over the states |ψm〉
with the same number η in (a). Note that

∑L/2
η=0 w(η) = 1. (d) Time

evolution of the energy E (t ) = 〈�(t )|Ĥ(t )|�(t )〉 under the time-
dependent flux 
(t ) = θ (t − t1) × [δ
 · (t − t1)] applied after the
pulse irradiation (t1 > t0). The dashed line indicates E (
) =
D(t1)
2/L with the charge stiffness D(t ) at t = t1 evaluated by
D(t ) = ∑

m Dm| 〈ψm|�(t )〉 |2 (see the text). The inset shows E (t )
in the whole energy scale. The results are calculated using the ED
method with δ
 = 0.5 × 10−3 and t1 = 40/th in 
(t ).

(η = 0) are negative. The sum of Dm over all eigenstates
is zero, because S(η) = ∑

m Dm(η), the sum of the charge
stiffness of all eigenstates with the same η, satisfies S(η =
0) + ∑L/2

η=1 S(η) = 0 [35]. This implies that the thermal en-
semble at infinite temperature cannot have perfect conducting
behavior. We find numerically that the sum of Dm over all
eigenstates in a given double occupancy sector is also zero,
and the sum of Dm over all eigenstates within a given small
energy range is close to zero. This strongly suggests that the
thermal average of charge stiffness is zero in equilibrium at
any temperature, as theoretically expected [25–28]. To obtain
D > 0 in the half-filled Hubbard chain, one must prepare an
ensemble in which η-pairing (η > 0) eigenstates have larger
weight than η = 0 eigenstates. We next show that photoexci-
tation produces just such an ensemble.

Before showing D(t ), we review the photoinduced state
|�(t )〉 and its weight distribution. As shown in Fig. 2(b),
the external pulse A(t ) induces an η-pairing correlation
〈η̂2〉 (t ) = 〈�(t )|η̂2|�(t )〉 = 〈�(t )|η̂+η̂−|�(t )〉 at half-filling,
corresponding to the enhancement of the superconducting
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correlation at momentum q = π shown in Ref. [18]. Fig-
ure. 2(a) shows the weight distribution of the eigenstates |ψm〉
in the photoinduced state |�(t )〉, where the color of each
point indicates the weight | 〈ψm|�(t )〉 |2 and the total weight
is shown as a function of η in Fig. 2(c). These results clearly
show that photoexcitation preferentially induces eigenstates
|ψm〉 with η > 0, explaining the large value of 〈η̂2〉 (t ) ob-
served in the photoinduced state |�(t )〉. This photoinduced
nonthermal distribution implies D(t ) > 0.

To verify the stiffness D(t ) > 0 in this photoinduced state
|�(t )〉, we apply the time-dependent flux A(t ) = 
(t )/L,
given by 
(t ) = θ (t − t1) × [δ
 · (t − t1)], beginning at time
t1 long after the pump pulse (t1 − t0 � σp), where θ (t ) is the
Heaviside step function and 
(t ) increases linearly in time
with slope δ
, corresponding to an electric field ∂A(t )

∂t ∝ δ
.
To estimate the stiffness in the photoinduced state |�(t )〉,
we compute the energy E (t ) = 〈�(t )|Ĥ(t )|�(t )〉 under the
time-dependent flux 
(t ). As shown in Fig. 2(d), the curvature
of E (t ) is positive with respect to 
(t ), indicating D(t ) > 0.
To identify the curvature of the energy E (t ) at 
 = 0, we
should notice that the charge stiffness D(t ) = ∑

m |cm(t )|2Dm

can also be evaluated directly from the weight |cm(t )|2 =
| 〈ψm|�(t )〉 |2 in the photoinduced state |�(t )〉. Comparing
with E (
) = D(t1)
2/L, the energy curve E (t ) at 
(t ) ∼
0 is perfectly fitted by the stiffness D(t1) evaluated from
the photoinduced weight distribution. Therefore, the photoin-
duced state |�(t )〉 has a stiffness D(t ) > 0.

The above results demonstrate an association between a
nonthermal distribution of states with 〈η̂2〉 �= 0 and a non-
vanishing charge stiffness. We now show that these two
factors are also associated with long-ranged η-pairing cor-
relation. First, we see this association in Yang’s maximally
η-paired state |φNη

〉 ∝ (η̂+)Nη |0〉 generated from the vacuum
|0〉 [19]. For this state, Yang showed that the η-pairing cor-
relation is distance independent and of infinite range with
〈φNη

|η̂+
i η̂−

j |φNη
〉

i �= j
= Nη (L−Nη )

L(L−1) [19]. Here we find that the

charge stiffness Dη for Yang’s η-pairing state |φNη
〉 satisfies

Dη = 4Jex 〈φNη
|η̂+

i η̂−
j |φNη

〉
i �= j

> 0 with the exchange interac-

tion Jex = 2t2
h /U (see details in the Supplemental Material

[35]), which directly associates the charge stiffness with the
long-ranged pairing correlation.

Our numerical evidence strongly suggests that this associ-
ation is valid beyond Yang’s η-pairing state. To discuss this,
let us review the ingredients of 〈η̂2〉. At half-filling (ηz = 0),
the algebra of η operators implies

〈η̂2〉 = Lnd +
∑

i �= j

〈η̂+
i η̂−

j 〉 (3)

with the double occupancy nd = 1
L

∑
j 〈n̂ j,↑n̂ j,↓〉. From

the analysis of the eigenstates, we can show 〈η̂2〉 (nd ) ≡
1

Nnd

∑
m 〈ψm|η̂2|ψm〉nd

= Lnd in each double occupancy (nd )

sector, where Nnd is the number of the eigenstates and
the suffix nd indicates the eigenstate within the nd sec-
tor (see the Supplemental Material [35]). We can also
show that the average of 〈ψm|η̂2|ψm〉 over all Hub-
bard eigenstates at half-filling is 〈η̂2〉avr. /L = 0.25, which
is same with the double occupancy nd = 0.25 at in-
finite temperature. Comparing with Eq. (3), these re-

FIG. 3. 〈η̂2〉 (t )/L as the function of nd (t ) in the half-filled Hub-
bard chain at U = 20th with ωp/th = 18.68, 19.11, 19.36, 19.54, and
19.66 for L = 6, 8, 10, 12, and 14, respectively. The dashed line
is 〈η̂2〉 (nd )/L = nd . The diamond indicates 〈η̂2〉 /L = nd = 0.25,
which is the average of 〈ψm|η̂2|ψm〉 over all Hubbard eigenstates at
half-filling (N↑ = N↓ = L/2). The results are calculated by the ED
method under PBC with A0 = 0.3, σp = 2/th, and t0 = 10/th in A(t ).

lations strongly suggest that a thermal distribution of
the eigenstates has no long-range η-pairing correlation.
However, we find for the optically generated state |�(t )〉
that 〈η̂2〉 > Lnd [see, e.g., Fig. 2(b), where 〈η̂2〉 (t )/L > 1],
which implies contributions from nonlocal pairing correla-
tions 〈η̂+

i η̂−
j 〉

i �= j
in Eq. (3).

We now analyze the spatial correlations and finite size
effects in the photoinduced state. One trivial finite size effect
is a weak size dependence of the optimal photoexcitation
frequency ωp. For each system size, we calculate 〈η̂2〉 (t )
with different ωp (see the Supplemental Material [35]). Here
we present results obtained at the optimal ωp for each size.
We represent the amount of optical excitation by the in-
duced double occupancy in Fig. 3, by plotting 〈η̂2〉 (t )/L as
a function of nd (t ) = 1

L

∑
j 〈�(t )|n̂ j,↑n̂ j,↓|�(t )〉. Note that

here we consider a fixed pump strength A0, which produces
time-dependent nd (t ) and 〈η̂2〉 (t ). Equivalent results could
be obtained by A0 dependence considering the long-time
limits of nd (t ) and 〈η̂2〉 (t ) (see the Supplemental Material
[35]). Figure 3 reveals two important results: 〈η̂2〉 (t )/L under
photoexcitation is systematically greater than nd (dashed line),
indicating that the 〈η̂+

i η̂−
j 〉

i �= j
term in Eq. (3) is nonzero,

and the difference from nd increases with increasing system
size L. Examination of Eq. (3) indicates that this increase
must correspond to the development of long-range correlation.
In comparison with an average with thermal distribution of
the eigenstates, where 〈η̂2〉 /L ∼ nd and D ∼ 0 are expected,
〈η̂2〉 (t )/L > nd (t ) in Fig. 3 implies a nonthermal distribution
induced by optically preferential η-pairing states, which gives
rise to a nonvanishing charge stiffness D(t ) > 0 (see, e.g.,
Fig. 2).

To further understand the pairing correlation, we define the
quantity

P(η)
i �= j (t ) = 1

L2

∑

i �= j

〈�(t )|η̂+
i η̂−

j |�(t )〉 . (4)
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FIG. 4. Time-dependent η-pairing correlation P(η)
i �= j (t ) as the func-

tion of the double occupancy nd (t ) in the half-filled Hubbard chain
at U = 20th with ωp/th = 18.68, 19.11, 19.36, 19.54, and 19.66 for
L = 6, 8, 10, 12, and 14, respectively. Inset: Size dependence of
P(η)

i �= j (t ) at nd (t ) = 0.3. The dashed and solid lines are polynomial and
power-law fittings, respectively. The results are calculated by the ED
method under PBC with A0 = 0.3, σp = 2/th, and t0 = 10/th in A(t ).

When long-ranged η-pairing correlation is formed, P(η)
i �= j (t )

remains nonzero with increasing system size L, corresponding
to 〈η̂2〉 ∼ ∑

i �= j 〈η̂+
i η̂−

j 〉 ∝ L2. For Yang’s η-pairing state |φη〉,
P(η)

i �= j = 0.25 at nd = 0.5 regardless of the system size. In

Fig. 4, we show P(η)
i �= j (t ) with the different system sizes L.

We see for the optically created state that the magnitude is
P(η)

i �= j (t ) ∼ 0.07 at nd (t ) = 0.3, which is comparable to the

value in Yang’s maximally η-paired state. The value of P(η)
i �= j (t )

varies slowly with system size. The inset of Fig. 4 shows the
L dependence of P(η)

i �= j (t ) at nd (t ) = 0.3. While the range of
system sizes accessible to us is too small to make a definitive
statement, the results are consistent with either a nonzero
extrapolation to the L → ∞ limit or P(η)

i �= j ∝ L−α with α ∼
0.3 corresponding to very slowly decaying power-law pairing
correlation (quasi-long-range order).

Finally, we comment on the pulse width σp dependence.
Since a high-temperature ensemble is expected in the limit of
σp → ∞ at ωp ∼ U [36], there must be an optimal value of
σp for the enhancement of the η-pairing correlation. Figure 5
shows the σp dependence of 〈η̂2〉 (t )/L computed at a long
time after the optical pump. The optimal pump width and the
maximal value of 〈η̂2〉 (t )/L increase with increasing L, which
is consistent with the idea that the pump produces a state with
long-ranged correlations.

In conclusion, we have shown from finite system numerics
along with a scaling analysis of the system size dependence

FIG. 5. Dependence of 〈η̂2〉 (t )/L on pump width σp, computed
for the half-filled Hubbard chain using the ED method with PBC and
U = 20th at t = 10σp + 10/th after the pump maximum. The pump
frequencies are ωp/th = 18.68, 19.11, 19.36, 19.54, and 19.66 for
L = 6, 8, 10, 12, and 14, respectively, and the other pump parameters
are A0 = 0.3 and t0 = 5σp.

that optical excitation of the 1D Hubbard model creates a
state possessing two of the hallmarks of superconductivity: a
nonvanishing charge stiffness and long-ranged pairing corre-
lation. The fundamental reason is that optical excitation pref-
erentially creates η-pairing states, which as we have shown
here via an eigenstate analysis have a positive stiffness with
typical values of D ∼ Jex = 2t2

h /U . This work extends the
previous study [18] showing that optical excitation can induce
η-pairing correlations by demonstrating that the nonequilib-
rium ensemble created by the drive in fact has superconduct-
ing properties.

While the 1D Hubbard model we used here is in several
respects a highly simplified description of real materials, it
can be realized in cold atomic gasses, and our results provide
predictions for experiments in these systems. But, more fun-
damentally, we believe that our results are important because
they provide an existence proof that nonequilibrium drive can
create a state with superconducting properties in an origi-
nally nonsuperconducting system. Our work provides new
understanding of the qualitative properties of light-induced
superconductivity, and may serve as a base for future research
including both a more detailed examination of the properties
of the light-induced superconducting state and extensions to
higher dimensions and richer models [37].
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