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Synthetic dimensions and topological chiral currents in mesoscopic rings
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The recently introduced concept of synthetic dimensions allows for the realization of higher-dimensional
topological phenomena in lower-dimensional systems. In this paper, we propose a setup where synthetic
dimensions arise in mesoscopic hybrid devices and discuss how they provide a natural route to topological
states. We demonstrate this for the current induced into a closed one-dimensional Aharonov-Bohm ring by the
interaction with a dynamic mesoscopic magnet. The quantization of the magnetic moment provides a synthetic
dimension that complements the charge motion around the ring. We present a direct mapping that places the
combined ring-magnet system into the class of quantum Hall models and demonstrate that topological features,
combined with the magnet’s anisotropy, can lead to clear signatures in the persistent current of the single-particle
ground state. Our synthetic-dimension model also extends to the many-electron case, where the collective
electronic motion couples with the magnet.
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The recent approach of “synthetic dimensions” opens up
routes to realizing topological energy bands in engineered
systems of atoms or photons [1,2]. This idea exploits internal
states of a system by reinterpreting them as lattice sites
along an extra synthetic spatial dimension [3]. Similar to
earlier proposals for simulating higher-dimensional models
by increasing lattice connectivity [4,5], this provides a way
to effectively increase spatial dimensionality; a system with
one real spatial and one synthetic dimension can access two-
dimensional topological phenomena, such as quantum Hall
models with topological energy bands and robust chiral edge
modes that propagate one way around the system [1].

Since the first theoretical works in cold atoms [1,3], there
has been a rapid development of both proposals and exper-
iments to realize different implementations of this concept
[2,6–24]. However, so far, this activity has primarily focused
on photonic or atomic setups instead of on solid-state elec-
tronic systems. Here we show that the concept of a synthetic
dimension also emerges naturally in the solid-state context of
a mesoscopic ring coupled to a nanomagnet.

The induction of a current around a closed ring by a
magnetic flux is an archetypical mesoscopic effect [25]. Such
a current can flow even in equilibrium, where the persis-
tent current is a property of the ground state. In normal
rings, the current occurs as a mesoscopic effect at very low
temperatures, and when measured precisely agrees with the
predictions of a simple single-particle picture [26,27]. In this

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

paper, we study the case where the magnetic flux through
the ring is created by a dynamical mesoscopic nanomagnet
[28–30]. After introducing the setup, we show that this hybrid
system can be understood in a single-particle picture as a
synthetic two-dimensional lattice spanned by the position of
the electron around the mesoscopic ring together with the
magnetic spin states, which serve as a discrete synthetic
dimension. The coupling of the electron to the nanomagnet
can be reinterpreted as an artificial magnetic field in this
lattice, mapping the model to a two-dimensional quantum
Hall system. As we show, the mesoscopic ring-magnet system
is characterized by topological energy bands and topological
“edge” modes, corresponding to spin-polarized chiral currents
around the ring. These topological modes can lead to char-
acteristic spin-switching jumps in the ground-state persistent
current. As we also discuss, in contrast to previous synthetic-
dimension proposals, the multielectron case can be reduced
to an effective single-particle description capturing collec-
tive motion of electrons. These results show that synthetic
dimensions are also relevant in the solid state, providing a
useful viewpoint that reveals topological effects in settings
with potential electronic applications.

Setup. In our hybrid system, a magnetic flux passing
through a mesoscopic ring is created by a nanomagnet, repre-
sented by a total spin S with spin quantum number s, as shown
schematically in Fig. 1(a). The total magnetic flux piercing
the ring depends on the magnet’s spin state, as labeled by
the quantum number m = −s,−s + 1, · · · , s. The presence
of the flux induces electrons to move around the ring, such
that the system is characterized by the spin state, m, together
with the angular coordinate, ϕ, of the moving (spinless)
charge.

The key concept of our proposal is to map this hybrid setup
to a two-dimensional quantum Hall system on a cylinder, by
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FIG. 1. (a) Sketch of a mesoscopic magnet with spin S (spin
quantum number s � 1) inducing a current I in a mesoscopic closed
ring. The current is the response to the magnetic flux � induced
by the field B, which couples to the momentum pϕ of a charge
moving around the ring. (b) The situation described in (a) can be
mapped to an artificial two-dimensional (cylindrical) lattice indexed
by the angular coordinate ϕ of the particle on the ring and the spin
quantum number, m, of the nanomagnet. The former corresponds to
a continuous and periodic (real) spatial dimension, while the latter is
a discrete (synthetic) dimension with 2s + 1 sites.

reinterpreting each spin state m as a different lattice site along
a synthetic dimension, as sketched in Fig. 1(b). As we will
show, this analogy goes far. The combined magnetoelectronic
states form flattened-out bands with nonzero Chern numbers
and chiral edge states according to the bulk-boundary corre-
spondence. These chiral edge states have a simple interpreta-
tion in terms of a robust mesoscopic spin-orbit locking and
leave direct signatures in the persistent current in the ground
state of the combined system.

Hamiltonian of the hybrid system. Before illustrating the
mapping to a synthetic dimension, we introduce the Hamilto-
nian of the hybrid ring-magnet system [Fig. 1(a)]. We shall as-
sume that the magnetic moment of the nanomagnet is aligned
with its spin so the flux induced into the ring is proportional
to the spin operator Sz, which at the same time is taken to
align with one of the principal axes of the magnet’s matrix of
inertia. The spin quantum numbers m introduced above then
correspond to the eigenvalues of Sz. In a symmetric gauge,
the vector potential felt by a charged particle on the ring has
Aϕ ∝ ρSz where ρ is the ring radius. In appropriate units, the
Hamiltonian for a single electron then takes the simple form

H = 1

2Mρ2
(−i∇ϕ − γ Sz )2 + αS2

x + βSy, (1)

where the kinetic-energy term includes the effect of the mag-
netic flux via minimal coupling with strength γ . The remain-
ing terms describe the dynamics of the magnet as a rigid
body, where αS2

x determines its anisotropy while additional
quadratic terms can be partially eliminated using the fact that
S2

x + S2
y + S2

z is a c number (thus absorbing a constant into
the energy). The term βSy induces a preferred orientation
of the nanomagnet and breaks the full integrability of the
system [31].

Mapping to a synthetic dimension. We map the Hamiltonian
Eq. (1) to a 2D quantum Hall system by re-interpreting the
eigenstates |m〉 of Sz as different lattice sites along a synthetic
dimension [Fig. 1(b)]. In this language, the Sx and Sy operators
lead to “hoppings” along the synthetic dimension, as they
can be expressed by ladder operators as Sx = (S+ + S−)/2 and

Sy = (S+ − S−)/2i with

S+|m〉 =
√

s(s + 1) − m(m + 1)|m + 1〉 ≡ 2tm|m + 1〉,
S−|m〉 =

√
s(s + 1) − m(m − 1)|m − 1〉 = 2tm−1|m − 1〉.

Using these relations, the Hamiltonian Eq. (1) can be cast into
a second-quantized form,

Ĥ =
∑

m

∫ 2π

0
dϕ

[ {(i∇ϕ − γ m)ĉ†
ϕ,m}{(−i∇ϕ − γ m)ĉϕ,m}

2Mρ2

+α
(
t2
m + t2

m−1

)
ĉ†
ϕ,mĉϕ,m + α(tmtm+1ĉ†

ϕ,m+2ĉϕ,m + H.c.)

+β(−itmĉ†
ϕ,m+1ĉϕ,m + H.c.)

]
(2)

where, ĉ†
ϕ,m(ĉϕ,m) creates (annihilates) an excitation in the

state indexed by ϕ and m. Note that this excitation describes
a single effective “particle” that physically corresponds to the
occupation of a composite state |ϕ, m〉, with the electron at
angular position ϕ on the ring and the nanomagnet in the spin
state m.

Reinterpreting both m and ϕ as spatial coordinates, the
Hamiltonian Eq. (2) is analogous to that of a single particle
on a 2D cylinder [Fig. 1(b)]. The dimension spanned by ϕ is
continuous and periodic (ϕ + 2π = ϕ), while that spanned by
m is discrete with a finite number of lattice sites, N = 2s + 1.
Under this mapping, the first line in the Hamiltonian Eq. (2)
describes the kinetic energy along the ϕ direction, whereas the
second and third lines provide the on-site potential energy as
well as hoppings (kinetic energy) along the spin (m) direction.
Furthermore, the factor of −γ m appearing in the kinetic en-
ergy in the ϕ direction can be recognized as a vector potential
in the Landau gauge, corresponding to a uniform synthetic
magnetic field of strength γ through the ϕ-m plane. Thus, this
hybrid system mimics a particle moving on a cylinder in the
presence of a uniform magnetic field.

Relationship to standard quantum hall systems. As we
verify below, our model Eq. (2) therefore belongs to the class
of 2D quantum Hall systems with energy bands characterized
by nontrivial topological Chern numbers. However, unlike
most standard quantum Hall Hamiltonians, our system is
continuous in one direction and discrete in the other. This
is known as a “coupled wire” configuration, as was first
introduced theoretically as a tool for constructing fractional
quantum Hall states [32]. At a single-particle level, such
coupled wire models have also recently become of interest
due to experimental proposals for ultracold atoms [33] and,
in the context of synthetic dimensions, for coupled optical
cavities [19].

Compared to previously studied coupled wire models,
however, our system Eq. (2) has unusual nearest- and
next-nearest-neighbour hoppings along the spin direction. For
example, these hopping amplitudes are nonuniform, meaning
that translational invariance is broken even away from the
synthetic “edges” of the system at m = ±s. Such hopping
anisotropy is often a feature of synthetic dimensions [1,10],
and topological properties, such as the existence of chiral edge
states, are expected to be robust provided that the anisotropy
is sufficiently weak [1,10], as we now also demonstrate here.
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Topological properties. To calculate the bulk topological
properties and anticipate the key signatures of the synthetic
magnetic field, we first assume that the hopping along the spin
direction is uniform, in order to make analytical arguments.
To proceed, we introduce the angular momentum quantum
number lϕ around the ring, which is constrained to take only
integer values due to the periodicity of ϕ. Assuming uniform
hopping, tm ≈ t , the Hamiltonian is

Ĥ ≈
∑
lϕ,m

[
(lϕ − γ m)2

2Mρ2
ĉ†

lϕ,mĉlϕ,m

+αt2ĉ†
lϕ,m+2ĉlϕ,m − iβt ĉ†

lϕ,m+1ĉlϕ,m + H.c.

]
, (3)

where ĉ†
lϕ,m is the Fourier transform of ĉ†

ϕ,m along the ϕ

direction, and we have omitted a constant energy offset term.
This Hamiltonian does not couple operators with different
lϕ . We thus have, for a given value of lϕ , a one-dimensional
tight-binding Hamiltonian along the spin direction, where the
first term in Eq. (3) is a harmonic trapping potential centered
at m = lϕ/γ and the other terms are hopping terms. This is
reminiscent of the ordinary Landau-level problem, except that
the spin direction, m, and the momentum, lϕ , are both discrete.
Note that, in general, lϕ/γ is not an integer, and thus the center
of the trapping potential falls between lattice sites in spin
direction. Due to the discreteness of the spin direction, the
energy levels are not completely flat, although, practically, as
we see below, we observe very flat energy levels for low-lying
states in the bulk of the synthetic 2D system. The emergence
of these flat Landau levels is a key signature of the synthetic
magnetic field.

If we regard the energy levels as a function of lϕ as energy
bands, we can calculate their topological Chern numbers
analytically, finding that the Chern number of every band is
always equal to one regardless of the values of α and β [31].
This behavior agrees with previous studies of coupled wire
models [19,32,33], where α = 0. The nonzero value of the
Chern number implies that, from the bulk-boundary corre-
spondence, between the nth and (n + 1)th bulk energy levels,
there are n chiral edge modes at each boundary m = ±s. Phys-
ically, these edge modes correspond to spin-dependent chiral
currents flowing around the ring; as the largest and smallest
spin states serve as the edges of the synthetic spin dimension,
the edge-mode chirality means that there are currents mainly
involving spin states m = s flowing in one direction around
the ring, and currents with m = −s flowing in the opposite
direction. This is the second key signature of the synthetic
magnetic field.

While we arrived at these expectations assuming uniform
hopping tm = t , the result is more general. In the original
Hamiltonian Eq. (2), the momentum lϕ is also a good quantum
number. As we reintroduce nonuniformity of the hoppings, the
bands as a function of lϕ can become deformed, but as long
as band gaps do not close, topological properties, such as the
number of chiral edge modes which appear at m = ±s, do not
change. Nonetheless, the anisotropy of the full model leaves
characteristic fingerprints, as we demonstrate below.

Energy spectrum. To illustrate the topological robustness
of the edge states in the full anisotropic model Eq. (2), we

FIG. 2. (a) Energy spectrum as a function of lϕ/s. We used s =
10, α = 1.5/(2Mρ2), β = 0, and γ = 1.2. Dashed lines are ideal
Landau-level energies calculated with tm = t0 and lϕ = 0. Solid lines
are guide to the eyes. (b) The energy spectrum of the same system,
with color representing the mean spin of the corresponding states.
We observe that states corresponding to dispersive regions have spins
concentrated around the edge of the synthetic dimension (m = ±s),
whereas low-lying nondispersive regions have spin concentrated
away from the edge in the synthetic dimension. This spin dependence
of the energy dispersion shows that we have chiral edge states in the
synthetic two-dimensional lattice.

plot the energy spectrum in Fig. 2. Figure 2(a) shows the
energy spectrum as a function of lϕ , normalized by the total
spin s = 10 with α = 1.5/(2Mρ2), β = 0, and γ = 1.2. The
low-lying levels with small |lϕ| show weak dispersion; these
are almost-flat Landau levels. Since β = 0, states with even
m and odd m do not couple, so these levels are nearly twofold
degenerate. Plotted in dashed lines are ideal bulk Landau-level
energies calculated from Eq. (3), assuming tm to be equal to
t0 and lϕ = 0. They agree well with the energy spectrum for
low-lying states, verifying that the introduction of nonuniform
hopping tm does not alter the basic phenomenon of bulk
Landau levels. Analytical details of the Landau-level spacing
and the associated cyclotron frequency are derived in the
Supplemental Material [31].

Away from the central region, we see that Landau levels
split into two and eventually move up in energy, correspond-
ing to chiral edge states, with states concentrated around m =
s propagating in one direction and those concentrated around
m = −s propagating in the opposite direction. To clarify the
nature of these chiral edge states, we plot the spin-expectation
value of these eigenstates 〈Sz〉 in color in Fig. 2(b). States
in red are concentrated on the edge at m = s, and states
in blue are on the other edge at m = −s, showing that the
propagating states are edge states in the synthetic dimension.
Since each bulk Landau level eventually moves up in energy
and becomes an edge state as |lϕ| increases, the net number of
chiral-edge modes propagating in the same direction is equal
to the number of bands below the energy. This observation
is in agreement with the fact introduced above that each
Landau level has a Chern number of one. We note that at
higher energies the propagation direction in the edge states
is reversed. This is a finite-size effect, as although the Chern
number of each band is one when calculated in the bulk, this
assumed an infinite number of bands. For a finite number of
2s + 1 bands, the Chern numbers must sum to zero, leading to
the observed reversal at large energies.

Including a nonzero β splits the nearly twofold degeneracy
of the Landau levels, but otherwise does not significantly alter
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FIG. 3. Persistent current Eq. (5) in the single-particle ground
state as a function of the externally controlled flux �ext , for (a)
α = 1.5/(2Mρ2) and (b) α = −1.5/(2Mρ2), with other parameters
as in Fig. 2, where the colors represent the average spin, 〈Sz〉/s.
For both (a) and (b), the persistent current jumps when there is a
transition in the lowest energy state as shown in panels (c) and (d),
respectively. Notably, when α > 0 in (a) and (c), the ground state
is dominated by the edge modes, and the persistent current exhibits
characteristic spin-switching jumps whenever the magnetic flux is
increased by a half flux quantum. On the other hand, when α < 0 in
(b) and (d), the ground state is localized in the middle of the synthetic
dimension with |〈Sz〉/s| < 0.1, and the persistent current only jumps
if the magnetic flux is increased by a flux quantum, as is typical also
in a quantum ring without a nanomagnet.

the energy spectrum [31]. In particular, the bulk levels remain
flat, and each bulk level still leads to one chiral edge mode.
The robustness of these edge modes in the energy spectrum
reflects their topological nature.

Persistent currents of the single-particle ground state. As
established on general grounds above, a key hallmark of our
model is the appearance of localized edge modes with respect
to the synthetic dimension of spin states. Importantly, the
interplay of this physics with the magnet’s anisotropy also
leads to clear signatures in the persistent current of the single-
particle ground state of the combined system. To illustrate
this, we now pierce the ring with an extra externally controlled
flux �ext, so Hamiltonian Eq. (1) becomes

H = 1

2Mρ2

(
−i∇ϕ − γ Sz − �ext

�0

)2

+ αS2
x + βSy, (4)

where �0 is the magnetic flux quantum. The azimuthal parti-
cle velocity is then ṙϕ = −(1/e)∂H/∂Aϕ , where Aϕ is the total
magnetic vector potential due to both the nanomagnet and
the external flux. This gives an expression for the persistent
current around the ring as

I = 〈ṙϕ〉
2πρ

= 1

2πMρ2

(
lϕ − γ 〈Sz〉 − �ext

�0

)
, (5)

where the expectation values are taken with respect to the
single-particle ground state. The persistent current is shown in
Fig. 3(a), for the parameters of Fig. 2, where the colors denote

the mean spin of the magnet, indicating that the ground-state
persistent current is associated with large spin-polarizations.
This can be understood by noting that the lowest energy states
in Fig. 2 are modes localized at edges of the spin synthetic
dimension. Although the existence of edge modes is a general
characteristic of quantum Hall systems, their dominance in the
ground state is a new feature due to the magnetic anisotropy;
for α > 0, as in Fig. 3(a), the anisotropy favors extremal
spin values, as it generates an inverted harmonic trap α(t2

m +
t2
m−1) = α[s(s + 1) − m2] in the synthetic dimension Eq. (2)

as well as nonuniform hopping terms. Instead, if α < 0, the
ground state and hence the persistent current are localized
around the middle of the synthetic dimension, as shown in
Fig. 3(b).

Another clear and unusual signature of the edge modes
is in the spin-switching jumps of the persistent current in
Fig. 3(a), occurring whenever �ext/�0 =n/2, with n being
any integer; in Fig. 3(b), by contrast, the persistent current
only jumps when n is an odd integer. Physically, these jumps
correspond to parameters where the ground state becomes
doubly degenerate and then switches between different values
of lϕ , as shown in Figs. 3(c) and 3(d), where we plot the lowest
energy states for panels (a) and (b), respectively. We provide
analytical considerations for the ground-state transitions in the
limit α=β =0 in Ref. [31].

Many-electron case. Let us consider the case where there
are N electrons, each coupled to the same nanomagnet ac-
cording to Hamiltonian Eq. (4), whilst the electron-electron
interactions only depend on the relative position of electrons.
The many-body Hamiltonian can then be written as

HMB = 1

2Mtotρ2

(
− i∇ϕCM − N

(
γ Sz + �ext

�0

))2

+αS2
x + βSy + Hrel, (6)

where Mtot = NM is the total mass of electrons, −i∇ϕCM ≡
−i∇ϕ1 − i∇ϕ2 · · · − i∇ϕN represents their total angular mo-
mentum, and Hrel is the Hamiltonian of their relative motion,
which is not affected by the presence of the nanomagnet. The
important observation is that the nanomagnet only couples
to the collective motion of the electrons, whilst the relative
motion is completely decoupled. Physically, this means that
the characteristic edge states and spin-switching persistent-
current jumps will now emerge from the center-of-mass mo-
tion of electrons around the ring. This should facilitate the
experimental observation and interpretation of the described
effects, in analogy to what has previously been found for
persistent currents [26,27], which can be accurately described
in a noninteracting single-particle picture.

In conclusion, we have demonstrated that hybrid
nanomagnetic-electronic mesoscopic systems can display
topological effects based on the interpretation of the
nanomagnet spin as a synthetic dimension. The key signatures
are flat Landau-level bands and spin-polarized chiral currents.
In the presence of an additional external magnetic flux, the
magnet’s anisotropy leads to spin-switching behavior in the
persistent current of the single-particle ground state. While we
have focused on the mesoscopic interpretation of the system,
where such a magnet could be, e.g., a molecular magnet
[28–30], it is worthwhile mentioning that the components are
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generic and can be realized in other ways, in particular using
synthetic quantum engineering. For instance, we can envisage
quantum-optical realizations in which the large spin arises
from the collective interactions of two-level systems as in a
Dicke model [34], the flux is induced via an artificial gauge
field [35], and similar atom-optical realizations in which
the described effects may serve as robust tools for quantum
control [36,37].
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