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The quantum speed limit specifies a universal bound of the fidelity between the initial state and the time-
evolved state. We apply this method to find a bound of the fidelity between the adiabatic state and the time-
evolved state. The bound is characterized by the counterdiabatic Hamiltonian and can be used to evaluate the
worst case performance of the adiabatic quantum computation. The result is improved by imposing additional
conditions and we examine several models to find a tight bound. We also derive a different type of quantum
speed limit that is meaningful even when we take the thermodynamic limit. By using solvable spin models, we
study how the performance and the bound are affected by phase transitions.
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Introduction. Knowing the fundamental speed limit for a
dynamical process is an important problem in physics and
is relevant to a broad range of research fields. Recent ad-
vances in quantum control technologies allow us to discuss
the fundamental limit even from a practical point of view. In
closed quantum systems, we can derive several limits known
as quantum speed limits (QSLs) [1-5].

Among many possible applications [6—14], we focus our
attention on adiabatic quantum computation (AQC). It is a
method solving combinatorial optimization problems and has
attracted intensive attention recently, as quantum annealing
[15-19], due to its use for a device manufactured by D-Wave
Systems, Inc. [20,21]. The solution of the problem is set to
the ground state of the Ising Hamiltonian. The Hamiltonian
is slowly changed from a trivial form, represented by the
transverse-field term, to the Ising Hamiltonian. If the rate of
the Hamiltonian change is very small, the time-evolved state
is close to the instantaneous ground state of the Hamiltonian.

The principle of AQC is based on the adiabatic theorem.
The infinitely slow time evolution is not realistic and we find
nonadiabatic transitions in experiments. Therefore, estimating
and suppressing errors are important not only for its general
use but also for understanding the dynamical properties of
the quantum systems. In the method of quantum adiabatic
brachistochrone, a cost function is defined based on the no-
tion of adiabaticity [22-24]. It is minimized with respect to
the protocol to obtain an optimized algorithm. The method
practically gives a good performance but the result is strongly
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dependent on the choice of the cost function and does not
assess the quantitative performance. Some rigorous treatment
of the adiabatic theorem allows us to derive bounds of the per-
formance [25-28], but mathematically involved approaches
are required for the derivation and the result is of limited use
because of the complicated expressions of the bound.

To overcome these problems, we employ the theory of QSL
to find a rigorous bound. The QSL has a geometrical meaning
and we can find a universal bound by using this approach.
Since the standard QSL only requires several simple inequali-
ties, the derivation is simple and the result can be written in an
intuitively understandable form. The QSL can give us a tight
bound, which is also useful for practical applications such as
the AQC. We can further use the bound as a cost function to
optimize the AQC.

We treat closed quantum systems throughout this Rapid
Communication. For a given Hamiltonian H (t) and a initial
state | (0)), unitary Schrodinger dynamics yields a time-
evolved state |y (¢)). It satisfies the Mandelstam-Tamm (MT)
relation [1-4]

T
arCCOSI(tﬂ(O)II//(T)HS/O dio[H@), [y(®)], (D)

where o (H, |{/)) = /(W |H2|Y) — (¥ |H|¥)2. The left-hand
side of Eq. (1) represents the Fubini-Study angle and is used
as a natural measure of the state separation. It takes a positive
value between 0 and 7 /2. Equation (1) shows that the angle
has a bound characterized by the energy variance. Since the
angle is interpreted as a distance measure, o plays a role
of velocity. This relation results from a general property of
vectors in Hilbert space. Applying a Hermitian operator H to
a state vector |Y) gives

Hy) = Y ) (G HY) + VL)oo (H, [¥), @
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where | ) is a normalized state orthogonal to |¢/). The sec-
ond term represents how the state deviates from the original
one and is the origin of the bound in the MT relation.

Quantum speed limit for adiabatic quantum computation.
In the AQC, we are interested in obtaining the instantaneous
ground state of the time-dependent Hamiltonian H(¢) by
Schrodinger dynamics. A slow driving approximately gives
the adiabatic state |1,q(t)) whose formal definition is given
in the following. The performance of the computation is
evaluated by the fidelity between the ideal adiabatic state and
the time-evolved state [ (7)),

0aa(t) = arccos [{Yaa ()| (2))]. 3)

When we write the adiabatic state as a unitary time evo-
lution as [Yaa (7)) = Uaa()[¥(0)), the overlap is written as
(WPaaOIY () = (W O)F (1)), where [§(1)) = U]y (1)
The formal expression of the unitary operator Uy(f) is
given by

Ua(t) = Y e o dr e dr e 1)) (n(0)], - (4)

where {|n(t))} represents a set of instantaneous eigenstates of
H () with the corresponding eigenvalues {¢,(¢)} and the dot
denotes the time derivative. The time derivative of Uyy(t) gives

AUy (1)
joed/

pran [H () + Hep(0)]Uaa (1), &)

where

Hep(1) = iZ(l — [n(@)) (n(@)DIn(0)) (n(t)]. (6)

Hcp(t) is known as the counterdiabatic term in the method of
shortcuts to adiabaticity (STA) [29-34]. By adding this term
to the original Hamiltonian, we can realize the adiabatic state
of the original Hamiltonian exactly by the time evolution.
Using this result, we find that the generator of the state
[ (1)) is given by H(t) = —U;d(t)HCD(t)Uad(t). Then, we
can immediately apply the MT relation to obtain the bound

T
0,4(T) < f dt]0pa (1)]
0
T
< min (f dt o [Hep(®), ()],
0

T
/O dt o [Hep (1), |wad<t)>]>. %)

The bound is characterized by two types of variance. Since
the counterdiabatic term is represented by using the time
derivative of parameters in the original Hamiltonian, it is
natural for this term to characterize the bound. We can take the
minimum of the variances to obtain a tight bound. When the
Hamiltonian H(¢) is prepared and we do not know the ideal
adiabatic state |,q(?)), the bound by the realistic state |y (¢))
can be useful. On the other hand, when we prepare |,4(¢)) as
a reference state, the bound by |1/,4(¢)) would be appropriate.
The choice of the Hamiltonian H (¢) that corresponds to the
specified state |y,q(¢)) is not unique and we can obtain a
universal bound which is common to all possible choices. The
variance with respect to |¥,q4(¢)) has a geometrical meaning

and appears when we discuss an energetic cost and a trade-
off relation for the implementation of the counterdiabatic
term [35-38]. In the following examples, we study bounds
by [ (¢)) since they give the same or slightly better results
compared to those by [1/aq(7)).

In the theory of QSL, we are basically interested in max-
imizing the left-hand side of Eq. (1). The MT relation shows
that the maximum possible speed is given by the energy
variance. Here, we want to minimize 6,q(7), which means
that the speed limit, the rightmost side in Eq. (7), gives a
worst case evaluation of the performance. Minimizing the
variance can be an optimization method for the AQC. In fact,
the method of quantum adiabatic brachistochrone introduces
a similar quantity for an optimization [22-24].

In the AQC, we expect that 6,4(¢) is small and Opa (1)
oscillates around zero. The original MT relation in Eq. (1)
gives a tight bound only when arccos|{¥ (0)|¥(¢))] is a
monotonic function. The same is true for 6,4(¢) in Eq. (7)
and the equality is unlikely to hold in the present situation.
If we strictly impose the adiabaticity of the computation, the
intermediate state |1/ (¢)) at arbitrary ¢ is expected to be close
to the adiabatic state |1,q(¢)). Basically, we are interested
in the final state and it is not necessary for the intermediate
state to satisfy the adiabaticity. However, we expect that an
adiabatic-state following leads to a robust computation. Then,
fOT dt)0,a(1)|, the middle term in Eq. (7), becomes a proper
measure of adiabaticity and the rightmost side in Eq. (7) can
be a tight bound for this improved measure as we see in the
following.

It is often a difficult task to calculate the explicit form of
the bound. The present result shows that the bound is directly
connected to the counterdiabatic term. We know various ways
to construct the counterdiabatic term exactly [39-42] and
approximately [43,44], which would be useful to estimate the
bound.

Some improvements. The bound can be improved by im-
posing additional conditions. One of the simplest conditions is
to set that the initial state | (0)) is one of the eigenstates of the
initial Hamiltonian H(0), |n(0)). This is a natural condition
usually employed in the AQC. In this case, the adiabatic state
is written by the single eigenstate |n(¢)). The dynamical phase
factor e~ /o 4" &) gives an overall contribution and is dropped
out when we take the absolute value of the overlap. The time
evolution is effectively achieved only by the counterdiabatic
term, that means Uy (f) is equivalent to e~/ 4" & Ucp(t)
where Ucp(?) is the time-evolution operator for Hep(f) and
is obtained by setting €,(t) = 0 for Uy(¢) in Eq. (4). We
find that the bound is obtained by replacing o [Hcp(2), | (2))]
in Eq. (7) by o[H(¢t) — Hcp(t), | (¢))]. Although this bound
is expected to be an improvement over that in Eq. (7), it is
not evident whether o [H (t) — Hcep(t), | (¢))] is smaller than
o[Hep(t), [ (2))]. To obtain some intuition, we find a further
different expression in the following.

The idea also comes from the method of STA. In the
counterdiabatic driving, we introduce the additional counter-
diabatic term Hcp(¢) to the original Hamiltonian H(#) to keep
the adiabatic state with respect to H(¢). The idea of STA is not
restricted to this procedure and we can consider several vari-
ants of implementations. In fact, in the “inverse engineering,”
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we use the dynamical invariant operator to obtain an ideal time
evolution [32,45]. From a viewpoint of the counterdiabatic
driving, the use of the dynamical invariant corresponds to
decomposing the Hamiltonian into two parts: H(t) = Hy(t) +
Hi(t). The first term Hy(z) commutes with the dynamical
invariant. The solution of the Schrédinger equation with H (¢)
is given by the adiabatic state of Hy(f), which means that
H(t) is interpreted as the counterdiabatic term. H;(¢) is
different from Hcp(t) as we discuss below. When we start the
time evolution from an eigenstate of the initial Hamiltonian,
we determine the decomposition as follows. We prepare the
basis {U (t)|n(0))}, where U (¢) is the time-evolution operator
for H(t). This basis represents a set of eigenstates for the
dynamical invariant. Then, Hy(#) represents the diagonal part
and H () the off-diagonal part [46]. Setting the initial state as
[¥(0)) = |n(0)) and following the same logic as before, we
see that [1/(¢)) is obtained, up to the phase, by applying the
unitary operator U (t) for H,(¢) to the initial state. Then, we
obtain the bound with o[H,(t) — Hcp(?), | (¢))] in place of
o[(H(t) — Hep(1), [¥(1))].

Adiabatic expansion. The representation of the bound using
the difference between two counterdiabatic terms is instruc-
tive. Although the explicit operator form of H|(¢) is generally
hard to obtain, we can find an intuitive meaning by using the
adiabatic expansion. The dynamical invariant operator F ()
satisfies

(dF (1)
l
dt

and is solved formally by using the expansion in terms of the
time derivative operator. Since the dynamical invariant com-
mutes with Hy(t), H,(¢) is obtained by solving the commu-
tation relation [H(¢) — H,(t), F(¢)] = 0. Solving these equa-
tions order by order, we find

(m(t)|Hy (1)|n(1)) = (m(t)|Hep(1)|n(1))
o d im0l Hep(®)ln(0))
dt em(t) - En(t)

for m # n. The diagonal part (n(¢)|H;(¢)|n(t)) is not required
when we calculate the variance. The result shows that H;(¢) is
equivalent to Hcp () at first order of the expansion. We use the
variance of H;(t) — Hcp(t) for the bound, which means that
the bound can be approximately characterized by the second
term of Eq. (9) in the adiabatic regime. We obtain

o [H(t) — Hep (), [¥ ()]

Sy e <<m(t>|HCD<r>|n<r)>)
m(n) dt €n(t) — €,(1)

Since Hcp(t) incorporates the time derivative of the parame-
ters, the second time derivative of the parameters is relevant,
rather than the first derivative, for characterizing the bound of
the fidelity. The acceleration can be relevant for some control
problems. In the counterdiabatic driving, the acceleration
potential is obtained by using a unitary transformation [47].
The relevance of the higher-order derivatives for the adiabatic
approximation can also be seen in rigorous treatments of the
adiabatic theorem [19,25-28].

Two-level systems. We study a simple two-level system
to see how tight the obtained bounds are. The Hamilto-

= [H(2), F(1)], ®
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FIG. 1. QSL for a two-level system. (a), (b) |9ad (1)| (black solid),
AE(t) (red dotted), and AE,(t) (blue dashed) for a protocol 6(t)
given in the inset of each panel. We set the annealing time 7" = 50
in units of A. (c) Distribution of (fOT dt AE,(t), fOT dt|6,4(1)]) for
randomly generated protocols 6(¢). The protocols are generated as
decreasing functions from 7 /2 to 0. The solid line represents the
bound. (d) Annealing time dependence for the protocol in the top
left-hand panel. O,4(7) (black), [0, (r)| (blue), AE(t) (red), and
AE,(t) (green) are integrated from O to 7.

nian is given by H(t) = %[UZ cosO(t) + o*sinf(t)], where
o® (0%) is the z (x) component of the Pauli matrices.
h is fixed to a constant value and 6(f) moves from
0(0) =m/2 to 6(T) = 0. In this case, Hcp(?) is given by
Hep(t) = @a’. We also find o[H(t) — Hcp(2), | (1))] =
o[H(t) — Hcp(?), |¥(¢))]. Then, we compare AE;(t) =
o[Hep(t), ¥ (1)) and AE, (1) = o [H(t) — Hep(1), [¥(1))] as
possible bounds.

The numerical study is summarized in Fig. 1. |éad(t)|
becomes small when the parameter changes around the initial
and final times are slow, as we see in the top left-hand panel
of Fig. 1. In this case, AE,(t) gives a good tight bound.
The importance of the slow changes at the boundaries has
been discussed in several works [26,48,49]. Our observation
is consistent with their results. It should be remarked that
we can find a good bound irrespective of the performance.
Although the oscillations of |éad(t)| in the top right-hand
panel are difficult to be captured by the bound, the bound
by AE;(t) can describe the outline of the oscillation as an
envelope.

The annealing-time dependence of the result is shown in
the bottom right-hand panel of Fig. 1. AE,(¢) is strongly de-
pendent on the annealing time 7 while AE(¢) is not sensitive
to T. AE»(t) becomes small at large 7', which is understood
from the adiabatic expansion as discussed in Eq. (9).

Quantum speed limits for many-body systems. In the AQC,
our interest is mainly on systems with many degrees of
freedom. Although the obtained bounds are applicable to any
closed quantum systems, they are not useful in typical many-
body systems. For a system with the particle number N, the
Hamiltonian is an extensive quantity and the state is basically
given by a product of N components. This means that the
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fidelity is expected to have a form

(Y O)Y @) ~ e, an

where g(¢) is a non-negative function independent of N.
This becomes a very small quantity for a large N. In other
words, the size of the Hilbert space is too huge for two
vectors to have a certain amount of overlap. The vanishing
of the overlap can be found even when we consider a small
perturbation. It is called the orthogonality catastrophe [50]
and has recently been discussed from a viewpoint of the QSL
[51]. The behavior of the fidelity for many-body systems can
be studied by using the rate function g(¢). In fact, a dynamical
singularity appears on this quantity for systems with quantum
quench [52]. When the rate function becomes a well-defined
quantity, the overlap immediately goes to zero at N — oo.
Since o [H(t), | (t))] is typically proportional to /N, the MT
relation becomes a trivial one.

To find a meaningful relation, we reexamine the derivation
of the MT relation. Using Eq. (2), we find

o[H (), [ (@))] (W(O)Im(t»‘
N (PO @))

_o[H@), [y @)]ci(t)

B vN cr)

The equality is obtained when the ratio (¥ (0)|v¥ . (2))/
(¥ (0)|y(¢)) becomes pure imaginary. When the fidelity is
scaled as [(y(0)|¥ (1)) = c(t)e ™8O, where c(t) and g(t)
are non-negative and independent of N, we see below
(Y (0) L (1)) = v/Neo (1)e N8O, with ¢ (1) which is also
non-negative and independent of N. As a result, we obtain the
last expression in Eq. (12). The right-hand side remains finite
even if we take the thermodynamic limit N — oo. Then, we
can use this relation as another type of QSL for many-body
systems. We note that this inequality makes sense even for
small systems. Since the present relation does not require
an additional inequality |(y(0)|y(1))I* + [(¥ (0)|r L (1))|* <
1 which is used to derive the MT relation, we expect that
Eq. (12) gives a tighter bound.

It is not convenient to represent the bound by using the
unknown state |, (#)). The bound can be represented by the
counterdiabatic term. Setting the condition that the initial state
is in one of the eigenstate of the initial Hamiltonian, we obtain

HOY (1) = [YL®)o[H (1), [ (1))] and

LT O)H (D)]Y (@)
Nl WOIy@®) |

Since the counterdiabatic term is expected to be an extensive
operator, we see that the right-hand side remains finite even
if we take the limit N — oo. It is interesting to see that the
quantity appearing on the right-hand side represents the weak
value [53].

In a similar way, for the fidelity with the adiabatic state, we
define g.q(¢) as | (Waa ()| (2))| ~ e V81 to derive the bound

1 (raa ()| Hep (DY (1))
N (Yaa O (1)) '

With an additional condition that the initial state is in one
of the eigenstate of the initial Hamiltonian, we can replace

18(0] <

12)

lg@®)] < (13)

|8aa ()] < (14)
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FIG. 2. QSL for a spin chain model. (a) |£.q4(¢)| (black solid line)
and the right-hand side of Eq. (14) (red dotted) for a linear protocol
A(t) =A0)1 —1t/T), B(t)=A0)/T. We set N = 1000 and T =
1000 in units of A(0). The inset represents a blowup around the peak.
(b) Size dependence of the peak height obtained in (a). The black
solid line with the symbol e denotes max; |g,q(¢)| and the red dashed
line with o the corresponding quantity in the QSL. They show the
same power-law behavior denoted by the blue dotted line at large
N. (c) Protocol dependence. We choose two types of A(¢) shown in
the insets and B(t) = A(0) — A(z). The solid lines denote |g,q4(¢)| and
the dashed lines the QSL. We set N = 1000 and 7 = 1000 in units
of A(0). (d) Annealing time dependence. We use the linear protocol
used in (a) and set N = 200.

Hcp(t) in Eq. (14) by H(t) — Hep(t) and H (1) — Hep(2) as
we have shown in the previous calculations.

Some examples. We study many-body spin models that
exhibit phase transitions. First, we treat the transverse-field
Ising-spin chain,

N N
H(t) = —% of — @ > oot (15)
i=1 i=1
We use the periodic boundary condition oy, = of. This
Hamiltonian can be decomposed into a set of two-level sys-
tems by the Jordan-Wigner transformation [54,55]. The result
is shown in Fig. 2. The QSL represented by Eq. (14) gives a
tight bound even at the quantum phase-transition point A = B
obtained by the static treatment. We observe a peak at the
point and the height is scaled by the size of the system as
N® with o ~ 0.303 in the present choice of parameters. The
same scaling is applied to both the fidelity and the QSL, which
implies that the universal properties at the phase transition can
be studied by using the QSL.

A different type of singularity can be found for a quantum
quench system and is known as dynamical phase transitions
[52]. We consider the spin operator S with §% = %(%’ + 1),
and prepare the initial state |y (0)) as an eigenstate of S¥,
S¥(0)) = %’W(O)). Then, the state is time- evolved under
the Hamiltonian

_ i 7\2 4
H= 2<N(S) +hS>. (16)

It is known that the rate function g(¢) at N — oo has sin-
gular points [56]. The decomposition of the Hamiltonian is
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FIG. 3. QSL for a quantum quench system with dynamical phase
transitions. We set J = h. The black solid line represents g(t), the
blue dashed line |g(#)|, and the red dotted line the QSL specified by
the right-hand side in Eq. (13). Inset: Time-integrated quantities.

possible in this case [46] and we can calculate the bound
as we show in Fig. 3. g(¢) changes discontinuously at

phase-transition points. We find that the QSL still holds even
when we have the transitions. We also see that the bound
can basically be a good estimate of the rate function but it
becomes loose around the transition points. Since H;(t) is
a part of the original Hamiltonian, the bound in Eq. (13)
stays finite, which indicates that g(¢) does not diverge in any
systems.

Conclusion. We have discussed the QSL applied to the
AQC. The performance of the computation is characterized by
the counterdiabatic term. The bound is simply represented by
the variance of the counterdiabatic term and has a geometrical
meaning. Although we mainly focused on the AQC, the
result is general enough so that it can be used without any
additional condition. As we mentioned in the Introduction,
the present method makes up for the inconvenience of the
previous methods. We also find another type of QSL that can
be applied to many-body systems. Our result implies that the
universal properties can be deduced from the corresponding
counterdiabatic term.
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