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We numerically prove photoinduced η-pairing in a half-filled fermionic Hubbard chain at both zero and
finite temperature. The result, obtained by combining the matrix-product-state based infinite time-evolving
block decimation technique and the purification method, applies to the thermodynamic limit. Exciting the Mott
insulator by a laser electric field docked on via the Peierls phase, we track the time evolution of the correlated
many-body system and determine the optimal parameter set for which the nonlocal part of the η-pair-correlation
function becomes dominant during the laser pump at zero and low temperatures. These correlations vanish at
higher temperatures and long times after pulse irradiation. In the high laser frequency strong Coulomb coupling
regime we observe a remnant enhancement of the Brillouin-zone boundary pair-correlation function also at high
temperatures, if the Hubbard interaction is about a multiple of the laser frequency, which can be attributed to an
enhanced double occupancy in the virtual Floquet state.

DOI: 10.1103/PhysRevResearch.2.032008

Introduction. Optical pumping is not only an excellent tool
to investigate complex few- and many-body systems but also
makes it possible to create new phases of quantum matter with
tunable properties [1–4]. Inducing superconductivity by light
pulses in low-dimensional materials with strong electronic
correlations is certainly one of the most fascinating options
in this regard [5–7]. Thus, it was not surprising that a whole
series of theoretical studies has addressed the microscopic
modeling and understanding of this nonequilibrium light-
matter-interaction phenomenon [8–12].

In this context, the so-called η-pairing, originally proposed
by Yang for the Hubbard model [13], has attracted renewed
attention [14–21]. Pumping the Mott insulating phase may
result in an excited state with enhanced off-diagonal pair-
density-wave correlations, which are absent in the ground
state [15]. Here, the basic mechanism is the creation of η-pairs
triggered by the nonlinear optical excitation of the system in
conjunction with the selection rules. Interestingly, for low-
amplitude pulses, the peak structure of the pair-correlation
function is essentially the same as that obtained for the optical
spectrum in the ground state, implying that the photoinduced
state might indeed result from an η-pairing mechanism.

The crucial question is whether these findings will remain
valid in the thermodynamic limit and at finite temperature T .
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Some features, e.g., the stripe structure found in the structure
factor of the pair correlations (Fig. 2 of Ref. [15]) of small
systems, have been shown to disappear by increasing the
system size [22], exploiting density-matrix renormalization
group (DMRG) and time-evolving block decimation (TEBD)
methods [23,24]. For sure, determining the temporal evolution
of an infinite, driven, strongly correlated electron system at
T > 0 is one of the most difficult problems in solid state
theory. Since the fermionic Hubbard model [25] can nowa-
days be realized in optical lattices [26–29], just as its bosonic
counterpart [30], such a theoretical treatment is indispensable,
however, for the interpretation of the experimental data, espe-
cially in one spatial dimension.

Despite this difficulty, this Rapid Communication aims at
proving the existence of photoinduced η-pairing in the one-
dimensional half-filled fermionic Hubbard model, directly in
the thermodynamic limit and for finite temperatures. For this
we exploit unbiased numerical techniques, specifically the
infinite TEBD (iTEBD) technique [31] based on an infinite
matrix-product-state (iMPS) representation [32] in combi-
nation with the purification method [33,34], which enables
us to monitor the real-time evolution of thermal states at
a finite target temperature, as accessible by optical-lattice
experiments.

Model. Our starting point is the Hubbard Hamiltonian,
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where ĉ†
j,σ (ĉ j,σ ) creates (annihilates) a fermion with spin pro-

jection σ (=↑,↓) at lattice site j, and n̂ j,σ = ĉ†
j,σ ĉ j,σ . The first

term represents the kinetic energy (with nearest-neighbor par-
ticle hopping amplitude th) that acts against the Coulomb in-
teraction (parametrized by the on-site Hubbard repulsion U ),
which tends to localize the fermions by establishing a Mott
insulating state at half band filling. The Hubbard Hamiltonian
(1) commutes with the operator η̂2 = 1

2 (η̂+η̂− + η̂−η̂+) +
(η̂z )2, where η̂z = 1

2

∑
j (n̂ j,↑ + n̂ j,↓ − 1), η̂+ = ∑

j (−1) j�̂
†
j ,

η̂− = (η̂+)†, and �̂
†
j = ĉ†

j,↓ĉ†
j,↑ denotes the on-site singlet pair

creation operator (see Ref. [35]).
As demonstrated in Ref. [15], photoinduced η-pairing

states may appear when an external time-dependent field
couples to the hopping term via a Peierls phase [36],
thĉ†

j,σ ĉ j+1,σ → theiA(t )ĉ†
j,σ ĉ j+1,σ , where the vector potential

A(t ) = A0e−(t−t0 )2/(2σ 2
p ) cos[ωp(t − t0)] (2)

describes a pump pulse with amplitude A0, frequency ωp, and
width σp, centered at time t0 (>0). As a result, the Hamiltonian
becomes time dependent, Ĥ → Ĥ (t ), and the initial (equi-
librium) ground state evolves (forward) in time: |ψ (0)〉 →
|ψ (t )〉. Numerically such a time evolution can be treated in
an efficient manner by combining TEBD and second-order
Suzuki-Trotter decomposition methods [24]. Hereafter we use
th (t−1

h ) as the unit of energy (time), and set the time step
δt · th = 0.01.

In fact, using the iTEBD technique, we directly examine
the time evolution of the pair-correlation function,

P(r, t ) = 1

L

∑
j

〈ψ (t )|(�̂†
j+r�̂ j + H.c.)|ψ (t )〉, (3)

in case that the number of lattice sites L → ∞. At r = 0, the
pair correlation gives twice the number of double occupancy,
i.e., P(0, t ) = 2nd(t ) = (2/L)

∑
j〈ψ (t )|n̂ j,↑n̂ j,↓|ψ (t )〉. Most

notably, the Fourier transform P̃(q, t ) = ∑
r eiqrP(r, t ) shows

an enhancement after the pulse irradiation that was believed
to be indicative of η-pairing in finite Hubbard clusters [15].
Since we are particularly interested in longer-range pair cor-
relations, we will also analyze the modified structure factor
P̃r>0(q, t ) = ∑

r>0 eiqrP(r, t ), in which the contribution of
the double occupancy nd(t ) is excluded. Let us point out
that P̃(q, t ) obtained by iTEBD in the iMPS representation
fulfils the relation P̃(π, t ) = 2〈ψ (t )|η̂+η̂−|ψ (t )〉/L, which is
not the case in any (finite-system) TEBD calculation with
open boundary conditions (OBCs) (see Ref. [22] and the
Supplemental Material [35]).

iTEBD results at T = 0. In a first step, we determine the
optimal parameter set in view of an enhancement of P̃(π, t ) at
zero temperature. Figures 1(a)–1(c) provide iTEBD contour
plots for P̃(π, t ), in dependence on A0 and ωp, at different
times t · th. For t < t0, in the ramp-up regime of the pump
field, the spectral intensity of P̃(π, t ) is negligibly small (not
shown). Noticeable pair correlations develop for t � t0, albeit
the signal is very broad [cf. Fig. 1(a)]. It becomes focused
when the light pulse acts on the system [Fig. 1(b)], and reaches
its saturation value for t · th � 16 [Fig. 1(c)], where A0 = 0.37
and ωp = 7.10.

FIG. 1. Time evolution of pair correlations in an infinite half-
filled Hubbard chain at T = 0. Contour plots of P̃(π, t ) are given
in the ωp-A0 plane at t · th = 10 (a), 12 (b), and 16 (c) for U/th = 8,
where the pump is parametrized by σp = 2 at t0 · th = 10. P̃(π, t ),
P̃r>0(π, t ), and 2nd(t ) are displayed as functions of time in (d) for
the peak position × read off from (c). (e) demonstrates that the
P̃(π, t )/A2

0 data at t · th = 16 (symbols) can be rescaled to Im χ (ω)
(black line) for small A0, where Im χ (ω) is the imaginary part of
the optical spectrum χJJ (ω). iTEBD data were obtained with bond
dimensions up to χ = 2000. For a discussion of the accuracy of the
iTEBD calculations, see the Supplemental Material [35].

Figure 1(d) relates the time evolution of P̃(π, t ),
P̃r>0(π, t ), and 2nd(t ) for the optimal parameter set marked
by a cross in Fig. 1(c). All quantities show a clear response
to pulse irradiation and will be strengthened as the system
progresses in time until saturation is reached. Apparently,
here, the nonlocal contributions P̃r>0(π, t ) have a stronger
impact on P̃(π, t ) than double occupancy.

A notable finding of previous ED calculations [15] was
a peak structure of P̃(π, t ) as a function of ωp which is
essentially the same—for small A0—as those of the ground-
state optical spectrum χJJ (ω), folded with an appropriate
Lorentzian of width ηL (depending on 1/σp). The current-
current spectral function χJJ (ω) is given by

χJJ (ω > 0) = − 1

L
〈ψ0|Ĵ 1

E0 − Ĥ + h̄ω + iηL
Ĵ|ψ0〉, (4)

where |ψ0〉 is the ground state having energy E0, and the
charge current operator Ĵ , for the Hubbard model, takes the
form Ĵ = ith

∑
σ
(ĉ†


,σ ĉ
+1,σ − ĉ†

+1,σ ĉ
,σ ). The ED [15] and

TEBD [22] calculations, which could be conducted for small
lattices only, suffer from finite-size effects however. These
give rise, inter alia, to stripe patterns in P̃(π, t ), which makes
it difficult to determine its maximum value. We demonstrate
that a single peak structure evolves in the thermodynamic
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FIG. 2. Temperature dependence of various correlation functions
for the half-filled Hubbard chain without irradiation. Double occu-
pancy nd at different Coulomb repulsions U/th (a) [here, the symbols
mark data obtained by a separate ground-state simulation (T = 0)]
and pair correlators P̃(π ), P̃r>0(π ) compared to nd for U/th = 8 (b).

limit L → ∞ [see Fig. 1(c)], and therefore can address more
seriously the question whether the χJJ (ω) line shape obtained
by time-dependent iMPS-based DMRG really agrees with that
of P̃(π, t ) for small A0 and large t , where P̃(π ) becomes time
independent.

Figure 1(e) compares the iTEBD data, obtained for P̃(π, t )
at various small A0 and t · th = 16, with the DMRG re-
sults for χJJ (ω) (using ηL/th = 0.2), in dependence on ωp

respectively ω. Here, we show that P̃(π, t ) divided by A2
0

scales to the imaginary part of the optical spectrum Im χ (ω)
[�P̃(π, t )/CA2

0 with C ∼ 7.9] since the double occupancy nd

is proportional to A2
0, for very small A2

0, in a wide ωp-range
around the resonant frequency ωp � U [37]. Close to the
maximum in P̃ respectively Im χ , at about ω � 6.49, both
quantities differ for larger amplitudes A0, because the nonlo-
cal correlations contained in P̃r>0(π, t ) become increasingly
important. Taking the relation Im χJJ (ω) = ωσ1(ω) into ac-
count, where σ1(ω) is the real part of the optical conductivity,
this behavior is in accordance with DMRG and field-theory
results for the optical response in the half-filled Hubbard
model [38].

iTEBD results for T > 0. In a second step, we will
investigate—under usage of the iMPS and purification ap-
proaches [33,34]—what happened to the η-pairing correla-
tions at finite temperatures T = 1/β. Methodically, to obtain
the equilibrium state |ψT 〉 at some target temperature T , we
first construct an iMPS representation of a state |ψ∞〉 at infi-
nite temperature, where each physical site is in a maximally
entangled state with an auxiliary site, and then carry out the
imaginary-time evolution e−βĤ/2|ψ∞〉 of the physical system.
We note that combining the Suzuki-Trotter decomposition
with swap gates [39], such a time evolution can be effectively
implemented for any nearest-neighbor Hamiltonian.

We start by checking the temperature dependence of the
double occupancy nd in the pure Hubbard model (1) without
an optical pump. Our iTEBD data in Fig. 2(a) reveal the
well-known minimum in nd [40], which is shifted to higher
temperatures as U increases and is related to the maximum in
the local magnetic moment L0 = 3

4 〈(n j,↑ − n j,↓)2〉 [= 3
4 (1 −

2nd ) at half filling]. At T = 0, L0 interpolates between the
atomic limit (U = ∞) with L0 = 3/4 since nd = 0 and the
band limit (U = 0) where L0 = 3/8, i.e., nd = 1/4, which is
also the value for T → ∞ since empty, spin-up/down, and
double occupied sites are equally likely. Figure 2(b) shows

FIG. 3. Pair correlations in an infinite half-filled Hubbard chain
at T > 0. Contour plots of P̃(π, t ) (a), P̃r>0(π, t ) (b), and 2nd(t )
(c) in the ωp-A0 plane at time t · th = 20 for T/th = 1, after pulse
irradiation where σp = 2, t0 · th = 10, and U/th = 8, obtained by
iTEBD with bond dimensions χ = 800. Time evolution of P̃(π, t ),
P̃r>0(π, t ), and 2nd(t ) (d) for parameters corresponding to the peak
position × in (b). The dotted yellow line marks 2nd(t = 0) for the
pure Hubbard model with corresponding parameters. The iTEBD
data are obtained for bond dimension χ = 1600.

the temperature dependence of P̃(π ), together with those of
P̃r>0(π ) and nd. At T = 0, on-site (nd) and nonlocal [P̃r>0(π )]
contributions cancel each other, so that P̃(π ) = 0. Clearly the
pairing correlations vanish in the opposite T → ∞, expressed
by the fact that P̃r>0(π ) → 0 and the P̃(π ) curve tends to 2nd

(see also Ref. [20]). As a result, strong η-pair correlations can
be expected in the low-temperature region at best.

Now, we take into consideration a time-dependent exter-
nal field and carry out the real-time evolution of Ĥ (t ) to a
thermal equilibrium state |ψT 〉. This allows us to discuss the
development of η-pairing correlations as a function of time
at T > 0. Figures 3(a)–3(c) provide iTEBD contour plots
of P̃(q = π, t ), P̃(q = π, t ), and 2nd(t ) in the ωp-A0 plane
for T/th = 1.0, at t · th = 20, following the pulse exposure.
We find a persistent enhancement of P̃(π, t ). The crucial
question is whether this enhancement can be related to the
nonlocal part of the pairing-correlation function, or simply
stems from the on-site (double-occupancy) contribution to
P(r, t ). The answer can be read off from the contour plot
of P̃r>0(π, t ) [Fig. 3(b)], which demonstrates its noticeable
contribution. Figure 3(c) gives the corresponding values of
double occupancy 2nd(t ). Here, we find two maxima at about
ωp ∼ U and 2ωp ∼ U which can be assigned to resonant
driving, i.e., to the existence of a Floquet virtual state [41].
How P̃r>0(π, t ) and 2nd(t ) will influence P̃(q = π, t ) over
time can be seen in more detail in Fig. 3(d) for ωp/th =
6.6 and A0 = 0.5 [× position in Fig. 3(c)]. Apparently, all
these quantities are growing when the light pulse acts on the
correlated system [around t0 · th (=10)]. Here, the (photoin-
duced) nonequilibrium physics emerges. Note that the line
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FIG. 4. Pair correlations at high temperatures. Contour plots of
P̃(π, t ) at T/th = 8, calculated for U/th = 8 (a) and 10 (b) by iTEBD
with χ = 800, where the pump is parametrized as before. Time
evolution of P̃(π, t ), P̃r>0(π, t ), and 2nd(t ) (c), for the peak-position
parameters determined from P̃r>0(π, t · th = 15) [see Fig. S2(d) in
the Supplemental Material [35]] by iTEBD with χ = 1600.

shape of P̃(π, t ) (and especially its decay at larger times)
is largely determined by P̃r>0(π, t ). At t · th � 20 saturation
is reached. The comparison with the pure Hubbard model
results shows the predicted dynamical generation of double
occupancy [42,43] after pulse irradiation.

Finally, we look at the system response to the pulse at
higher temperatures (T ∼ U ). Figures 4(a) and 4(b) display
the contour plots of P̃(π, t ), after pumping (t · th = 20), for
U/th = 8 and U/th = 10, respectively. Again we observe
pronounced maxima when the pulse frequency is close to
ωp � U/m, which comes to light for m = 1, 2 in Fig. 4(a)
and m = 1, 2, 3 in Fig. 4(b). Figure 4(c) elucidates the origin
of this multipeak structure and the significant differences to
the behavior at low temperatures shown in Fig. 3(d). Before
pulse irradiation and at long times [where P̃(π, t ) reaches
its saturation value], P̃(π, t ) is completely determined by

2nd(t ). The pure Hubbard model result is maintained up to
t · th � 7.5 (cf. the dotted line), which can be considered as
the linear response regime [41]. The nonequilibrium dynamics
is evidenced at intermediate times 7 � t · th � 13, when the
irradiation is strong. In contrast to low temperatures, the
contribution of P̃r>0(π, t ) is negligible after pulse irradiation
for t · th � 18. This shows that the peak structure observed
in Figs. 4(a) and 4(b) can be attributed to the enhanced
double occupancy. The high-frequency expansion in the Flo-
quet picture reveals the underlying mechanism: Performing
a Schrieffer-Wolff transformation [44,45] for a periodically
driven Hubbard model in the strong-coupling regime, an
effective (Heisenberg) Hamiltonian is obtained (see, e.g.,
Ref. [46]), containing an effective exchange interaction Jeff ,
which diverges at the resonant frequencies U � mωp [47].
Since time periodicity Ĥ (t + τ ) = Ĥ (t ) with τ = 2π/ωp is
absent in our model (1) and (2), the photoinduced double
occupancy appears as a Floquet virtual state as in the nonequi-
librium dynamics of pumped Mott insulators [41]. This effect
can be observed at any temperature [see, e.g., Fig. 3(c)].

Conclusions. To sum up, we have demonstrated light-pulse
photoinduced η-pairing in the one-dimensional half-filled
Hubbard model at both zero and finite temperatures by means
of a de facto approximation-free numerical approach. For
zero temperature, we carved out finite-size effects of previous
exact diagonalization studies, but confirmed the basic relation
between the pair-correlation function and the ground-state
optical spectrum for the infinite system. With a view to
experiments, also the optimal pulse for an enforcement of
η-pair correlations P̃(π, t ) is determined. For finite but low
temperatures, nonlocal pairing correlations P̃r>0(π, t ) were
detected within the applied iTEBD-purification scheme. After
pulse irradiation a dynamical generation of double occupancy
is proved for finite temperatures. Overall, our results support
a scenario where optical excitation of a Mott insulator may
lead to a (nonequilibrium) state with very slowly decaying
pairing correlations. If fermionic optical lattices will be cooled
to temperatures T � Jex = 4t2

h /U < th in the strong-coupling
regime (U 
 th) [29], our findings should be detected in the
laboratory.
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