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We introduce a Ramsey pulse scheme which extracts the non-Hermitian Hamiltonian associated with an
arbitrary Lindblad dynamics. We propose a related protocol to measure via interferometry a generalized
Loschmidt echo of a generic state evolving in time with the non-Hermitian Hamiltonian itself, and we apply
the scheme to a one-dimensional weakly interacting Bose gas coupled to a stochastic atomic impurity. The
Loschmidt echo is mapped into a functional integral from which we calculate the long-time decohering dynamics
at arbitrary impurity strengths. For strong dissipation we uncover the phenomenology of a quantum many-body
Zeno effect: Corrections to the decoherence exponent resulting from the impurity self-energy become purely
imaginary, in contrast to the regime of small dissipation where they instead enhance the decay of quantum
coherences. Our results illustrate the prospects for experiments employing Ramsey interferometry to study
dissipative quantum impurities in condensed matter and cold-atom systems.
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An atomic wire subject to localized particle losses, or
a quantum spin chain subject to on-site dephasing, are in-
stances of dissipative impurity problems. The nomenclature
is borrowed from the traditional research field of equilibrium
quantum impurities in many-body systems, which comprises
archetypical cases ranging from x-ray edge singularities to
magnetic impurities embedded in fermions [1,2]. Systems
with quantum impurities have represented important stepping
stones in understanding the physics of strongly correlated
systems, and by adding localized dissipation on an extended
system, one could similarly gain insight in the mechanisms
intertwining incoherent processes and quantum correlations
in many-body systems.

The surge of interest in this modern area of research has
been ignited by a few recent experiments in cold gases:
Shining an electron beam on a localized spatial region of an
atomic BEC of 87Rb atoms [3–8] induces a Zeno effect which
dictates that atom losses decrease at strong dissipation. Dis-
sipative impurities can also constitute a resource in quantum
many-body engineering, as they are employed to implement
scanning gate microscopes of ultracold bosons [9,10].

In its conventional formulation, the quantum Zeno effect
predicts the freezing of the wave function when frequent
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measurements exceed a rate threshold [11–18]. The phe-
nomenon extends beyond the theory of quantum measure-
ment, and it comprises the generic arrest of quantum evolution
provided by stochastic fields [19], including the decoupling of
a system from its decohering environment by the application
of a sequence of fast pulses [20]. The connection between the
Zeno effect and many-body physics has been first drawn in the
context of quantum circuits where unitary gates and random-
in-space and time projective measurements compete, inducing
a transition in the entanglement entropy from volume to area
law when measurements become frequent [21]. Primarily
motivated by the experiments in Refs. [5–7], the physics of the
Zeno effect has also entered the field of dissipative impurities.
The effect of 1/ω noise on the transport properties of Kane-
Fisher barriers [22,23] have been studied with nonequilibrium
Luttinger liquids [24], while a series of related works have
shown that strong local losses can inhibit particles’ emission
at the Fermi surface [25–27]; the interplay of Zeno physics
with many-body correlations has the potential to promote
lossy mobile impurities into a novel class of Fermi polarons
[28] and the list of examples could continue [29,30].

In general, the dynamics induced by a Markovian quantum
master equation comprise an imaginary or non-Hermitian
Hamiltonian (which is quadratic in the Lindblad operator) in
combination with a term describing stochastic jumps driven
by quantum noise [31–33]. In the following, we show that
a sequence of Ramsey pulses can experimentally decouple
these two contributions, and can be employed to measure
via interferometry a generalized form of the Loschmidt echo,
which evolves solely with the former. This protocol represents
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FIG. 1. An atomic impurity (gray dot) embedded in a one-
dimensional wire of cold bosons (in red). The impurity has three
internal atomic levels: The level |0〉 is inert to scattering with the
bosonic cloud, and is used as a control state for Ramsey inter-
ferometry which is employed to measure the Loschmidt echo for
the non-Hermitian Hamiltonian associated with stochastic dynamics.
The latter is generated by driving with a sequence of Markovian
pulses the levels |1a〉 and |1b〉 which are density coupled to the
background Bose gas.

an operative route to define non-Hermitian Hamiltonians and
it could bring different experimental insight into communities
focusing on this class of Hamiltonians; one example is the
field of non-Hermitian topology [34–41] which is currently
mostly implemented in photonics platforms [42].

We apply this scheme to the problem of a dissipative
impurity in a weakly interacting Bose gas, and we predict,
with functional integral techniques, a Zeno effect for the
decohering exponent of the echo, which is nonperturbative
in the impurity strength. This is at variance with previous
works aiming at studying noise-averaged Loschmidt echoes
in locally dephasing spin models [43,44], which require the
full Lindblad evolution, and it represents an alternative route
to the study of dissipative impurities, since it does not rely on
the measurement of transport properties across noisy barriers.

A general Markovian quantum master equation with one
Lindblad channel reads

i∂t ρ̂ = Ĥeffρ̂ − ρ̂Ĥ†
eff + Ljump[ρ̂], (1)

with the non-Hermitian Hamiltonian and quantum jump term
being respectively

Ĥeff = Ĥ0 − iγ L̂†L̂,

Ljump[ρ̂] = 2iγ L̂ρ̂L̂†.
(2)

The Ramsey protocol we propose to probe Ĥeff relies on
the assumption that the strength of the interaction between
the system and the environment can be controlled by an
additional, discrete degree of freedom of the system. For
simplicity, we consider a generic system with (at least) two
internal states |0〉 and |1〉, the Lindblad dynamics being active
only when the system is in the state |1〉. This is expressed by
the following replacement, valid in the extended Hilbert space
that includes the internal level,

L̂ → ˆ̃L = L̂ ⊗ |1〉〈1|. (3)

In cold atomic systems, the latter can be realized with spin-
dependent interactions with the bath [45,46] as employed in
studies of Bose polarons [47–49] (see Fig. 1).

The density matrix of the system is prepared in a pure,
factorized state ˆ̃ρ0 = |ψ〉〈ψ | ⊗ |0〉〈0|. A π/2 pulse flips the
internal state |0〉 → (|0〉 + |1〉)/

√
2, and the full density ma-

trix changes accordingly,

ˆ̃ρ0 → ˆ̃ρ1 = 1

2

(|ψ〉〈ψ | |ψ〉〈ψ |
|ψ〉〈ψ | |ψ〉〈ψ |

)
. (4)

At this stage, the crucial observation is that, for a Lindblad
operator as in Eq. (3), the quantum jump term acts only on the
right-bottom element of the density matrix, i.e., on 〈1| ˆ̃ρ(t )|1〉.
In order to show that, we consider the action of the Liouvillian
on product states of the form

ρ̃ =
1∑

n,m=0

pnmρ ⊗ |n〉〈m|. (5)

For Lindblad operators as in Eq. (3), the action from the left
is nontrivial only on components with n = 1,

L̃ρ̃ = (L ⊗ |1〉〈1|)ρ̃ =
1∑

m=0

p1mLρ ⊗ |n〉〈m|. (6)

A similar equation holds for the action of L̃† from the right,
with the role of n and m being exchanged; the quantum jump
term affects therefore only the component of ρ̃ with n = 1,
m = 1,

Ljump[ρ̃] = 2γ p11LρL† ⊗ |1〉〈1|. (7)

The action of the full quantum master equation on the compo-
nents of the density matrix reads therefore

i∂t ρ̃00 = p00(H0ρ − ρH0), (8a)

i∂t ρ̃10 = p10(Heffρ − ρH0), (8b)

i∂t ρ̃01 = p01(H0ρ − ρH†
eff ), (8c)

i∂t ρ̃11 = p11(Heffρ − ρH†
eff + 2iγ p11LρL†). (8d)

The combination of the second π/2 pulse and of the con-
trast measurement probes only the nondiagonal components
(8b) and (8c). In fact, a combination of a π/2 pulse and a
measurement of σz is equivalent to a measurement of σx, since

〈σz〉 = Tr[σzRπ/2ρ̃(t )R†
π/2] = Tr[R†

π/2σzR−π/2ρ̃], (9)

where the matrix of a π/2 pulse reads Rπ/2 = 1/
√

2(σz + σx ),
therefore R†

π/2σzRπ/2 = σx. In conclusion, denoting by “tr”
the trace acting only on the many-body degrees of freedom
of the system, we get

〈σz〉 = Tr[σxρ̃(t )] = tr[ρ10 + ρ01]

= 2 Re tr[p10 eiH0t e−iHefftρ], (10)

which yields

〈σ̂ z〉 = Re[〈ψ |eiĤ0t e−i(Ĥ0−iL̂†L̂)t |ψ〉]. (11)

Such an implementation is inspired from the case of Hermi-
tian Hamiltonians which we report for completeness in the
Supplemental Material (SM [50]) (see also Refs. [51–54]).

Such a scheme can offer a systematic advantage over meth-
ods requiring averages over stochastic realizations, as it occurs
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in the evaluation of the conventional Loschmidt echo of noise-
driven Hamiltonians. We finally notice that the derivation
starting from Eq. (5) does not require us to restrict the initial
state to a pure one, and would apply straightforwardly also to
mixed states.

We now particularize our discussion to the setup of an
ultracold one-dimensional Bose gas interacting with a local-
ized atomic impurity. The discrete degree of freedom used
for interferometry will be an internal state of the atom. To
realize Eq. (3) and the Lindblad dynamics, the atom has a
noninteracting internal level |0〉, and at least two additional
levels, labeled as |1a〉 and |1b〉, density-coupled to bosons via
the interaction Hamiltonian

Ĥint =
∑

σ=a,b

gσ n̂σ (x0)n̂B(x0), (12)

where x0 denotes the position of the atom, ψ̂σ its spinor
wave function, n̂σ ≡ ψ̂†

σ (x0)ψ̂σ (x0) the occupation of the σ

level, and n̂B(x0) the bosonic number operator at x = x0; we
assume in the following x0 = 0. Equation (12) describes an
interaction whose strength is controlled by the states of the
impurity. The Lindblad dynamics can be engineered by acting
within the subspace {|1a〉, |1b〉} with an additional external
field, different from the one employed in the Ramsey protocol.
With a sequence of π pulses flipping between the two states,
the coupling can be promoted to a time-dependent quantity
g(t ), oscillating between ga and gb, as depicted in Fig. 1. For
a suitably chosen fast sequence of random pulses, g(t ) is a
stochastic variable with first and second moments

〈g(t )〉 = 0, 〈g(t )g(t ′)〉 = γ δ(t − t ′), (13)

where 〈· · · 〉 denotes the temporal average over several π

pulses. Higher-order moments are assumed to be negligible.
The conditions on second and higher moments are equivalent
to assume that the autocorrelation time of the density operator
of the impurity is the smallest scale in the problem. The
scheme proposed above, employing a fast sequence of random
π pulses, can be implemented in ultracold-atom systems: Rabi
frequencies above 1 MHz can be realized in alkali atoms,
which leads to fast π pulses compared to the typical atomic
interaction energies. Meanwhile, couplings to other hyperfine
states can be neglected due to large Zeeman splittings on the
order of 100 MHz.

Our protocol can also be adapted to other experimental
platforms, such as superconducting qubit arrays: A given
subset of the Hilbert space can be driven with stochastic
pulses, while the remaining states can be utilized for mea-
surement purposes. The latter should be prone to dissipation,
e.g., as a result of selection rules. Hence our scheme does
not necessarily rely on the requirement that the dissipative
channels support dark states.

The temporal average over multiple autocorrelation times
yields an equation of motion for the density matrix equal
to Eq. (1), with the Lindblad operator ˆ̃L = n̂B(0) ⊗ |1〉〈1|.
Expanding the Bose field in terms of Bogoliubov excitations,
the Lindblad operator and the non-Hermitian Hamiltonian (2)
become respectively

ˆ̃L 	 −
(

n0 +
√

n0

2π

∫
k

Vk (b̂k + b̂†
k )

)
⊗ |1〉〈1| (14)

and

Ĥeff = Ĥ0 − iγ L̂†L̂

=
∫

k
ωkb̂†

kb̂k − ig(ρ2 + 
̃τ )

− 2igρ
∫

k
Vk (b̂k + b̂†

−k )

− ig
∫

kq
VkVq(2b̂†

kb̂q + b̂†
kb̂†

−q + b̂k b̂q). (15)

where we have defined
∫

k ≡ ∫ 
τ

−
τ
dk. The cutoff 
τ is a

consequence of the Markov approximation [cf. Eq. (13)] on
the statistics of the π pulses, which are assumed to evolve
on the shortest timescale τ in the model. However, this
assumption is no longer valid when the dispersion relation ωk

enters the particlelike regime and momenta are of the order
of k 	 
τ ∝ √

1/τ , thus requiring one to cut off momentum
modes beyond this UV scale. The parameter 
̃τ in Eq. (15)
comes from the normal ordering of Ĥeff, and it is related to the
cutoff 
τ via 
̃τ = √

2 + 
2
τ − √

2.
In expression (15), b̂k are the Bogoliubov annihilation

operators in the BEC, n0 is the density of the condensate, and
we have defined

Vk =
(

k2

2 + k2

)1/4

, ωk = |k|
√

1 + k2/2,

ρ =
√

2πn0, g = γ n0

4π
, (16)

where g expresses the dissipation strength in Ĥeff and replaces
the microscopic coupling constant (we have used units h̄ =
c = m = ξ = 1, where c is the speed of sound, ξ the healing
length, and m the mass of the bosons).

The contrast (11) and the related Loschmidt amplitude G(t )
are now expressed in terms of a functional integral with fixed
boundary conditions in time, following the standard coherent
state Trotter decomposition. The derivation follows Ref. [55],
and it is discussed in detail in the Supplemental Material [50].
Specifically, from Eq. (15) we find

G(t ) ≡ 〈0|e−it Ĥeff |0〉

=
∫ bk (t )=0

bk (0)=0
DbDb∗ exp

(
i
∫ t

0
ds

[∫
k
Ak

])
, (17)

where

Ak ≡ b∗
k (s)(i∂s − ωk )bk (s) + iγ L∗(s)L(s). (18)

We remark that the functional integral formula (18) is
suited to describe the outcome of the interferometric mea-
surement discussed above for any choice of Lindblad operator
L̂, which can be local or extended in space. Equation (18)
is analogous to a Matsubara functional integral in imaginary
time, as it can be readily seen from the similarity between
the time evolution operator, exp (−it Ĥ ), and the Boltzmann
weight, exp (−βĤ ); accordingly, we define the real-time
Matsubara frequencies ωn = 2πn/t , with n ∈ Z. Implement-
ing the boundary conditions requires, however, an addi-
tional Lagrange multiplier, as discussed in the Supplemental
Material [50].
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FIG. 2. Plot of the real and imaginary parts of the renormalized
impurity strength g̃ as a function of the bare dissipation strength g.
For g  1 the real part vanishes, while the imaginary part reaches an
asymptote at 1/2π , indicating the onset of a quantum Zeno regime.

The bare, G0
k,n, and impurity dressed, Geff

kq,n, Matsub-
ara Green’s functions can be derived from Eq. (18) after
some manipulations which yield (see Supplemental Material
[50] for the details of the calculations)

G0
k,n = 2V 2

k ωk

ω2
n − ω2

k

, (19a)

Geff
kq,n = G0

k,nδk,q − 2ig

1 + 2ig
∫

p G0
p,n

G0
k,nG0

q,n. (19b)

Before proceeding further, we observe that Eq. (19b) carries
crucial information on the perturbative expansion of logG(t )
in powers of the coupling g: All corrections corresponding
to a dressing of the Green’s functions can be resummed and
expressed in terms of a renormalized coupling strength

g̃ ≡ 2g

1 + 2ig
∫

p G0
p,0

= 2g

1 − 4π ig
. (20)

This parameter is small since |g̃|max = 1/2π 	 0.16 (cf.
Fig. 2); it is therefore convenient to develop an expansion
of logG in powers of g̃. The functional integral (18) can be
now evaluated (see Supplemental Material [50]), obtaining the
following exact expression of the Loschmidt amplitude,

logG(t ) = −g(ρ2 + 
̃τ )t + 2ig2ρ2t

×
⎛
⎝∫

k,q
Geff

kq,0 + tr

⎡
⎣Geff

0

(∑
n

Geff
n

)−1

Geff
0

⎤
⎦

⎞
⎠

+ 1

2

∑
n

tr log
[(

G0
n

)−1
Geff

n

]

− 1

2
tr log

⎡
⎣(∑

n

G0
n

)−1 ∑
n

Geff
n

⎤
⎦. (21)

In Eq. (21) the matrices act only in momentum space, and
G0 is shorthand for Gn=0; correspondingly, traces run only
over momenta. We can observe here the role played by the
renormalized coupling in the analytic expression. The first
term in a naive perturbation theory corresponds to the first
line, i.e., it is obtained by replacing Geff → G0. Crucially,
almost all corrections to naive perturbation theory are small,

and under perturbative control even at strong coupling, since
they can be resummed and expressed in terms of g̃, as man-
ifested by the presence of the dressed Green’s functions in
Eq. (21). The only possibly relevant contribution to the naive
perturbation theory comes from the second line, that also
contains the bare coupling g2: The leading term at long times
can be evaluated exactly, and the sum of the first and second
line yields the Loschmidt echo

log [G(t )/Gτ (t )] 	 −g̃ρ2t/2, (22)

in terms of the amplitude Gτ (t ) ≡ exp(−g
̃τ t ), which can
be controlled by shaping the noise profile. The right-hand
side of Eq. (22) represents nonperturbative corrections to
the leading decoherence damping Gτ (t ) expected in general
for a stochastic scatterer embedded in an otherwise coherent
medium.

Nevertheless, the renormalized coupling g̃, which is real for
small values of the bare coupling g, becomes purely imaginary
at strong bare coupling, g̃ 	 i(2π )−1, as illustrated in Fig. 2.
The fact that g̃ is imaginary for large dissipative strengths in-
dicates that the rate decay function of the Loschmidt echo will
be entirely dominated by the bare decay exponent ∝g
̃. The
occurrence that all higher-order corrections to decoherence
are neutralized and resummed to an imaginary exponent is an
incarnation of the Zeno effect: For strong dissipation (large
g), the incoherent scatterer perfectly reflects bosons which
impinge upon it, and its only effect is to imprint a phase
shift on reflected wave functions (see for related ideas the
cold-atom experiment in Ref. [56]).

Conversely, in the conventional case of the Loschmidt echo
of a decohering qubit coupled to an extended quantum system
(e.g., a quantum spin chain), one expects a rate of decay which
monotonously grows with the system bath coupling or with
dissipation strength (see, for instance, Ref. [57]).

In conclusion, we have proposed how to measure, via Ram-
sey interferometry, the Loschmidt amplitude of an effective
non-Hermitian Hamiltonian associated with a Lindbladian.
The onset of a many-body Zeno effect can be directly probed
by the readout of 〈σ z〉 without resorting to measurements of
transport properties or to probing unequal time correlation
functions. We have demonstrated through Eqs. (19b) and (20)
that unitarity is restored for quasiparticle dynamics at strong
dissipation strength, while Eqs. (21) and (22) show that, in
spite of the onset of the Zeno effect, a damping persists and
becomes dominant at strong coupling. It would be interesting
to study, in the future, whether the Zeno effects can manifest
similarly in the interferometric properties of other systems,
or whether their imprint on the Loschmidt echo is inherently
nonuniversal.

Our results pave the way for a number of further ex-
ploratory directions. First, it would be natural to study an
extension of our calculations in the case of a mobile impurity
in view of recent connections between polarons and Zeno
physics [28]. Furthermore, the approach developed for ex-
tracting the leading decay rate of G(t ) is completely general,
and it could be, for instance, extended to more realistic
dissipative impurities by taking into account the spatial profile
of the impurity wave function or the correlation time of
the noise. Finally, the short-time pattern of the generalized
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Loschmidt echo could serve as a means to characterize the dy-
namical quantum phase transitions of non-Hermitian systems
[58,59]. We also foresee the possibility of applying concepts
developed for the study of dynamical topological phenomena
[59,60] to the more recent field of non-Hermitian topology
[61,62], with direct access to the echo of physically real-
izable non-Hermitian Hamiltonians defined via the protocol
discussed here.

Since out-of-time order correlations can be measured via
Ramsey interferometry [63], we also foresee in the future an

extension of our results in the direction of probing scrambling
in non-Hermitian quantum systems.
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