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Recently, a method of ultrafast polarization switching in ferroelectrics has been suggested. The basic idea of
the method is to employ the effect of self-acceleration of polarization dynamics due to a resonator feedback field.
This is the idea of principle whose efficiency is demonstrated by an Ising-type model in a transverse field. Of
course, the practical realization of the method requires the choice of appropriate materials, which is a separate
problem. For example, the standard order-disorder ferroelectrics with spatially symmetric double-well potentials
cannot be used for this purpose since, because of the symmetry, they lack the transverse polarization. However,
ferroelectrics with asymmetric potentials, possessing this polarization, can be used. Moreover, if the potential
asymmetry, hence, the transverse polarization, could be regulated, e.g., by shear stress or shear strain, this could
provide a tool for governing the process of polarization switching.
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The main goal of the paper [1] has been to attract attention
to the possibility of accelerating the polarization switching
in ferroelectrics by using the self-acceleration effect caused
by the action of a resonator-cavity feedback field. This is the
idea of principle that, here, is considered for ferroelectrics.
It goes without saying that the method is not necessarily
applicable to any particular material. Thus, in Ref. [2], it
is mentioned that the standard order-disorder ferroelectrics
with spatially symmetric double wells cannot be used for
this purpose. Below, we explain that the model considered in
Ref. [1] assumes the general case of asymmetric potentials
for which the method is applicable. We also emphasize that,
since there are various types of ferroelectric systems [3–6],
there can exist other materials for which the suggested idea
could work.

Of course, to illustrate the idea, one has to consider some
model. We considered an Ising-type model in a transverse
field. This kind of model, employing the spin representation,
is widely used for order-disorder ferroelectrics [3–6] and
relaxor ferroelectrics [7].

In order that the suggested method could be realized, the
existence of two spin components of polarization, longitudinal
and transverse, is required. If one keeps in mind an order-
disorder ferroelectric with lattice-site double wells that are
ideally symmetric with respect to spatial inversion (especially
with respect to the inversion x → −x), then, there is only
a longitudinal component, and the sample polarization is
expressed through the z component of the spin operator. But,
in the general case of an asymmetric potential, the sample
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polarization contains a term with the x component of spin.
The asymmetry can be induced by shear stress or strain or by
incorporating into the sample admixtures or vacancies. Thus,
the inclusion of vacancies in order-disorder ferroelectrics is
attributed to the breaking of spatial inversion symmetry along
different directions [8]. The symmetry in order-disorder ferro-
electics can be distorted by the action of a transverse electric
field [9].

In the paper [1], the general case of an asymmetric site
potential is treated when the expression for polarization pos-
sesses both spin components, longitudinal and transverse. In
order to be explicit, let us briefly show how these components
arise.

The most general approach requires to start from the micro-
scopic Hamiltonian in the second-quantization representation,

Ĥ =
∫

ψ†(r)H1(r)ψ (r) dr − P̂ · Etot

+ 1

2

∫
ψ†(r)ψ†(r′)�(r − r′)ψ (r′)ψ (r)dr dr′. (1)

Here, ψ’s are field operators, the site Hamiltonian is

H1(r) = − ∇2

2m
+ U (r), (2)

the potential U (r), generally, is not symmetric with respect to
the spatial inversion r → −r, � is the interaction potential,
and Etot is an external electric field acting on the polarization
operator,

P̂ =
∫

ψ†(r)P(r)ψ (r)dr, (3)

where the local polarization P(r) is caused by the charge
distribution satisfying the condition of the sample neutrality.

Considering an insulating sample where particles are lo-
calized in the vicinity of the lattice sites, the field operators
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can be expanded over localized orbitals, for example, over the
well-localized Wannier functions [10],

ψ (r) =
∑

n j

cn jwn(r − r j ). (4)

For the unity filling factor, the no-double-occupancy condition
is valid:

∑
n c†n jcn j = 1 and cm jcn j = 0. For an insulating lat-

tice, the no-hopping condition is satisfied: c†micn j = δi jc
†
m jcn j .

One assumes that the most populated are the lowest two
energy levels, whereas the other levels can be neglected. This
allows one to introduce the spin representation,

c†1 jc1 j = 1
2 + Sx

j , c†2 jc2 j = 1
2 − Sx

j ,

c†1 jc2 j = Sz
j − iSy

j , c†2 jc1 j = Sz
j + iSy

j . (5)

Thus, omitting nonoperator terms, we come to the Hamilto-
nian,

Ĥ = −
∑

j

(
� jS

x
j − HjS

z
j

) −
∑

j

P̂ j · Etot

+ 1

2

∑
i �= j

(
Bi jS

x
i Sx

j − Ji jS
z
i Sz

j

)
, (6)

in which � j ≡ H22
j j − H11

j j + 1
2

∑
i Ci j, Hj ≡ H12

j j + H21
j j ,

Bi j ≡ V 1111
i j + V 2222

i j − 2V 1221
i j , Ci j ≡ V 2222

i j − V 1111
i j , and

Ji j ≡ −4V 1122
i j with Hmn

i j being the matrix elements of
Hamiltonian (2) over the Wannier functions and V mnkl

i j , the
corresponding matrix elements of the interaction potential.
The polarization operator takes the form

P̂ j ≡ d0Sz
j + d1Sx

j , (7)

where d0 ≡ P12 + P21, d1 ≡ P11 − P22, and

Pmn ≡
∫

w∗
m(r − r j )P(r)wn(r − r j )dr.

The total external electric field contains a longitudinal and a
transverse components Etot = E0ez + Eex. Here, E0 is a fixed
external field, and E is the feedback field of a resonant cavity.

The term Hj can be included into the field E0. The magni-
tude of the interaction parameter Bi j is usually much smaller
than the tunneling frequency � j that can be taken the same

for all lattice sites � j = �. Omitting the term with Bi j is not
principal since it is easy to show [11] that its main role is the
renormalization of the frequency � j . As a result, we obtain
the Hamiltonian,

Ĥ = −�
∑

j

Sx
j − 1

2

∑
i �= j

Ji jS
z
i Sz

j −
∑

j

P̂ j · Etot. (8)

When the potential configuration at each lattice site is
symmetric with respect to spatial inversion (especially with
respect to the inversion x → −x) so that the density |wn(r)|2
is also symmetric with respect to the spatial inversion, then,
the diagonal matrix elements Pnn are zero because of which
the polarization operator contains only the longitudinal spin
component d0Sz

j . However, in the general case, when the
potential relief is not inversion symmetric, the polarization op-
erator contains both the longitudinal as well as the transverse
spin components as in Eq. (7). This general case is assumed
in Ref. [1].

Thus, in the general situation, the polarization opera-
tor possesses two spin components longitudinal and trans-
verse. This is sufficient for realizing the effect of the self-
acceleration of the polarization switching by the resonator
feedback field, which is the main point of the paper [1]. It is
useful to note that, in addition to different ferroelectrics [3–7]
and multiferroics [12,13], ferroelectric-type spin models are
widely used for describing the systems of polar molecules,
Rydberg atoms, Rydberg-dressed atoms, dipolar ions, vacancy
centers in solids, and quantum dots [14–19]. These systems
can form self-assembled lattice structures or can be loaded
into external potentials imitating crystalline models. The char-
acteristics of these dipolar materials can be varied in a very
wide range. Therefore, it looks feasible to find the appropriate
material for the realization of the effect considered in the
paper [1].

Moreover, the fact that the potential asymmetry leads to the
appearance of the transverse polarization component contain-
ing Sx

j suggests the way of regulating the polarization switch-
ing. Thus, in a sample with symmetric wells where there is no
transverse polarization, the longitudinal polarization can be
frozen. By inducing the potential asymmetry, for instance, by
subjecting the material to shear stress and shear strain, which
would induce the transverse polarization, it would be possible
to trigger the switching process.
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