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Topological superconductivity in multiband systems has received much attention due to a variety of possible
exotic superconducting order parameters as well as nontrivial bulk and surface states. While the impact of
coexisting magnetic order on superconductivity, such as ferromagnetic superconductors, has been studied for
many years, the implication of coexisting multipolar order has not been explored much despite the possibility of
multipolar hidden order in a number of f -electron materials. In this work, we investigate topological properties of
multipolar superconductors that may arise when quadrupolar local moments are coupled to conduction electrons
in the multiband Luttinger semimetal. We show that the multipolar ordering of local moments leads to various
multipolar superconductors with distinct topological properties. We apply these results to the quadrupolar Kondo
semimetal system, PrBi, by deriving the microscopic multipolar Kondo model and examining the possible
superconducting order parameters.
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I. INTRODUCTION

One of the foremost themes in contemporary condensed-
matter physics is the realization of topological superconduc-
tivity, where Bogoliubov–de Gennes (BdG) quasiparticles are
characterized by nontrivial topology [1–4]. Among the nu-
merous proposals to realize the topological superconductors
[5–11], a prominent route is to utilize multiband or mul-
tiorbital superconductivity [12–35], where the Cooper pairs
possess nonzero angular momentum through the interband
pairing channels. A representative example is the supercon-
ductivity in pseudospin j = 3/2 Luttinger semimetals [36,37]
with low-energy excitations described by quadratic band
touching.

The multiband nature of the Luttinger semimetals has
motivated intensive research on the possible unconventional
superconductors supporting the Cooper pairs with higher
pseudospin angular momentum j [12–24]. In particular, it has
been shown that the electron-electron interaction favors the
d-wave pairing channels in the j = 2 manifold over the s
wave in the j = 0 state [19]. Such unconventional super-
conductors possess a number of striking features, including
the emergent topological boundary states and the Bogoliubov
Fermi surfaces with nontrivial Chern numbers [13–15,38].
All these interesting properties arise uniquely in multiband
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systems and result from the interplay between spin-orbit cou-
pling and interband pairing channels [13,22]. Among various
candidate materials, half-Heusler compounds such as YPtBi,
LuPdBi, and LaBiP belong to such multiband superconduc-
tors [39–41]. These half-Heusler compounds have negligible
anisotropies of the Fermi surface near the quadratic band-
touching point [42,43]. Therefore, the Luttinger model with
SO(3) and cubic symmetries have been employed to explain
the superconductivity in these materials [12,17,19,23].

On the other hand, unlike the half-Heuslers addressed
above, other series of half-Heuslers like TbPdBi and HoPdBi
exhibit unconventional superconductivity coexisting with
magnetic ordering from the rare-earth ions Tb and Ho [44,45].
These materials are extremely interesting platforms for the
study of the interplay between the magnetic degrees of free-
dom and unconventional superconductivity in multiorbital
systems. Furthermore, the pyrochlore oxide Cd2Re2O7 and
Pr-based intermetallic compounds Pr(T )2X20 (T =Ti, V, Rh,
Ir and X=Al, Zn) were recently found to show the coex-
istence of multipolar order and superconductivity [46–57].
Another semimetallic system, PrBi, is known to have both
the quadrupolar degrees of freedom coming from Pr ions and
the j = 3/2 Luttinger semimetal. Recent experiments on this
material have confirmed the existence of ferroquadrupolar
order originating from the localized moments of Pr ions,
which may indicate the importance of the quadrupolar Kondo
effect [58]. Such a situation is analogous to ferromagnetic
superconductors, where the presence of magnetism can sig-
nificantly alter the nature of the superconducting state. Hence,
it is conceivable that the presence of multipolar order could
change the nature of the resulting multipolar superconductors
in some fundamental ways.
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In this paper, motivated by the intertwined physics of
multipolar order and superconductivity, we discuss how their
coexistence can give rise to multipolar superconductivity with
unique topological properties. In particular, we consider the
PrBi system as a concrete example and derive the microscopic
quadrupolar Kondo model, where the non-Kramers doublet
of the localized Pr moments and the Bi itinerant electrons
described by the Luttinger model interact with each other.
In the absence of quadrupolar order, we first discuss the
superconducting phases within the cubic-symmetric Luttinger
model. We find that time-reversal symmetry-breaking d-wave
superconductors occur in the weak-coupling limit, while the
time-reversal symmetry is restored in the strong-coupling
limit. In the presence of quadrupolar order, however, we find
that the superconducting instabilities are significantly altered
in a way that the quadrupolar order induces Fermi-surface
distortion and stabilizes the multipolar superconductivity
with mixtures of distinct d-wave pairing order parameters.
Moreover, we find that these superconducting phases harbor
topologically nontrivial gapless nodal-line or nodal-surface
excitations, the nature of which sensitively depends on the
quadrupolar order. Thus, one could change the topological
properties of the multipolar superconductors by controlling
the coexisting multipolar order. This would be a good example
of topological phases that could be controlled by multipolar
degrees of freedom. Based on our theory, we also propose
various experiments that can probe the topological nature of
the Bogoliubov quasiparticles in multipolar superconductors,
anticipating potential applications to PrBi materials with dop-
ing and external pressure.

II. LUTTINGER MODEL AND ELECTRON INTERACTION

We start by describing the kinetics of the itinerant electrons
with the Luttinger-semimetal Hamiltonian,

H0(k) = c0k2 +
5∑

i=1

cidi(k)γi − μ, (1)

in the four-component spinor basis defined as ψ ≡ (ψ3/2,

ψ1/2, ψ−1/2, ψ−3/2) and with the five 4 × 4 anticommuting
Dirac matrices γi [59]. Here, μ is the chemical potential,
di(k) represents the five real l = 2 spherical harmonics,
with d1 = √

3(k2
x − k2

y )/2, d2(k) = (3k2
z − k2)/2, d3(k) =√

3kykz, d4(k) = √
3kzkx, and d5(k) = √

3kxky. The Dirac
matrices γi are explicitly given as γ1 = σ x ⊗ I, γ2 = σ z ⊗
σ z, γ3 = σ z ⊗ σ y, γ4 = σ z ⊗ σ x, and γ5 = σ y ⊗ I, where σα

are the Pauli matrices and I is the 2 × 2 identity matrix. It
is worth noting that Eq. (1) is a complete representation of
kinetics in the Luttinger semimetal when both inversion sym-
metry and time-reversal symmetry are present. In Eq. (1), c0

quantifies the particle-hole asymmetry of the model, whereas
ci quantify the kinetic terms proportional to each of the d-
wave harmonics. When all ci are the same, the model in
Eq. (1) becomes fully spherically symmetric, retaining SO(3)
symmetry. In the case of cubic symmetry, however, we have
c1,2 �= c3,4,5 [23].

We now discuss the superconductivity emerging from this
multiband Luttinger semimetal when the electron-electron

interactions are present [19],

HI = g0(ψ†ψ )2 +
∑

a

ga(ψ†γaψ )2. (2)

Using the Fierz identity, HI can be exactly rewritten in
terms of the s-wave and d-wave pairing channels, HI = Hs +∑

a Hda , with

Hs = gs(ψ
†γ45ψ

∗)(ψT γ45ψ ),

Hda = gda (ψ†γaγ45ψ
∗)(ψT γ45γaψ ),

(3)

where gs = 1
4 (g0 + ∑

a ga), gda = 1
4 (g0 + ga − ∑

b�=a gb),
and γ45 = iγ4γ5. It is remarkable that the repulsive electron
interaction with coefficients ga > 0 can naturally induce
the d-wave pairing instabilities [19]. For simplicity, we
set coefficients ga = g1, and hence, gs = 1

4 (g0 + 5g1), and
gda = 1

4 (g0 − 3g1). In this work, we assume that the d-wave
pairing channel is attractive such that gda = −g and neglect
Hs. Within the standard mean-field decomposition, HI can be
rewritten as follows up to the constant terms:

HI = −g
∑

a

{(ψ†γaγ45ψ
∗)�a + (ψT γ45γaψ )�∗

a}, (4)

where the superconducting order parameters are explicitly
given as

�a = 〈
ψT

−kγ45γaψk
〉
. (5)

The order parameter �a, with a ∈ (1, 2, . . . , 5), represents the
d-wave quintet pairings ( j = 2). In particular, �eg ≡ (�1,�2)
represents the two d-wave pairings, (dx2−y2 , d3z2−r2 ) with eg

symmetry, and �t2g ≡ (�3,�4,�5) represents the three d-
wave pairings, (dyz, dzx, dxy) with t2g symmetry. Throughout
our study, we consider the specific parameter set, which is
relevant to PrBi, in Eq. (1) and analyze the properties of
superconducting states; c0 = −6(a/π )2 eV, ceg ≡ c1 = c2 =
−2(a/π )2 eV, and ct2g ≡ c3 = c4 = c5 = −1(a/π )2 eV, with
the lattice constant a and the chemical potential μ = −0.6 eV,
for the cubic-symmetric case [60,61]. Here and below, we
consider the case where there are two distinct doubly de-
generate Fermi surfaces for μ < 0 (normal band structure).
Although we focus on the specific parameter set, we em-
phasize that a similar argument holds for different cases,
and the emergence of complex superconducting states due to
intertwined multipolar order is a generic feature.

We first briefly discuss the superconducting phases in
the absence of coexisting quadrupolar order, with the cubic-
symmetric Luttinger model where the coefficients in Eq. (1)
are of the form |ceg| > |ct2g|. In general, the free energy for
the �eg pairing state is given as Feg = reg�eg · �∗

eg
+ q1(�eg ·

�∗
eg

)2 + q2(�1�
∗
2 − �2�

∗
1 )2+ s1(�eg · �∗

eg
)3 + s2(�eg · �∗

eg
)

|�eg · �eg|2 + s3|�2|2|3�2
1 − �2

2|2, while the free energy
for the �t2g pairing state is given as Ft2g = rt2g�t2g · �∗

t2g
+

q′
1(�t2g ·�∗

t2g
)2+ q′

2|�t2g · �t2g|2+ q′
3(|�3|2|�4|2+ |�4|2|�5|2

+ |�5|2|�3|2) [62]. Within one-loop calculation, the
instability towards the �eg pairing is shown to be stronger
than the �t2g pairing with |ceg| > |ct2g|, i.e., reg < rt2g (see
Appendix A 1 for details). For the �eg pairing, there
are three possible superconducting states with the order
parameters �eg = (1, 0), (0, 1), and (1, i). By comparing the
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FIG. 1. Multipolar superconducting phases as functions of
J̃K 〈O20〉 [(a/π )2 eV] and the interaction strength g (a3 eV) with
c0 = −6(a/π )2 eV, ceg = c1 = c2 = −2(a/π )2 eV, cη = c3 = c4 =
(−1 − J̃K 〈O20〉)(a/π )2 eV, c5 = −1(a/π )2 eV, and μ = −0.6 eV
based on Eqs. (1) and (7). We find four distinct superconduct-
ing states: the time-reversal symmetry-breaking state with dx2−y2 +
id3z2−r2 pairing (purple line) and dyz + idzx pairing (green) and the
time-reversal symmetric state with d3z2−r2 pairing (blue) and dyz +
dzx pairing (brown). Four insets show the gap structure of these states.
Note that the 〈O20〉 = 0 thick vertical line corresponds to the case
with the cubic symmetry in the absence of quadrupolar order. Here,
each semitransparent yellow surface represents the normal-state
Fermi surface. For a multipolar superconductor with time-reversal
symmetry breaking, the Bogoliubov Fermi surfaces exist. Red, green,
and blue Bogoliubov Fermi surfaces indicate distinct Chern numbers
2, 0, and −2, respectively. For the multipolar superconductor with
time-reversal symmetry, each solid (dashed) ring indicates the nodal
ring, which is protected by the nontrivial winding number 2 (−2).
See the text for more details.

mean-field energy at zero temperature, for the weak-coupling
limit, i.e., small-g limit, we find that the time-reversal
symmetry-breaking superconducting phase is chosen, which
is described by dx2−y2 + id3z2−r2 pairing or the order parameter
�eg = (1, i) (see Appendix B for details). In this phase, the
Bogoliubov quasiparticles form 16 distinct pockets, as shown
in the bottom left inset of Fig. 1. Furthermore, we find
that each pocket colored red (blue) is characterized by the
nontrivial Chern number 2 (−2), classified by the 2Z Chern
number corresponding to class D in the Altland-Zirnbauer
classification with additional inversion symmetry [63].

With increasing interaction strength g, we observe the
superconducting phase transition occurs from the dx2−y2 +
id3z2−r2 pairing state to the time-reversal-symmetric d3z2−r2

pairing state. This phase transition can be understood as the ef-
fect of band flattening near the quadratic band-touching point.
More precisely, the electron interaction starts to dominate over
the kinetic energy at large g, and the system behaves similarly
to the case with small μ due to the band flattening near
k = 0, which favors the d3z2−r2 pairing state [19]. In Fig. 1,
the purple vertical thick line at the bottom left corresponds
to dx2−y2 + id3z2−r2 pairing, and there is a phase transition to
d3z2−r2 beyond that, as the interaction strength g increases, in
the case with the cubic symmetry. The BdG energy spectrum
of this phase possesses gapless nodal rings, as shown in
the top left inset of Fig. 1. In this time-reversal-symmetric
superconductor, the solid (dashed) nodal line is protected by

the nontrivial winding number 2 (−2), which belongs to the
2Z classification of the DIII class [63].

III. MULTIPOLAR KONDO COUPLING

When multipolar degrees of freedom are present in the
system, one should consider an effective Kondo coupling
between the localized multipolar moments and itinerant elec-
trons. In this section, we consider the microscopic model
focusing on PrBi and derive the multipolar Kondo coupling
between the eg-type quadrupolar moments in Pr3+ and the
strongly spin-orbit coupled electrons of Bi 6p orbitals. The eg-
type quadrupolar degrees of freedom in the cubic-symmetric
model are represented in terms of the Stevens operators O22 =√

3
2 (J2

x − J2
y ) and O20 = 1

2 (3J2
z − J2), with Jμ being the μth

component of total angular momentum [64,65]. Regarding
PrBi, we consider the interpenetrating fcc lattice system,
where the quadrupolar degrees of freedom O22 and O20 of the
localized electrons reside in one fcc lattice and the itinerant
electrons with p orbitals reside in another fcc lattice (for
details, see Fig. 8). Then, one can write down the effective
Kondo coupling between the quadrupolar order parameters
O22 and O20 and the itinerant p electrons as follows:

HK = JK

∑
〈i, j〉

∑
a,α

(
O22	

a
1,i jc

†
iaαc jaα + O20	

a
2,i jc

†
iaαc jaα

)
. (6)

Here, c†
iaα and ciaα are the electron creation and annihilation

operators at site i with orbital a ∈ (x, y, z) and spin α ∈
(↑,↓). 	a

1,i j and 	a
2,i j are site- and orbital-dependent form

factors for the Kondo coupling with quadrupoles O22 and
O20, respectively (see Appendix C for details). We note that
the quadrupolar degrees of freedom, which are time reversal
symmetric, can couple to only the spin-independent electron
hoppings with the form factors that transform exactly the same
as O22 and O20. Now we take into account the j = 3/2 basis
in the presence of the spin-orbit coupling of p electrons and
project Eq. (6) onto the j = 3/2 basis with the projection
operator Pj=3/2 [66]. Then one gets the following Kondo
coupling:

H̃K (k) = Pj=3/2HK (k)Pj=3/2

= J̃K [(
√

3O20 + O22)d3(k)γ3

+ (
√

3O20 − O22)d4(k)γ4 − 2O22d5(k)γ5] (7)

in the four-component spinor basis ψ with J̃K ≡ JK ( a
π

)2. In
Eq. (7), one can clearly see that O20-type ferroquadrupo-
lar ordering breaks the threefold rotation symmetry, while
O22-type ferroquadrupolar ordering breaks both the threefold
and fourfold rotation symmetries. Recent experiment on the
PrBi compound confirmed O20-type ferroquadrupolar order
〈O20〉 �= 0, which has also been discussed within the Landau
theory analysis on symmetry grounds [58,67,68]. Thus, we
focus on the case when O20-type ferroquadrupolar order is
present, 〈O20〉 �= 0 and 〈O22〉 = 0.
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IV. FERROQUADRUPOLAR ORDER AND
SUPERCONDUCTIVITY

When 〈O20〉 �= 0, the symmetry of the system is lowered
to D4h from the Oh group [69,70]. One can easily see from
both Eqs. (1) and (7) that ferroquadrupolar order gives rise
to anisotropies in coefficients, c3 = c4 �= c5, and results in
Fermi-surface distortion. In this case, the coefficient cη ≡
c3 = c4 is renormalized in Eq. (1), and the spontaneous Fermi-
surface distortion occurs via the effective Kondo coupling
shown in Eq. (7). In particular, when the quadrupolar order in-
duces the Fermi-surface distortion, we find that the properties
of the d-wave superconductivity are dramatically changed.
In Fig. 1, we plot the phase diagram within the mean-field
approximation as a function of J̃K 〈O20〉 and the interaction
strength g at zero temperature. With the onset of O20-type
ferroquadrupolar order, the instability towards the �2 pairing
is shown to be stronger than the �1 pairing, which is consis-
tent with the result of the one-loop calculation (see Appendix
A 1 for details). Thus, the system prefers the d3z2−r2 pairing
with �eg = (0, 1) in both weak- and strong-coupling limits.
With a further increase of J̃K 〈O20〉, however, the instability
towards the �η ≡ (�3,�4) pairing becomes stronger than
the �2 pairing. In general, the free energy for the �η pair-
ing state is represented as Fη = rη�η · �∗

η + q1(�η · �∗
η )2 +

q2|�η · �η|2 + q3(|�3|4 + |�4|4) [71]. Once the instability of
the �η pairing gets stronger than the �2 pairing, the phase
transition to the �η pairing occurs (see Appendix A 1 for
details). For the weak-coupling limit, the system develops
time-reversal symmetry- breaking superconductivity with the
dyz + idzx pairing and the order parameters �η = (1, i) (see
Appendix B for details). This result is distinct from the cubic
case, where the dx2−y2 + id3z2−r2 pairing with �eg = (1, i) is
chosen. As shown in the bottom right inset of Fig. 1, the
Bogoliubov quasiparticles form four Fermi surfaces along
the kz axis with Chern numbers ±2 and two Fermi surfaces
located at kz = 0 with the Chern number 0. With increasing g,
the phase transition occurs, favoring distinct superconducting
phase with the dyz + dzx pairing described by the order param-
eter �η = (1, 1). In this case, the time-reversal symmetry is
recovered, and the Bogoliubov quasiparticles form four nodal
rings with the winding numbers ±2, as shown in the top right
inset of Fig. 1.

V. DISCUSSION

We have studied exotic multipolar superconductors and
their topological properties, which arise from the intertwined
multipolar order and electron correlations in the Luttinger
semimetal. Based on the derivation of microscopic modeling
of Kondo coupling between quadrupolar moments and con-
duction electrons, we found that the onset of ferroquadrupo-
lar order affects the Fermi-surface distortion, and thereby
multipolar superconductors occur in preferred d-wave super-
conducting order parameters. We emphasize that such phe-
nomena are quite unique in the interacting Luttinger semimet-
als with relatively small carrier densities, where the effective
Kondo coupling with the quadrupolar degrees of freedom can
sensitively control the nature of the superconducting order
parameters and the associated topological properties.

Recent experiments on the semimetallic compound PrBi
have confirmed the existence of O20-type ferroquadrupolar
order below the transition temperature TQ = 0.08 K [58].
In this material, the localized moments of Pr3+ ions form
a 	3 non-Kramers doublet via strong spin-orbit coupling,
which allows only higher multipolar moments but no dipole
moment. However, the itinerant electrons of Bi 6p orbitals
form a strongly correlated Luttinger semimetal with small
carrier density [58,60]. Since the system has a tiny carrier
density, one may expect to control electron correlation via
doping and external pressure, resulting in superconductivity
driven by the interplay between the quadrupolar Kondo effect
and the electron interaction. In such cases, as shown in Fig. 1,
the multipolar superconductivity with distinct d-wave pairing
order parameters is stabilized, and depending on the presence
and absence of ferroquadrupolar order, the topological nature
of the Bogoliubov quasiparticles may be sensitively changed.
This can be verified by probing surface states such as Fermi
arcs or drumheadlike surface states [21]. For time-reversal
symmetry-breaking phases, the gapless quasiparticle excita-
tion near the Bogoliubov Fermi surface would result in a finite
residual specific heat and thermal conductivity at zero temper-
ature resembling that of a normal metal [72–74]. Moreover,
it was recently shown that the theoretical specific-heat calcu-
lation agrees well with the experiment on FeSe1−xSx, which
implies the presence of the Bogoliubov Fermi surface near
the nematic quantum critical point [72]. Further experimental
signatures to detect the existence of the Bogoliubov Fermi
surface are summarized in Ref. [73].

With growing interest in multipolar order, often termed
“hidden order,” it is now known that there exist many systems
where both multipolar order and superconductivity may coex-
ist. For instance, beyond the quadrupolar Kondo semimetal
PrBi, materials like rare-earth half-Heusler compounds, Pr-
based cage compounds Pr(Ti,V,Ir)2(Al,Zn)20, and lacunar
spinel compounds Ga(Ta,Nb)4(S,Se)8 contain spin-orbit en-
tangled pseudospin degrees of freedom and sometimes exhibit
(anti) ferroquadrupolar order in addition to superconductivity.
In such cases, the multipolar Kondo coupling and strongly
interacting multiorbital electrons play an important role in
determining the characteristics of superconductivity. Our re-
sults can be used to understand how these two phenomena
can be intertwined with each other and how the topological
properties of multipolar superconductors could be controlled
via the multipolar order. Our work provides an important
platform for the discovery of multipolar topological super-
conductors that can be controlled by electron correlation or
quadrupolar ordering.
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APPENDIX A: GINZBURG-LANDAU FREE ENERGY
AND ONE-LOOP EXPANSION

1. Quadratic coefficients

In this section, we compute the coefficient of the quadratic
term ra in the Ginzburg-Landau free energy F (�a) to com-
pare the strength of instabilities towards �a pairing. We first
introduce the free-electron propagator

G(K ) =
[

ik0 + c0k2 +
∑

i

cidi(k)γi − μ

]−1

= −ik0 − c0k2 + ∑
i cidi(k)γi + μ∑

i (cidi(k))2 − (c0k2 + ik0 − μ)2
. (A1)

Here K ≡ (k0, k), and k0 = 2π (n + 1/2)T denotes the Mat-
subara frequency. Then, the free energy is written as

F ( 
�) = 1

g
| 
�|2 + T

∑
m,n

∫ 


k

1

m
tr[−G(K )�̂G(−K )T �̂†]m,

(A2)

where �̂ = ∑
a γaγ45�a.

Let F2(�a) be the contribution to the free energy that
contains the second power of �a. We have

F2(�a) = 1

g
|�a|2 − 1

2
La�

∗
a�a, (A3)

FIG. 2. Diagrammatic representation of La. Each solid arrow
refers to the free-electron propagator G(K ), with K = (k0, k), while
each wiggly line indicates the insertion of �a with vertex γa.

with

La = T
∑

k0

∫ 


k
tr[G(K )γaG(−K )γa],

which is represented as the Feynman diagram shown in Fig. 2.
In this expression, we use the relation γ45G(K )Tγ45 = G(K ).

Meanwhile, we can parametrize the terms in the free
energy accordingly:

F2(�a) = ra|�a|2.
Choosing the specific configurations,

�1
eg

= (1, 0), �2
eg

= (0, 1), �1
t2g

= (1, 0, 0), �2
t2g

= (0, 1, 0), �3
t2g

= (0, 0, 1), (A4)

we apply Eq. (A3) and

F2
(
�1

eg

) = r1, F2
(
�2

eg

) = r2,

F2
(
�1

t2g

) = r3, F2
(
�2

t2g

) = r4, F2
(
�3

t2g

) = r5 (A5)

to get the coefficients ra. Then we can write the coeffi-
cients as follows with k̂0 = k0/T = 2π (n + 1/2), ĉi = ci/T ,
and μ̂ = μ/T :

ra = 1

g
+ T 1/2

∫
k

∑
n

2
{ ∑

i[ĉidi(k)]2 − 2[ĉada(k)]2 − (ĉ0k2 − μ̂)2 − k̂2
0

}
{∑

i[ĉidi(k)]2 − (ĉ0k2 − μ̂ + ik̂0)2
}{ ∑

i[ĉidi(k)]2 − (ĉ0k2 − μ̂ − ik̂0)2
} . (A6)

Remarkably, ra − rb can be simply expressed as follows:

ra − rb = T 1/2
∫

k

∑
n

−4[ĉada(k)]2 + 4[ĉbdb(k)]2

{∑i[ĉidi(k)]2 − (ĉ0k2 − μ̂ + ik̂0)2}{∑i[ĉidi(k)]2 − (ĉ0k2 − μ̂ − ik̂0)2} . (A7)

In Fig. 3, we plot the evolution of coefficients
r̃a ≡ ra/T 1/2 − 1/g as a function of Ô20 ≡ ĉ5 − ĉη, with
ĉ0 = −2000(a/π )2, ĉeg ≡ ĉ1 = ĉ2 = −2000/3(a/π )2, ĉη ≡
ĉ3 = ĉ4 = (−1000/3 − Ô20)(a/π )2, ĉ5 = −1000/3(a/π )2,
and μ̂ = −200 as appropriate for PrBi. First, Fig. 3 clearly
shows that the instability towards �eg pairing is stronger
than �t2g pairing, i.e., r̃eg ≡ r̃1 = r̃2 < r̃t2g ≡ r̃3 = r̃4 = r̃5,
with Ô20 = 0 for cubic symmetry as stated in the main text.
Moreover, Fig. 3 also shows that the instability towards �2

pairing becomes stronger than �1 pairing, i.e., r̃2 < r̃1, as
soon as O20-type ferroquadrupolar order becomes finite,
Ô20 �= 0. Finally, it tells us that the instability towards �η

pairing becomes stronger than �2 pairing, r̃η ≡ r̃3 = r̃4 < r̃2,
for Ô20 > ĉ5 − ĉeg = 1000/3(a/π )2.

2. Quartic coefficients

In this section, we compute the coefficient of the quartic
terms qa in the Ginzburg-Landau free energy Fη. Let F4,η(�η )
be the contribution to the free energy which contains the
fourth power of �3 and �4. We have

F4,η(�η ) = 1

4

∑
a,b,c,d

La,b,c,d�a�
∗
b�c�

∗
d , (A8)

with

La,b,c,d = T
∑

k0

∫ 


k
tr[G(K )γaG(−K )γcG(K )γaG(−K )γd ].
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FIG. 3. Plot of coefficients r̃a ≡ ra/T 1/2 − 1/g as a function
of Ô20 [(a/π )2] with ĉ0 = −2000(a/π )2, ĉeg ≡ ĉ1 = ĉ2 =
−2000/3(a/π )2, ĉη ≡ ĉ3 = ĉ4 = (−1000/3 − Ô20 )(a/π )2,
ĉ5 = −1000/3(a/π )2, and μ̂ = −200. These numbers are relevant
to PrBi [60,61].

On the other hand, we can parametrize F4,η(�η )
accordingly:

F4,η(�η ) = q1(�η�
∗
η )2 + q2|�η�η|2 + q3(|�3|4 + |�4|4).

Choosing the specific configurations

�1
η = (1, 0), �2

η = 1√
2

(1, 1), �3
η = 1√

2
(1, i), (A9)

we apply Eq. (A9) and

F4,η

(
�1

η

) = q1 + q2 + q3, F4,η

(
�2

η

)
= q1 + q2 + q3

2
, F4,η

(
�3

η

) = q1 + q3

2
(A10)

to get the coefficients qa. By introducing D̂i ≡ ĉidi(k), we can
write the coefficients as follows when ĉ0 = 0 and μ̂ = 0:

qa = 1

T 3/2

∫
k

∑
n

p̂a[ ∑
i D̂2

i + k̂2
0

]2 , (A11)

where

p̂1 = 2
[
2
( − D̂2

3 + 2D̂4D̂3 + D̂2
4 − 3D̂2

5

)
k̂2

0 + D̂4
1 + D̂4

2 − D̂4
3 − D̂4

4 + D̂4
5 + 6D̂2

3D̂2
4 + 2D̂2

3D̂2
5 − 2D̂2

4D̂2
5 − 4D̂3D̂4D̂2

5

+ 2D̂2
2

(
D̂2

3 − 2D̂4D̂3 − D̂2
4 + D̂2

5 − 3k̂2
0

) + 2D̂2
1

(
D̂2

2 + D̂2
3 − D̂2

4 + D̂2
5 − 2D̂3D̂4 − 3k̂2

0

) + k̂4
0

]
,

p̂2 = −2
(
D̂2

3 − 4D̂4D̂3 + D̂2
4 − 3D̂2

5

)
k̂2

0 − D̂4
1 − D̂4

2 − D̂4
3 − D̂4

4 − D̂4
5 + 6D̂2

3D̂2
4 − 2D̂2

3D̂2
5 − 2D̂2

4D̂2
5 − 8D̂3D̂4D̂2

5

− 2D̂2
2

(
D̂2

3 + 4D̂4D̂3 + D̂2
4 + D̂2

5 − 3k̂2
0

) − 2D̂2
1

(
D̂2

2 + D̂2
3 + D̂2

4 + D̂2
5 + 4D̂3D̂4 − 3k̂2

0

) − k̂4
0,

p̂3 = 4
(
D̂2

3 − 2D̂4D̂3 − D̂2
4

)( − 2D̂2
1 − 2D̂2

2 + D̂2
3 − D̂2

4 − 2D̂2
5 + 2D̂3D̂4 + 2k̂2

0

)
.

Using the above equations, we plot the coefficients
as a function of Ô20 with ĉeg = −2000/3(a/π )2, ĉη =
(−1000/3 − Ô20)(a/π )2, and ĉ5 = −1000/3(a/π )2 in Fig. 4.
First, the result indicates that the free energy is stable
(q1T 3/2 > 0). Moreover, the negative sign of q2 and q3 clearly
shows that the system stabilizes dyz pairing when ĉ0 = 0 and
μ̂ = 0.

FIG. 4. Plot of coefficients q̃i ≡ qiT 3/2 as a function of
Ô20 [(a/π )2] with ĉeg = −2000/3(a/π )2, ĉη = (−1000/3 −
Ô20 )(a/π )2, and ĉ5 = −1000/3(a/π )2.

3. Ginzburg-Landau free energy near the phase boundary

In this section, we derive the Ginzburg-Landau free energy
near the phase boundary where the instabilities towards the
�2 and �η pairing are comparable (i.e., r2 ∼ rη) and analyze
it to describe the phase transition. Near the phase boundary,
the free energy in point group D4h is given by

FD4h = r2|�2|2 + rη�η�
∗
η + p|�2|4 + q1(�η�

∗
η )2

+ q2|�η�η|2 + q3(|�3|4 + |�4|4)

+ m1[(�η�η )(�∗
2 )2 + c.c.] + m2(�η�

∗
η )|�2|2.

(A12)

Depending on the coefficients, the free energy of Eq. (A12)
can stabilize five mixed states, which can be represented
accordingly:

�1
D4h

= (�2, η, 0),�2
D4h

= (i�2, η, 0),

�3
D4h

=
(

�2,
η√
2
,

η√
2

)
, �4

D4h
=

(
i�2,

η√
2
,

η√
2

)
,

�5
D4h

=
(

�2,
η√
2
, i

η√
2

)
, (A13)

where �D4h ≡ (�2,�3,�4) and �2 and η are assumed to
be real numbers without loss of generality. After inserting
Eq. (A13) into Eq. (A12), one gets the simplified free energy,
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FIG. 5. Evolution of M2
a /p Qa as a function of Ô20 [(a/π )2] with

ĉ0 = 0, ĉeg = −2000/3(a/π )2, ĉη = (−1000/3 − Ô20 )(a/π )2, ĉ5 =
−1000/3(a/π )2, and μ̂ = 0.

which is given by

FD4h = r2�
2
2 + rηη

2 + p�4
2 + Qa(q1, q2, q3)η4

+ Ma(m1, m2)�2η2, (A14)

with

(Q1, M1) = (q1 + q2 + q3, 2m1 + m2),

(Q2, M2) = (q1 + q2 + q3,−2m1 + m2),

(Q3, M3) =
(

q1 + q2 + q3

2
, 2m1 + m2

)
, (A15)

(Q4, M4) =
(

q1 + q2 + q3

2
,−2m1 + m2

)
,

(Q5, M5) =
(

q1 + q3

2
, m2

)
.

If [Ma(m1, m2)]2
> p Qa(q1, q2, q3), the phase competition

between the �2 and �η pairing states is sufficiently strong that
both states are separated by a first-order transition [75,76], and
therefore, the free energy of Eq. (A14) does not stabilize the
mixed state �a

D4h
.

Using Eq. (A8) and the free energy of Eq. (A12), one
can compute the quartic coefficients, p, q1, q2, q3, m1, and
m2, by following the procedure given in the previous section.
Figure 5 shows the evolution of M2

a/p Qa as a function of
Ô20 with ĉ0 = 0, ĉeg = −2000/3(a/π )2, ĉη = (−1000/3 −
Ô20)(a/π )2, ĉ5 = −1000/3(a/π )2, and μ̂ = 0. The plot
shows that [Ma(m1, m2)]2

> p Qa(q1, q2, q3) and the free en-
ergy of Eq. (A12) is minimized such that the pairing channel
with the smaller quadratic coefficient, r2 or rη, completely
suppresses the other, and the phase transition is of first order.

APPENDIX B: CALCULATION OF MEAN-FIELD ENERGY
AT ZERO TEMPERATURE

Here, we compare the energy of possible states by solving
the self-consistent gap equations numerically. By doing that,
we achieve the zero-temperature mean-field phase diagram,
which is given in the main text.

FIG. 6. Evolution of mean-field energy E of dx2−y2 (solid black
line), d3z2−r2 (dashed blue line), and dx2−y2 + id3z2−r2 (dot-dashed
purple line) states as a function of the interaction strength g(a3 eV)
at zero temperature. Other specific parameters, which are used to
obtain the plot, are c0 = −6(a/π )2 eV, ceg = −2(a/π )2 eV, ct2g =
−1(a/π )2 eV, and μ = −0.6 eV. These numbers are relevant to PrBi
[60,61].

1. Cubic-symmetric Luttinger model without
quadrupolar order

In Appendix A, we found that the instability towards the
�eg pairing is stronger than the �t2g pairing when |ceg| > |ct2g|.
For the �eg pairing, there are three possible superconducting
states for the cubic-symmetric case: �eg = (1, 0), (0, 1), and
(1, i). Having classified the possible states, we compute their
mean-field energy. We start with mean-field BCS Hamiltonian
HBCS. HBCS is written as

HBCS =
∑

k

{
ψ

†
k

[
c0k2 +

5∑
i=1

cidi(k)γi − μ

]
ψk

−
5∑

i=1

(
�iψ

†
k γ45γiψ

∗
−k + �∗

i ψ
T
−kγ45γiψk

)}

+ 1

g
�i�

∗
i , (B1)

and the self-consistent gap equations are written as

�i = g
〈
ψT

−kγ45γaψk
〉
. (B2)

Then, we can compute the energy E of the three states by
taking the expectation value of HBCS with �i, which are
numerically obtained using Eq. (B2) at a given temperature.
Figure 6 shows the evolution of mean-field energy E for the
three states as a function of the interaction strength g at zero
temperature. The plot clearly shows that a phase transition
occurs from the dx2−y2 + id3z2−r2 state to the d3z2−r2 state at
g ∼ 0.167a3 eV.

2. Luttinger model with quadrupolar order

In Appendix A, we found that the instability towards the
�η pairing is stronger than the other pairings when |cη| >

|ceg| > |c5|. For the �η pairing, there are three possible super-
conducting states: �η = (1, 0), (1, 1), and (1, i). In Fig. 7, we
plot the evolution of E for the three states at zero temperature
using Eqs. (B1) and (B2).
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FIG. 7. Evolution of mean-field energy E of dyz (solid black
line), dyz + dzx (dashed brown line), and dyz + idzx (dot-dashed green
line) states as a function of the interaction strength g(a3 eV) at zero
temperature. Other specific parameters used to attain this plot are
c0 = −6(a/π )2 eV, ceg = −2(a/π )2 eV, cη = −3(a/π )2 eV, c5 =
−1(a/π )2 eV, and μ = −0.6 eV.

APPENDIX C: KONDO COUPLING
AND FERMI-SURFACE DISTORTION

In this section, we derive the effective Kondo coupling
between the quadrupolar order parameters and the itinerant
j = 3/2 electrons for the interpenetrating fcc lattice system.
We start by introducing the Kondo model where the quadrupo-
lar order parameters O22 and O20 and the itinerant t2g electrons
couple as follows:

HK = JK

∑
〈i, j〉

∑
a,α

(
O22	

a
1,i jc

†
iaαc jaα + O20	

a
2,i jc

†
iaαc jaα

)
.

(C1)

Here, c†
iaα and ciaα are the electron creation and annihilation

operators at site i with orbital a ∈ (x, y, z) and spin α ∈ (↑,↓).
We consider the case where the quadrupolar degrees of free-
dom from the localized electron reside in one fcc lattice
and the itinerant electrons with p orbitals reside in another
fcc lattice as in Fig. 8. Then one of the Kondo coupling
terms, which couples itinerant electrons in the px orbital with

FIG. 8. Position of the quadrupolar degrees of freedom and the
itinerant electrons with p orbitals in the interpenetrating fcc lattice
system. One of two quadrupole moments, O22, is colored red and
blue. The px orbital is colored green and yellow.

other itinerant electrons in the py orbital residing on nearest-
neighbor sites, can be written as

Hixy = JK

∑
α

O22
(
c†

ixyαcixα − c†
iyxαciyα + c†

i−xyαcixα

− c†
i−yxαciyα

)
, (C2)

where the site index ia represents the nearest neighbor of site i
in the a direction. Here, the minus sign for the second term
comes from O22, which transforms as O22 → −O22 under
C4z (π/2 rotation about the z axis). Using C31 rotation [2π/3
rotation along the (111) direction], we can write symmetry-
related terms as

Hiyz = JK

∑
α

(
−1

2
O22 −

√
3

2
O20

)(
c†

iyzαciyα − c†
izyαcizα

+ c†
i−yzαciyα − c†

i−zyαcizα
)
,

Hizx = JK

∑
α

(
−1

2
O22 +

√
3

2
O20

)(
c†

izxαcizα − c†
ixzαcixα

+ c†
i−zxαcizα − c†

i−xzαcixα
)
. (C3)

After Fourier transforming the Hamiltonian, HK = ∑
i(Hixy +

Hiyz + Hizx ), and expanding around k = 0, the Kondo Hamil-
tonian is written as

HK (k) = JK

( a

π

)2 ∑
k

∑
α

[
O22

(− k2
x − k2

y − kxky
)
(c†

kxαckyα

+ c†
kyαckxα ) +

(
−1

2
O22 −

√
3

2
O20

)

× (− k2
y − k2

z − kykz
)
(c†

kyαckzα + c†
kzαckyα )

+
(

−1

2
O22 +

√
3

2
O20

)(− k2
z − k2

x − kzkx
)
(c†

kzαckxα

+ c†
kxαckzα )

]
. (C4)

By projecting onto the j = 3/2 basis with the projection
operator Pj=3/2, one gets the following Kondo coupling:

H̃K (k) = Pj=3/2HK (k)Pj=3/2

= J̃K [(
√

3O20 + O22)d3(k)γ3

+ (
√

3O20 − O22)d4(k)γ4 − 2O22d5(k)γ5] (C5)

in the four-component spinor basis ψ .
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