
PHYSICAL REVIEW RESEARCH 2, 023413 (2020)

Collective modes and terahertz near-field response of superconductors
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We theoretically study the low-energy electromagnetic response of Bardeen-Cooper-Schrieffer–type super-
conductors focusing on propagating collective modes that are observable with terahertz near-field optics.
The interesting frequency and momentum range is ω < 2� and q < 1/ξ , where � is the gap and ξ is the
coherence length. We show that it is possible to observe the superfluid plasmons, amplitude (Higgs) modes,
Bardasis-Schrieffer modes, and Carlson-Goldman modes using the terahertz near-field technique, although
none of these modes couple linearly to far-field radiation. Coupling of terahertz near-field radiation to the
amplitude mode requires particle-hole symmetry breaking, while coupling to the Bardasis-Schrieffer mode
does not and is typically stronger. For parameters appropriate to layered superconductors of current interest,
the Carlson-Goldman mode appears in the near-field reflection coefficient as a weak feature in the subterahertz
frequency range. In a system of two superconducting layers with nanometer-scale separation, an acoustic phase
mode appears as the antisymmetric density fluctuation mode of the system. This mode produces well-defined
resonance peaks in the near-field terahertz response and has strong anticrossings with the Bardasis-Schrieffer
and amplitude modes, enhancing their response. In a slab consisting of many layers of quasi-two-dimensional
superconductors, realized for example in samples of high-Tc cuprate compounds, many branches of propagating
Josephson plasmon modes are found to couple to the terahertz near-field radiation.
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I. INTRODUCTION

Electromagnetic (EM) response is a fundamental prop-
erty of superconductors. The responses to static electric and
magnetic fields (infinite conductivity and the Meissner effect)
are the defining properties of the superconducting state. The
response to the time-dependent, very-long-wavelength trans-
verse fields produced by far-field radiation has been exten-
sively studied [1–5]. Superconductors are also characterized
by a diversity of subgap collective modes [6] including plas-
mons, acoustic phase modes, amplitude (Higgs) modes, the
Carlson-Goldman modes, and the Bardasis-Schrieffer modes
associated with fluctuations of subdominant order parameters,
shown schematically in Fig. 1. For superconductors of current
interest, including cuprates [5,7], iron pnictides [8], NbSe2

[9], and MgB2 [10], the gap values and the relevant collective
modes are in the terahertz range. These modes couple weakly,
if at all, to far-field transverse photons.

Recent progress in cryogenic near-field nano-optics [11]
has enabled new generations of experiments probing the re-
sponse of materials to short-wavelength (q � ω/c), primarily
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longitudinal, terahertz electric fields [12–15] radiated by a
sharp metallic tip very close to the sample. The essential new
feature of the nano-optics experiments as compared to tradi-
tional far-field optics is the excitation of charge fluctuations in
the material under study. This information is encoded in the
near-field reflection coefficient Rp(ω, q) (see Appendix B). In
this paper we calculate the nano-optics response Rp(ω, q) of
a standard s-wave Bardeen-Cooper-Schrieffer (BCS) super-
conductor, assuming a circular Fermi surface and focusing
on the contribution of collective modes. Each of the modes
we consider couples to charge fluctuations and is therefore in
principle observable in nano-optics experiments. We calculate
in detail the matrix elements coupling each mode to charge
excitations at nonzero momentum and from this the signal of
the nano-optical response.

Charge fluctuations are constrained by the continuity equa-
tion, the proper treatment of which requires a fluctuation cal-
culation consistent with the relevant Ward identities [16–19].
We employ a one-loop effective action method based on
a Hubbard-Stratonovich transformation of the fundamen-
tal interacting electron system. This methodology, which is
equivalent to a diagrammatic calculation including vertex cor-
rections [17], is an efficient way to take order-parameter and
charge fluctuations into account while respecting conservation
laws.

Figure 1 shows many of the collective modes of interest in
this paper. We now discuss their physics and coupling to light.

The phase (Anderson-Bogoliubov-Goldstone) mode
(heavy blue dashed line in Fig. 1) is the order-parameter
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FIG. 1. Schematic representation in the frequency-momentum
plane of the collective modes that may appear in the electrodynam-
ical response of a 2D superconductor. The blue area shows the low-
energy and long-wavelength region where weakly damped collective
modes may be observed. Anticrossing between the plasmon and
Higgs mode and the BaSh mode is not shown here. c is the speed of
light, vF is the Fermi velocity, and Df is the normal-state diffusion
coefficient.

phase fluctuation. It is accompanied by a superfluid density
oscillation [20] which in the presence of long-range Coulomb
interaction converts this mode into a plasmon [21]. In two
dimensions (2D), the plasmon has a ω ∼ √

q dispersion,
shown as the red solid line in Fig. 1 and discussed in Sec. IV.
The plasmons directly couple to near-field radiation. In
multilayer systems, mutual screening leads to branches of
acoustic (linearly dispersing) plasmons (not shown in Fig. 1).
These acoustic plasmons also couple to terahertz near-field
probes, see Sec. VIII.

In the presence of abundant normal carriers, as happens, for
example, close to Tc, the Coulomb potential of the superfluid
density fluctuation can be screened, and as a result, one
finds two modes: a charge-neutral gapless mode (the so-called
Carlson-Goldman (CG) mode [22]) in which the normal and
superfluid densities oscillate out of phase, and the usual
plasmon (phase mode) in which the two densities oscillate
in phase and the dispersion is controlled by the Coulomb
interaction. The CG mode is discussed in Sec. VII.

The amplitude (Higgs) mode (green line in Fig. 1) is the
gap amplitude fluctuation [23–26] which couples to the EM
linear response only when particle-hole symmetry is broken
and only at nonzero q, because electron density fluctuation is
needed to locally perturb the density of states and then the gap.
The coupling is suppressed by the small parameter �/EF , as
discussed in Sec. V. Therefore the large momentum electric
field from the near-field tip [12–14] would be the suitable
probe of this mode, and the ideal samples are bilayer and
multilayer superconductors, as we will show in the following.
The Higgs mode does couple to far-field radiation in nonequi-
librium [27] or through third-order nonlinear response, as has

been reported experimentally [28–32]; the nonlinear coupling
is, however, rather small and may not be sufficient to account
for the measured signal [33,34].

The Bardasis-Schrieffer (BaSh) mode [35–39] is a fluc-
tuation of a subdominant pairing order parameter, e.g., a
d-wave fluctuation in an s-wave superconductor. It was pro-
posed half a century ago [35] but has been very difficult
to observe, although recent reports of its signature in iron-
based superconductors [40–42] are very encouraging. The
BaSh mode frequency is slightly below the gap for weak
subdominant pairing and approaches zero as the subdominant
pairing strength approaches the dominant one.

The rest of the paper is organized as follows. In Sec. II we
present the Hubbard-Stratonovich transformation of the BCS
Hamiltonian to obtain the Ginzburg-Landau effective action
which includes the collective modes. Section III derives the
linear EM response functions and their simple forms in the
low-energy limit. With the longitudinal optical conductivity,
we analyze the properties of the collective modes in Secs. IV,
V, VI, and VII with a focus on 2D. Section VIII discusses
the acoustic plasmon mode in a superconducting double layer,
which is promising to be observed in terahertz near-field
optics. We then discuss the cluster of hyperbolic Josephson
plasmons in naturally layered superconductors in Sec. IX and
show that they are greatly affected by the nonlocal correction
to the optical conductivity and the discrete nature across the
layers. Section X is a summary and conclusion, with pointers
to the relevant equations and figures, for readers uninterested
in the details of the derivations. Appendix A contains the
definition and explicit forms of the correlation functions.
Appendix B has the derivation of the reflection coefficients.
Appendix C has the derivation of the two-fluid model.

II. THE EFFECTIVE GINZBURG-LANDAU ACTION

A. The action of fermion, gap, and electromagnetic fields

The starting point is the BCS Lagrangian of attracting
electrons coupled to an electromagnetic (EM) field:

L =
∫

dr{ψ†[∂τ + ξ (p − eA) + eφ]ψ}

−
∫

drdr′g(r, r′)ψ†(r)ψ†(r′)ψ (r′)ψ (r)

−
∫

dr
1

16π
FμνFμν, (1)

where (φ, A) = Aμ is the EM field, Fμν = ∂μAν − ∂νAμ, ψ

is the electron annihilation operator, ξ (p) = ε(p) − μ, p =
−i∇, e is the electron charge, and g > 0 is the attractive
interaction. We will be interested in relatively low-frequency
longitudinal EM fluctuations where the magnetic field can
be neglected. Thus

∫
dr 1

16π
FμνFμν → ∫

dr 1
8π

E2(r) for a
three-dimensional (3D) and → ∑

q
1

4π |q|E−qEq for a 2D plane
embedded in 3D space. In the 2D formula, Eq is the Fourier
component of the electric field on the 2D plane. Note that the
EM field A has an UV cutoff which is much smaller than
the Fermi momentum such that it mediates only the smooth
part of the Coulomb interaction between the electrons. Here,
the high-energy part of the photon has been integrated out;
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together with the phonons or other pairing modes, this results
in an effective interaction g. For simplicity, we don’t explicitly
notate the photons in what follows.

Performing the Hubbard-Stratonovich transformation of
the path integral Z = ∫

D[ψ̄, ψ]e−S in the pairing channel
gives

Z =
∫

D[A]D[ψ̄, ψ]D[�̄,�]e−S[ψ,A,�] , (2)

where the action

S =
∫

dτdr

{
ψ†G−1

A�ψ +
∑

l

1

2gl
|�l |2

}
(3)

describes coupled dynamics of the fermion field ψ , the EM
field A, and the gap �l , with l denoting the pairing angular
momentum. Note that we have neglected the detailed structure
in g that is not important to our conclusions.

The fermion propagator is

G−1
A� =

(
∂τ + eφ + ξ (p − eA)

∑
l �l fl (p)∑

l �̄l f̄l (p) ∂τ − eφ − ξ (−p − eA)

)
,

(4)

where the index l labels different pairing channels, and fl (p)
describes the momentum dependence of the pairing function
in each channel. For simplicity, we consider only spin singlet
pairing with the Nambu spinors being ψ† = (ψ†

↑, ψ↓). In
the BCS regime of two-dimensional superconductors, we can
choose fl = cos(lθk ) or sin(lθk ), and the corresponding pair-
ing interaction is gl = 1

2π

∫
dθ cos(lθ )g[2kF sin(θ/2)]. Note

that for l = 0, the 1/2π factor should be changed to 1/4π .
We assume that the l = 0 component of the interaction is the
strongest and thus the ground state has s-wave pairing, but
with only minor variations our formalism can be rewritten to
cover other cases. We successively integrate out the fermion
field to obtain the Ginzburg-Landau action for the gap and EM
field, and then the gap to obtain the action for the EM field,
which gives the information of the EM response functions.

B. Integrating out the fermions

Expanding in the EM field, the Lagrangian density is

L = ψ†G−1
� ψ + JP

μAμ + 1

2
Di jAiA j

+ O(A3) +
∑

l

1

2gl
|�l |2, (5)

where the Gorkov Green’s function for the Bogoliubov quasi-
particle is

G−1
� =

(
∂τ + ξ (p)

∑
l �l fl (p)∑

l �̄l f̄l (p) ∂τ − ξ (−p)

)
, (6)

the paramagnetic contribution to the current is

JP
μ = eψ†(σ3, −vσ0)ψ = (ρ,−jP ), (7)

and the diamagnetic “Drude” kernel is

Di j = e2ψ†σ3(∂pi p j ε)ψ . (8)

Note that we have assumed inversion symmetry of ε(p). After
integrating out the fermions, the action becomes

S(�, A) = Tr ln GA� +
∫

dτdr
∑

l

1

2gl
|�l |2, (9)

where the trace is over the frequency, momentum, and spinor
degrees of freedom of ψ .

It is convenient to split the action into mean-field and
fluctuation parts:

S(�, A) = Smean field + Sfluctuation, (10)

where in the mean-field part the trace is evaluated with space-
and time-independent order parameters, and the fluctuation
part is the difference between the mean-field action and the
full action, and will be expanded in powers of small fluctua-
tions around a homogeneous solution.

C. Mean field as the saddle point

Assuming the ground state has s-wave pairing with �

independent of momentum, the mean-field free energy is

Smean field/V = 1

2g
��̄ +

∑
ωn,k

ln
[
(iωn)2 − E2

k

]

= 1

2g
��̄ −

∑
k

[
2

β
ln(1 + e−βEk ) + Ek

]
,

(11)

where Ek =
√

ξ 2
k + |�|2 is the quasiparticle energy with gap

�. Minimization of Smean field with respect to � yields the gap
equation

1

g
� =

∑
k

�

Ek
[1 − 2 f (Ek )], (12)

where f is the Fermi distribution function. At zero tempera-
ture, the integral in Eq. (11) can be done and we obtain the
condensation energy relative to the normal state:

F = Smean field/V +
∑

k

ξk = 1

2g
��̄ +

∑
k

(ξk − Ek )

≈ 1

2g
|�|2 − 1

2
ν|�|2 ln

2ωD

|�| , (13)

where ν is the density of state at the Fermi level of the normal
state. The gap at zero temperature is thus �0 = 2ωDe− 1

gν − 1
2

for gν � 1. Without loss of generality, we pick the mean-field
gap � to be real. The coherence length is defined as ξ =
vF /�. Note that the free energy is nonanalytic at around � =
0, i.e., the expansion coefficients in small � all diverge. The
Ginzburg-Landau expansion in powers of � is only possible
at finite temperature and accurate close to Tc.

The validity of this “mean field plus fluctuation” approach
is based on the validity of the mean-field theory. In other
words, the quantum or thermal fluctuations of the order
parameters have to be small. The latter is suppressed by

the Ginzburg parameter G = �0
E0ξ d ∼ ( �0

EF
)
d−1 � 1, the small

parameter of the mean-field theory [43] where E0 = ν�2
0/4
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is the condensation energy density and d is the space di-
mension. For conventional superconductors and charge or
spin density waves, the accuracy of the mean-field approach
has been extensively verified. For larger G, fluctuation cor-
rections will change quantitative relationships (for example,
the relationship between the model velocity and the Fermi
velocity) but will not change qualitative features, including
the qualitative nature of the dispersion relation (which modes
are linear, which gapped). These effects can be accounted for
by a diagrammatic expansion in the nonlinear coupling terms
of the fluctuations. A renormalization group–based approach
could improve the accuracy of the perturbation theory. The
most important qualitative effect of fluctuations is that in small
superfluid stiffness superconductors at and below 2D, long-
wavelength fluctuations of the phase modes can be important,
leading to physics of topological vortices and the Berezinskii-
Kosterlitz-Thouless transition [44]. This is beyond the scope
of the current paper.

D. Fluctuations

The fluctuations include those of the EM field, the s-wave
gap, and the subdominant pairing order parameters. The s-
wave gap fluctuation can be separated into amplitude and
phase: � = (�0 + �(r, t ))ei2θ (r,t ). It is convenient to perform
a local gauge transformation [43]

ψ →
(

eiθ 0
0 e−iθ

)
ψ, (14)

after which Eq. (3) retains its form but with � real and the EM
field changed to the gauge-invariant ones,

eAμ → ∂μθ + eAμ = (i∂τ θ + eφ,∇θ − eA) . (15)

In the effective action, the EM field always comes together
with the phase fluctuations in the above gauge-invariant form
and therefore couples directly to the phase mode. The appear-
ance of the other modes in the EM response can be inferred
simply from their coupling to the phase mode.

The action of fluctuations �q around the mean-field gap
can be decomposed as

Sfluctuation = Sθ + S� + SBaSh + Sc + nonlinear terms, (16)

where

Sθ = 1

2

∑
q

Kμν (q)(∂μθ + eAμ)−q(∂νθ + eAν )q (17)

is the phase action,

S� = 1

2

∑
q

Ga(q)−1�−q�q (18)

is the amplitude action, and

SBaSh = 1

2

∑
q

Gl (q)−1�l (−q)�l (q) (19)

is the action for the fluctuation of the subdominant pairing
channels, i.e., the Bardasis-Schrieffer modes. Note that the
a in Ga means amplitude, and l in Gl labels the angular

momentum of the subdominant pairing channel. Finally,

Sc =
∑

q

(
Cμ(q)�−q +

∑
l

Bμ

l (q)�l (−q)

)
(∂μθ + eAμ)q

(20)

is the coupling between phase and amplitude and BaSh mode
fluctuations. Global U (1) symmetry under θ → θ + δ is man-
ifest here, since the action depends only on derivatives of the
phase. This ensures charge conservation. The kernels K , Ga,l ,
C, and B will be defined and discussed in subsequent sections.

E. Phase action

The quadratic kernel for the phase action is

Kμν (q) = 〈
T̂ JP

μ (x)JP
ν (0)

〉∣∣
q +

(
0 0
0 〈Di j〉

)

=
(

χ (0)
ρρ χ

(0)
ρj

χ
(0)
jρ χ

(0)
jj + 〈Di j〉

)
, (21)

where χ (0)
ρρ , χ

(0)
ρj , and χ

(0)
jj are the density-density, density-

current, and current-current correlation functions evaluated
at the mean-field saddle point. In the case of a quadratic
band, ε = p2/(2m), the system has Galilean invariance and
Di j = n/mδi j , where n is the total carrier density.

Low-energy limit. At zero temperature, for ω � � and
q � 1/ξ , we have χ (0)

ρρ → ν, χ
(0)
ρj ∼ ωq, and χ

(0)
jj ∼ q2, and

thus to leading order we have

Kμν (q) =
(−ν 0

0 D

)
, (22)

where ν is the normal-state density of state at the Fermi level
and D is assumed to be rotationally invariant. Therefore, the
effective low-energy Lagrangian of the phase fluctuation is
[43]

L = − 1
2ν(∂tθ + eφ)2 + 1

2 D(∇θ − eA)2 , (23)

which describes the Nambu-Goldstone mode with velocity
vg = √

n/(mν) = vF /
√

d if the EM field were not present,
also known as the Anderson-Bogoliubov mode [2,16]. Here
d is the space dimension. Due to the long-range Coulomb
interaction (coupling to EM field), the Goldstone mode does
not actually exist but is shifted to the high-frequency plasmons
through the Anderson-Higgs mechanism [21].

F. Amplitude action

The inverse propagator for amplitude fluctuation is

G−1
a (q) = 1

g
+ χσ1σ1 (q) . (24)

At zero momentum q = 0 and rotated to real frequency, it has
the analytical form

G−1
a (ω) = (

4�2
sc − ω2

)
F (ω) , (25)

where �sc = �, and

F (ω) =
∑

k

1

Ek
(
4E2

k − ω2
) = ν

4�2

2�

ω

sin−1
(

ω
2�

)
√

1 − (
ω

2�

)2
(26)
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describes the quasiparticle effects. Specifically, F diverges as
1√

2�−ω
as the frequency approaches 2� and has an imaginary

part above 2� due to quasiparticle excitations, leading to
power-law decay in time of the amplitude mode [23]. Thus
G−1

a does not have a simple pole at ω = 2�, and the Higgs
amplitude mode is not well defined in the weak-coupling BCS
approximation [23,26], although it might lead to a clearly
observable feature in nonlinear optics [27–32].

Nevertheless, beyond weak coupling or in systems with
additional physics, the behavior may be different. For ex-
ample, in systems with superconductivity coexisting with a
charge density wave (CDW), the quasiparticle absorption gap
� =

√
�2

sc + �2
cdw is larger than the Higgs frequency 2�sc

and the amplitude mode becomes a well-defined collective
mode [25]. In this case, F is well behaved around the Higgs
pole and we can approximate the propagator by

G−1
a (ω) = ν

4�2

(
4�2

sc + 1

d
v2

F q2 − ω2

)
, (27)

where d is the space dimension and the O(q2) expansion can
be found in Appendix A 1. Thus the Higgs mode frequency
disperses roughly as ω2

hq = 4�2
sc + 1

d v2
F q2, as in Ref. [24].

Moreover, coupling between the Higgs mode and a higher
frequency CDW phonon may further lower the Higgs mode
frequency [24] and enhance its Raman matrix element, as has
been proposed for 2H-NbSe2 [9,45].

G. Bardasis-Schrieffer mode action

The inverse propagators for the fluctuations of the higher-
angular-momentum pairing channels are

G−1
l (q) = 1

gl
+ χ fl (k)σ2, fl (k)σ2 (q), (28)

where the correlator is defined in Appendix A 2. Note that
there are two directions for the fluctuations of the subdomi-
nant order parameters in the complex plane: perpendicular to
the mean-field gap (in the “imaginary” direction) and parallel
to it (in the “real” direction). The BaSh modes [35,37,38]
are the “imaginary” fluctuations, i.e., in the σ2 channel. This
channel has nonzero matrix elements to quasiparticles at the
gap edge, thus rendering χσ2,σ2 (ω) divergent as the frequency
approaches the gap 2� from below. As a result, the BaSh
modes all have energies below 2�. The “real” modes, the
fluctuations in the σ1 channel, do not have poles and are not
well-defined collective modes, as shown in Appendix A 2.

In this paper we focus on the d-wave BaSh mode in an
s-wave superconductor. In two dimensions, there are two
d-wave BaSh modes corresponding to dx2−y2 and dxy. We
consider here the dx2−y2 mode; considerations for the dxy mode
are similar. Taking the momentum to be along x, one finds that
to leading order in momentum the inverse propagator of the
dx2−y2 mode is

G−1
BaSh(ω, q) = 1

gd
+ χcos(2θk )σ2,cos(2θk )σ2 (ω, q)

= 1

gd
− 1

2g
− 1

2
ω2F (ω) + 1

16

ν

�2
v2

F q2 . (29)

For gd ∈ (0, 2g), at zero momentum it has a pole below 2�

which gives the mode frequency

ωBaSh = 2�

⎧⎨
⎩

1 − π2

32 (νgd )2 (gd � 2g)√
2

gd ν
− 1

gν (gd → 2g)
(30)

in the weak and strong BaSh fluctuation limits. As gd changes
from 0 to 2g, ωBaSh goes from 2� to 0. For gd > 2g, the
ground state is no longer an s-wave one [36]. At finite mo-
mentum, the mode frequency shifts up as q2, as shown in
Appendix A 2.

H. Coupling terms

In this section we present the coupling matrix elements
between light and the Higgs mode/BaSh mode, a main result
of this paper. In the present formalism, the exact form of the
coupling between phase and amplitude is

Cμ(q) = (
χ

(0)
ρ�, χ

(0)
j�

) = (
χ (0)

σ3σ1
, χ (0)

vσ0, σ1

)
. (31)

The phase θ and BaSh mode �l are odd under either time
reversal or particle-hole interchange because they are fluc-
tuations in the “imaginary” direction on the complex plane;
the amplitude fluctuation � is, however, even under these
operations. Therefore, linear coupling between phase and
amplitude fluctuations breaks particle-hole symmetry, while
linear coupling between phase and Bash modes does not.

Taking the requirements of time-reversal and inversion
symmetry into account, we find that the coupling coefficient
can be expanded as

Cμ(q) = [C0 + O(q2), Ciωq + O(q3)] , (32)

where C0,Ci = 0 in a particle-hole symmetric situation.
To study the linear EM response for q � 1/ξ , it is suffi-

cient to keep the leading terms. The simplest way to break
the particle-hole symmetry is to use an energy-dependent
electronic density of state (DOS), e.g., as in the parabolic
band electron gas in three dimensions. Assuming the DOS
is g(ξ ) = ν(1 + λξ/EF ) (note that ξ = ε − μ should not be
confused with the coherence length), we obtain from χ (0)

σ3σ1
that

C0 ≈ − λν
�

2EF
sinh−1

(ωD

�

)
(33)

and from χ
(0)
j� that

Ci = 1

12d
λν

�

EF

(vF

�

)2
. (34)

See Appendix A 3 for a detailed derivation. The factor λ�/EF

characterizes the strength of particle-hole symmetry breaking
and is small in known superconductors.

In two dimensions, from inversion, time-reversal symme-
try, and that the BaSh fluctuation is π/2 out of phase relative
to the static s-wave order parameter, the linear coupling
coefficient between the phase and the dx2−y2 BaSh mode can
be written as

Bμ = (B0ωq2, Biqx, −Biqy) =
(
χ

(0)
σ3, σ2 fl (p), χ

(0)
vσ0, σ2 fl (p)

)
,

(35)
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where Bi = iπ�v2
F F (ω) describes coupling between the elec-

tric field and the BaSh mode, see Appendix A 3. Since the
angular momentum change is δl = 2 in exciting an s bound
state to a d state, an inhomogeneous electric field is required
to overcome the selection rule and thus the Bi terms exist only
at finite momentum. It will be shown that in the optical con-
ductivity, at leading [O(q2)] order the B0 term does not con-
tribute. Note that coupling to the BaSh mode does not require
breaking particle-hole symmetry and is not suppressed by the
typically small parameter �/EF . Thus, in general, the BaSh
mode couples to EM more strongly than the Higgs mode.

III. ELECTRODYNAMICS OF SUPERCONDUCTORS

A. Linear electromagnetic response

To obtain the linear EM response functions, one simply
needs to obtain the fluctuation action quadratic in the EM
fields. Integrating out the amplitude and BaSh modes results
in

S = 1

2

∑
q

Kμν (q)(∂μθ + eAμ)−q(∂νθ + eAν )q, (36)

with the kernel modified to

Kμν (q) =
(

χ (0)
ρρ χ

(0)
ρj

χ
(0)
jρ χ

(0)
jj + 〈Di j〉

)
− Ga(q)Cμ(q)Cν (q)

− GBaSh(q)Bμ(q)Bν (q) . (37)

For the longitudinal EM response, it is inappropriate to di-
rectly employ the “free” optical conductivity χ

(0)
jj + 〈Di j〉 or

the density response χ (0)
ρρ obtained from the BCS mean-field

Hamiltonian, because the static mean-field approximation
breaks global U (1) gauge invariance and thus does not satisfy
charge conservation: Kμνqν �= 0. The reason is that longitu-
dinal EM fields excite order-parameter phase fluctuations that
are not captured by Bogoliubov quasiparticles.

The solution is to take into account the phase fluctuations
[2,16,46,47], which ensures charge conservation since the
Euler-Lagrangian equation from Eq. (36) is just the continuity
equation. By integrating out the phase (or equivalently, by
solving the Euler-Lagrangian equation for the phase), one
finally obtains the EM action

S = 1

2

∑
q

�μν (q)Aμ(−q)Aμ(q), (38)

where

�μν (q) = Kμν (q) − qαqβKανKμβ

qaqbKab
(39)

is the EM response tensor satisfying Jμ = �μνAν and the
continuity equation �μνqν = 0. Specifically, �00 = χρρ is
the irreducible (with respect to the Coulomb interaction)
density-density response (polarization function) and i

ω
�i j =

σi j is the optical conductivity. This formalism is equivalent to
correcting the current vertex by electron-electron interactions
after which gauge invariance [2] and thus Ward identity [17]
are recovered. The diagrammatic representation of Eq. (39) is
shown in Fig. 2. Equation (39) contains all the information of
linear coupling between the EM field and the collective modes
and will be frequently used in the following.

FIG. 2. Diagrammatic representation of the EM linear response
kernel �, i.e., self-energy of photon. The first line is the photon
self-energy using the language of interacting electrons. The solid
lines are electron Green’s functions within the BCS approximation.
The corresponding vertex correction should be included to restore the
Ward identity [17]. The second line is the same thing but expressed in
the language of coupling photons and order-parameter fluctuations,
as described by the Ginzburg-Landau action in Eq. (10). The first
term is the bare current correlation K , and the second term is the
fluctuation contribution which corresponds to the vertex correction.

Note that within the clean limit, the optical conductivity
from Eq. (39) has vanishing real parts above the gap due to
momentum conservation, which means light does not break
cooper pairs without the assistance of impurities or phonons.
To account for optical absorption above the gap, it is therefore
necessary to introduce the effect of disorder. The Mattis-
Bardeen [1,48] theory for optical absorption completely re-
laxes momentum conservation in the quasiparticle excitation
process and has proven accurate in various BCS-type su-
perconductors. In this paper, we employ the Mattis-Bardeen
formula to describe the optical conductivity above the gap:

σ1(ω > 2�) = σn(ω)�

(
ω

2�
− 1

)[(
1+2�

ω

)
E

(
ω−2�

ω + 2�

)

− 4�

ω
K

(
ω − 2�

ω + 2�

)]
, (40)

where σn is the normal-state conductivity, and E (x), K (x) are
the complete elliptic integrals.

B. The low-energy limit

At low temperature compared to Tc, in the low-energy limit
ω � � and q � 1/ξ , as shown in the blue region of Fig. 1,
the electrodynamics can be described by the Lagrangian
Eq. (23), which leads to the longitudinal optical conductivity:

σs = i
Ds/π

ω − v2
gq2/ω

, Ds = πnse
2/m . (41)

Here ns is the superfluid density, and ns/m is the superfluid
stiffness which in 3D is related to the magnetic penetration

depth as λB =
√

c2

4π
m

nse2 . This form closely resembles that of
a hydrodynamic electron fluid [49–51], except that damping
is completely suppressed here by the gap. Equation (41)
completely specifies the crossover between the Drude limit
ω � vF q and the Thomas-Fermi limit ω � vF q. Note that
the amplitude or BaSh mode and quasiparticle excitation do
not enter here since they appear at higher energy. For a
clean and isotropic BCS superconductor, vg = vF /

√
d at zero

temperature and gradually decreases to zero as temperature is
raised to Tc.
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At nonzero temperature, one should add the contribution
of the normal carriers, which makes the conductivity into the
“two-fluid” form derived in Appendix C:

σ (ω, q) = σs + σn = i
Ds/π

ω − v2
gq2/ω

+ σn . (42)

For � � T , an analytical formula for the normal fluid con-
ductivity with nonzero scattering rate can be found from the
Boltzmann equation [48,52,53]. In the simple limits,

σn =
{

iDn/π

ω+iγ (ω � D f q2)

−iνn
ω
q2 (ω � D f q2, vF q)

, (43)

where Dn = πnn/m, nn ≈ n is the density of normal carriers,
γ is the scattering rate, D f = v2

F /(dγ ) is the normal-state
diffusion constant, d is the space dimension, and νn is close
to ν at temperate close to Tc.

IV. 2D PLASMONS

For simplicity, we neglect the coupling to the amplitude
mode in this section. The plasmons are the charge density
fluctuations and can be found by the zeros of the dielectric
function

ε = 1 − Vqχρρ = 1 + Vq
iq2

ω
σ = 0 , (44)

where Vq = 4π/q2 for 3D and Vq = 2π/|q| for 2D. To-
gether with Eq. (41), we obtain the plasmon dispersion ωp =√

2Dsq + v2
gq2 for two dimensions. For three dimensions,

Eq. (44) predicts ωp =
√

4πnse2/m + v2
gq2 � �, which lies

in the high-energy regime beyond the limit of validity of
our theory, although the correct plasma frequency ω2

p =
4πnse2/m is obtained for a clean superconductor.

In the low-frequency limit ω � ωc, the 2D plasmon disper-
sion ωp = √

2Dsq approaches the edge of the continuum of
vacuum propagating photons ω = cq. (Recall that here q is a
2D momentum and light modes disperse as ω = c

√
q2 + k2

z
for any kz.) For lower frequencies the analysis given here
requires modification, because the electric fields associated
with the plasmons begin to extend far from the 2D sheet
so that the plasmon couples much less strongly to near-field
radiation. The critical frequency can be estimated as ωc =
2Ds/c, corresponding to the energy h̄ωc = e2

h̄c
h̄2ns

m ∼ 1
137 E∗

F ,
where E∗

F is the Fermi energy, equivalent to a 2D superfluid
stiffness ns/m. For a clean, weakly correlated material E∗

F is of
eV scale and the crossover frequency is of the order of 1 THz.
However, many superconductors of current interest [54] have
much lower E∗

F so that the crossover frequency is well below
the terahertz regime.

Assuming a doping level of n = 7 × 1013 cm−2 [corre-
sponding to the Fermi momentum kF = 2π/(3 nm)] and a
Fermi velocity of vF = 2.5 × 105 m/s, one obtains a wave-
length of λ ≈ 180 μm for the plasmon at 1 THz. This wave-
length is close to that of the corresponding vacuum photon
(300 μm), although a substrate with large dielectric screening
might make the plasmon wavelength shorter.

Nevertheless, in a dirty superconductor with a large
normal-state scattering rate γ � Tc, the sub-gap plasmon fre-
quency is mainly determined by the superfluid density, which

FIG. 3. Near-field reflection coefficients of a monolayer super-
conductor. (a) At T = 0 K, the dominant feature comes from the
plasmon, while there is very weak anticrossing with the BaSh mode
at 3.0 THz. The coupling to the Higgs mode is too weak to be seen.
(b) At T = 79.6 K close to Tc = 80 K, the plasmon is overdamped,
while the CG mode appears as a weak crossover of Rp. Note the
difference in color scales between (a) and (b). The right panel shows
the vertical line cuts of the left panel at (c) q = 0.8 × 2π/(1 μm)
and (d) q = 7 × 2π/(1 μm). The Fermi momentum, velocity is
kF = 2π/(3 nm), vF = 2.5 × 105 m/s, the normal-state scattering
rate is γ = 30 THz, the gap at zero temperature is � = 3.0 THz, and
κ = 0.4, κBaSh = 1.5.

is only a part of the total density even at zero temperature:
ns ∼ nTc/γ . At the same terahertz frequency far below γ ,
the plasmon wavelength is smaller by a factor Tc/γ , and
they become more confined to the 2D plane. Below the gap,
weakly damped plasmons with dispersion ω = √

2Dsq couple
strongly to the near-field probe, as shown by the near-field
reflection coefficient

Rp = −1

ε
+ 1 = − 1

1 + i2πq
ω

σ
+ 1 (45)

in Fig. 3(a). For the ratio Tc/γ = 0.1, the 1-THz plasmon
wavelength is shrunk by the same factor to 18 μm.

V. HIGGS MODE

The Higgs mode couples to phase fluctuation as shown in
Eq. (20), manifests itself in the second term of Eq. (37), and
finally enters the EM response through Eq. (39). The density
response with the Higgs mode correction is thus

χρρ = �00 =
q2

ω2
n
m

(
ν − GaC2

0

)+ νGaC2
i q4

ν − Ga(C0 + Ciq2)2 − q2

ω2
n
m

. (46)

Since the C0 and Ci terms contribute terms at the same order,
we take Ci = 0 to arrive at a simplified expression:

χρρ =
q2

ω2
n
m

(
ν − GaC2

0

)
ν − GaC2

0 − q2

ω2
n
m

. (47)
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Thus the longitudinal optical conductivity is

σ (ω, q) = i
nse2/m

ω

1

1 − v2
g q2

ω2
1

1−κ2�2/(ω2−ω2
hq )

, (48)

where

κ = λ
�

EF

√
2 sinh−1

(ωD

�

)
(49)

is the dimensionless coupling constant of the Higgs mode
to EM, and ωhq =

√
4�2

sc + v2
F q2/d is the Higgs mode fre-

quency. Since λ is order 1 and sinh−1 ( ωD
�

) is not a large num-
ber, this coupling is simply suppressed by the small number
�
EF

. Note that at q = 0, the optical conductivity reduces to the
Drude form and there is no signature of Higgs mode, showing
why this mode cannot be observed in a conventional far-field
terahertz linear response. In contrast, the near-field optical
imaging technique has access to nonzero q, where the Higgs
mode manifests itself through coupling to the plasmons.

Specifically, for a monolayer superconductor, the coupled
collective modes can be found as the poles of Eq. (44). The
weight of the Higgs pole in Rp scales as Whiggs ∼ κ2v2

gq2/�

for ωh � ωp, i.e., well before the Higgs mode crosses the
plasmon. Nevertheless, the most prominent signature of the
Higgs mode is its anticrossing with the plasmon mode,
which happens roughly at ωp(q) = ωhq. A detailed solution
of Eq. (44) gives the frequency splitting at the anticrossing as

δω ≈ κ�

2ωhq

√
κ2�2 + 4v2

gq2 , (50)

where q is the momentum at the anticrossing. Therefore, the
splitting will be bigger if the anticrossing happens at larger
momentum.

VI. BARDASIS-SCHRIEFFER MODE

Optical excitation of the BaSh mode can be viewed as tran-
sition from an s bound state of the Cooper pair to a d bound
state. This is forbidden in far-field optics for two reasons:
First, unlike the hydrogen atom case, a uniform electric field
exerts the same force on the two electrons and does not change
the internal structure; second, both the s and d states have even
parity, which forbids a transition due to the optical selection
rule. Thus it is necessary to go to nonzero momentum for
its nonzero coupling to the EM field. Indeed, the coupling
constant is proportional to ξq, which is appreciable when the
electric field becomes substantially nonuniform on the scale
of a Cooper pair size.

Plugging Eq. (35) into Eqs. (37) and (39) gives the
appearance of the BaSh mode in the longitudinal optical
conductivity:

σ (ω, q) = i
nse2/m

ω

1
1

1+κ2
BaShv

2
g q2/(ω2−ω2

BaSh )
− v2

g q2

ω2

, (51)

where κBaSh = π√
2
v2

F /v2
g ∼ 1 is the dimensionless coupling

constant between the BaSh mode and EM. The B0 terms
are higher order in q and are neglected. Note that if the
momentum q is along x, the BaSh mode indicates the dx2−y2

order-parameter fluctuation.

The BaSh mode couples to the near field more strongly
than the Higgs mode due to the absence of the �/EF factor
in the coupling constant κBaSh. Solving the pole equation,
Eq. (44), one obtains the frequency splitting at the anticrossing
between BaSh and plasmon,

δω ≈ κBaShvgq, (52)

which scales linearly with the momentum at the anticrossing.

VII. CARLSON-GOLDMAN MODE

The CG mode is a superfluid density fluctuation accom-
panied by the counterflow of normal carriers such that the
Coulomb potential from the superfluid fluctuation is almost
completely screened [22,55–60]. This screening requires a
large density of normal carriers, which is typically found near
Tc. The velocity vg of the CG mode depends on the ratio
between the superfluid density ns and superfluid susceptibility
χs = π

4
�
Tc

ν and has different expressions in the clean [56] and
dirty [55] limits:

vg =
√

ns

m
/χs = vF√

d

{√
2�/γ γ � Tc (Dirty)√
7ζ (3)
π3

�
T γ � Tc (Clean)

, (53)

where ζ (x) is the Riemann ζ function, and we have used the
fact that ns = n π�2

2γ Tc
for dirty superconductors and ns = 2(1 −

T/Tc)n for clean superconductors close to Tc.
Its dispersion can be derived from the two-fluid conductiv-

ity Eq. (42) by setting ε = 0, which yields

ω3 + i
ω2

n

γ
ω2 − (

ω2
s + vgq2

)
ω − i

ω2
n

γ
v2

gq2 = 0 (54)

in the limit of D f q2 � ω � γ . Note the plasma frequency
ωs/n = √

4Ds/n in 2D and ωs/n = √
2Ds/nq in 3D. Solving

Eq. (54) in the case of ωs � ω � ω2
s

ω2
n
γ renders the CG mode

ω =
√

v2
gq2 − 1

4

ω4
s

ω4
n

γ 2 − i
1

2

ω2
s

ω2
n

γ . (55)

At even lower frequency ω � ω2
s

ω2
n
γ in 2D, the solution to

Eq. (54) gives the weakly damped plasmons

ω =
√

ω2
s − ω4

n

4γ 2
− i

1

2

ω2
n

γ
, (56)

where the vgq contribution has been neglected. Note that the
effective Drude weight is Ds in the low-frequency regime
of the two-fluid model Eq. (42), similar to the collective
mode called demons in the hydrodynamic regime of the Dirac
fluid [49,61]. The schematic dispersion of the CG mode and
plasmons in 2D are depicted in Fig. 4. The damping rate
ω2

s
2ω2

n
γ of the CG mode is equal to π

4
�2

T in the dirty case and
(1 − T/Tc)γ in the clean case.

Note that the CG mode can be understood as a sound
with the standard sound velocity

√ ns
m /χs and χs being the

superfluid compressibility. The latter is smaller than ν, the
compressibility of the whole fluid in the low-frequency ther-
mal dynamic limit, because the super and normal fluids move
out of phase in this relative high-frequency regime. The
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FIG. 4. Schematics of the dispersion of the Carlson-Goldman
mode on the frequency-momentum plane. The CG mode speed is
exaggerated. Since the theory, Eq. (53), is accurate only for q � ξ−1,
the part of the dispersion beyond ξ−1 is drawn as dashed. The gray
region corresponds to the quasiparticle pair excitation continuum.
The red solid line indicates the underdamped plasmon. In both the
dirty and clean cases γ , Tc � � and Tc − T � Tc are assumed.

local accumulation of superfluid causes the local chemical
potential to shift up, leading to a change of quasiparticle
energy and charge. However, the quasiparticle occupation
number relaxes too slowly and cannot adjust itself to this
change [57], resulting in “branch imbalance” [62], as shown in
Fig. 5. Normal impurities cannot relax this branch imbalance,
because in s-wave superconductors, the elastic scattering
matrix element ukuk′ − vkvk′ vanishes between holelike and
electronlike states at the same energy. Inelastic scattering due

FIG. 5. Physical picture of the local chemical potential shift and
the quasiparticle occupation in the CG mode. The plus and minus
signs indicate the signs of the quasiparticle charge. This quasiparticle
distribution is referred to as “branch imbalance” or “charge mode” in
the literature [57,62].

to, e.g., phonons, does relax branch imbalance and cause extra
damping to the CG mode, but we assume it to be small. In
d-wave superconductors, the same matrix element is nonzero
due to anisotropy of the gap, which allows normal impurities
to relax the branch imbalance and bring extra damping to the
CG mode [63].

In clean superconductors the CG mode can cross the dif-
fusion line [Fig. 4(b)] before reaching the gap, entering the
regime ω � D f q2 where the normal fluid part of Eq. (42)
is in the Thomas-Fermi form in Eq. (43). The normal fluid
still screens the CG mode but with a Thomas-Fermi screening
character. The CG mode speed is slightly modified to vCG =√

v2
g + ns

νnm in this regime but still remains close to vg since the

second term is much smaller.
The original experiment using Josephson tunneling junc-

tions by Carlson and Goldman [22] seems to be the only
observation of this novel collective mode. In the optical
conductivity measured by far-field optics, the CG mode might
move part of the superfluid spectra weight to finite frequency
due to smooth disorder [64,65]. At nonzero momentum, being
almost charge neutral, the CG mode appears as a very weak
feature in the near-field reflection coefficient: a 1% crossover
of Abs[Rp] as shown by Fig. 3(b), plotted for a typical dirty
superconductor close to its Tc.

VIII. DOUBLE-LAYER SUPERCONDUCTOR

In this section we consider the system made of two super-
conducting layers separated by a small distance a, as shown
in Fig. 6. Each layer has an in-plane conductivity described
by Eq. (41) at low temperature. Density fluctuations in one
plane may screen those in the other. In the quasistatic limit,
the 2D plasmon dispersion can be obtained from the following
eigenmode condition:(

1 + 2π i

ω
qσ

)2

+ e−2aq

(
2πq

ω
σ

)2

= 0, (57)

which leads to two plasmon branches

ω± =
√

2Dq(1 ± e−aq) + v2
gq2 . (58)

The upper branch is the symmetric mode whose dispersion
follows the ω+ ∼ √

q law at small momentum. The lower
(antisymmetric) branch is an acoustic mode which has the
dispersion

ω− =
√

2Da + v2
g · q = v− · q (59)

for q � 1/a. This acoustic mode is charge fluctuations of the
two layers, which are out of phase such that the net charge
fluctuation is near zero if looked at far away. In other words,
the Coulomb interaction is mutually screened and is modified
to the effective short-range form V (q) = 2π (1 − e−aq)/q that
makes the mode acoustic. A nonzero Josephson coupling
between the layers would give this mode a small gap equal to
the “Josephson plasma frequency” ωJ = √

4πea jc/h̄, where
jc is the critical interlayer current density. An interlayer dc
voltage that induces the ac Josephson effect can parametri-
cally generate these acoustic plasmons. This issue will be
discussed in a future publication. In this section, we neglect
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FIG. 6. (a) The 2D system consisting of two superconducting
layers. Colors represent the electric potential of the symmetric
and antisymmetric modes. (b) Near-field reflection coefficient of
the double-superconducting-layer system. Josephson coupling is ne-
glected. There is an anticrossing feature of the acoustic plasmon
with the Higgs mode and the d-wave BaSh mode. The gray dashed
line indicates the velocity of the Goldstone mode before coupling to
EM. (c) Vertical line cut of (b) at momentum q = 7 × 2π/(1 μm).
The parameters are kF = 2π/(3 nm), vF = 2.5 × 105 m/s, γ =
30 THz, ns = 1.9 × 1013 cm−2, a = 3 nm, � = 3.0 THz, κ = 0.2,
and κBaSh = 0.4. Higgs/BaSh mode frequencies are assumed to be
4.5 THz/3.0 THz at zero momentum.

the Josephson coupling between the layers, which is weak for
a substantially larger than atomic scale.

Both modes correspond to nonzero momentum oscilla-
tions of the phase of the superconducting order parame-
ter. This acoustic plasmon can be viewed as the Goldstone
mode, which recovers its acoustic nature because Coulomb
interaction is greatly weakened. Its speed still has a large
contribution

√
2Da ∼ √

αkF avF from the residual Coulomb
interaction, where α = e2/(h̄vF ) is the “fine-structure con-
stant.” In BSCCO 2212 at typical doping [66], α ≈ 9 since

vF ≈ 2.5 × 105 m/s. For kF = 2π/(10 nm) and a = 3 nm,
the ratio between the speeds of this acoustic mode and the
original Goldstone mode is v−/vg ≈ 6, which means they are
at the same order of magnitude. Therefore, an accurate mea-
surement of the acoustic plasmon dispersion would contain
the information of the “Goldstone mode” speed.

In order for the acoustic mode to be observable to near-field
experiments, it should have substantial spectral weight in the
near-field reflection coefficient,

Rp(ω, q) = −2π iqσ

ω

ε + e−2aq
(
1 − 2π i

ω
qσ
)

ε2 + e−2aq
( 2πq

ω
σ
)2 , (60)

derived in Appendix B. Given the same amplitude of charge
density oscillation in each layer, the electric field generated by
the two layers tend to cancel each other since they are opposite
in sign. The remaining field is weaker than the symmetric
plasmon mode by a factor of qa/2 and the near-field spectral
weight is weaker by (qa/2)3/2. Nevertheless, the acoustic
mode is still visible, as shown by the Rp, plotted in Fig. 6
using the conductivity from Eq. (39).

Moreover, since the acoustic plasmon has higher momen-
tum given the same frequency in the terahertz range, it has
stronger coupling to the Higgs/BaSh modes. Thus there is
a more prominent anticrossing feature between the acoustic
plasmon and Higgs/BaSh modes, as shown in Fig. 6. Note
that Eqs. (50) and (52) apply to anticrossings with both the
symmetric and antisymmetric modes. For example, the anti-
crossing of the BaSh mode with the acoustic plasmon happens
at a momentum roughly 20 times that with the symmetric
plasmon, rendering the energy splitting 20 times larger than
the latter.

IX. BULK LAYERED SUPERCONDUCTORS

In layered superconductors such as high-Tc cuprates, there
is Josephson coupling between the layers, and the low-
temperature and subgap collective modes are the Josephson
plasmons [5]. Considering only the phase degree of freedom,
the Lagrangian for an evenly spaced layered superconductor
is

L =
∫

dr
∑

n

[
−1

2
ν(∂tθn + φn)2 + ns

2m
(∇θn − An)2

− Ec cos

(
θn+1 − θn −

∫ n

n+1
Adz

)]
, (61)

where θn(r), φn(r), and An(r) are the phase, scalar, and vector
potentials on the nth layer, and Ec is the Josephson coupling
energy per unit area and we have set e = 1. For the longitudi-
nal fields we are interested in, we can choose the gauge where
An(r) = 0. Due to continuous translational symmetry in plane
and discrete one in the z direction, it is convenient to Fourier
transform the fields into the “Bloch” form,

θn(r) =
∑
kz,q

θkz,qei(qr+kzna), (62)
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where a is the layer spacing, q is the in-plane momentum, and
kz ∈ (−π/a, π/a) is the lattice momentum in z direction. The
Lagrangian is diagonalized as

L=
∑
kz,q

[
−1

2
ν(∂tθn+φn)2

q+
(

ns

2m
q2+Ec(1−cos(akz ))

)
θ2

q

]
.

(63)

Solving the Euler-Lagrange equation of the phase and making
use of the expression of the charge density ρ = ν(∂tθ + φ),
we obtain the “nonlocal” polarization function

χρρ (kz, q) =
ns
m q2 + 2Ec(1 − cos(akz ))

ω2 − v2
gq2 − 1

ν
2Ec(1 − cos(akz ))

. (64)

The Coulomb potential kernel is modified to

V (kz, q) = 2πe2

q

sinh(aq)

cosh(aq) − cos(akz )
. (65)

The zeros of the dielectric function ε = 1 − V (kz, q)χρρ give
the dispersion of the collective modes:

ω2 = (1/ν + V (kz, q))
(

ns

m
q2 + 2Ec(1 − cos(akz ))

)
. (66)

In the long-wavelength limit q, kz � 1/a, the Coulomb kernel
reduces to that of the continuous limit and the mode dispersion
simplifies to

ω =
√

ω2
p

q2

q2 + k2
z

+ ω2
J

k2
z

q2 + k2
z

+ v2
gq2 + v2

z k2
z , (67)

where ωJ =
√

4πEca2 is the Josephson plasma frequency,
ωp = √

4πns/m is the in-plane plasma frequency, vg =
vF /

√
2 is the in-plane Goldstone mode speed in the clean

limit, and vz = ωJ
ωp

vg is the z-axis Goldstone mode speed.
These are the hyperbolic Josephson plasmons (HJPs) exten-
sively studied in the literature [67–71] which can be viewed
as mixtures of out-of-plane and in-plane plasmons. Indeed,
Eq. (67) could be derived directly from the zeros of the
continuous limit of the nonlocal dielectric function,

ε(kz, q) = 1 −
ω2

p
q2

q2+k2
z

+ ω2
J

k2
z

q2+k2
z

ω2 − v2
gq2 − v2

z k2
z

, (68)

which is defined as the external electrical potential divided by
the total potential.

Alternatively, the long-wavelength response can be de-
scribed by the anisotropic dielectric function

εx(ω, q, kz ) = 1 − ω2
p

ω2 − v2
gq2 − v2

z k2
z

,

εz(ω, q, kz ) = 1 − ω2
j

ω2 − v2
gq2 − v2

z k2
z

, (69)

and the collective mode dispersion is determined by q2εx +
k2

z εz = 0. This formalism is more convenient for calculating
the reflection coefficient of a slab. To include the effect of
Higgs and BaSh modes, one just needs to modify the in-plane
response εx in similar fashion as Eqs. (48) and (51).

FIG. 7. (a) Illustration of a slab made of layered superconduc-
tor and the propagating Josephson plasmons inside. (b) Near-field
reflection coefficient of a 10-nm-thick slab. Bright lines are due to
the hyperbolic Josephson plasmons which anticross with the Higgs
modes and d-wave BaSh modes. Gray dashed line indicates the
velocity vg of the in-plane Goldstone mode. (c) Vertical linecut of
the above at momentum q = 7 × 2π/(1 μm). The effective in-plane
“plasma” frequency is ωp = 30 THz, and the Josephson plasma fre-
quency is ωJ = 0.5 THz. The gap is � = 3 THz, ωhiggs = 4.5 THz,
ωBaSh = 3.0 THz, κ = 0.2, and κBaSh = 0.2.

023413-11



SUN, FOGLER, BASOV, AND MILLIS PHYSICAL REVIEW RESEARCH 2, 023413 (2020)

For a superconducting slab with thickness d in the contin-
uous limit, the near-field reflection coefficient is

Rslab = Rp(1 − e2ikzd )

1 − e2ikzd R2
p

, Rp = iq − kzεz(ω, q, kz )

iq + kzεz(ω, q, kz )
, (70)

where Rp is the reflection coefficient of an infinitely thick
sample, and kz is the z component of the EM wave momentum
inside the slab. See Appendix B for the derivation. A typical
reflection coefficient is shown in Fig. 7, taking into account
the nonlocal corrections to the dielectric function due to the
Goldstone mode. Note that due to high anisotropy of the
EM response, the z-direction wavelength λz ∼ λω/ωp can
easily become comparable to the layer spacing where λ is
the in-plane wavelength. In that case, the full form Eq. (66)
should be used as the bulk mode dispersion, and the number
of hyperbolic plasmon branches is limited by the number
of layers N . Due to Josephson coupling between the layers,
the transfer matrix method does not apply and numerical
diagonalization of a set of N coupled linear equations will be
needed to calculate the near field reflection coefficient.

X. DISCUSSION

We studied the nonlocal EM response properties of su-
perconductors, which are of great importance to the emerg-
ing field of terahertz near field experiments. With analytical
formulas for the nonlocal optical conductivity and plots of
reflection coefficients, we have demonstrated that for mono-
layer or multilayer quasi-two-dimensional superconductors
essentially all of the interesting collective modes (plasmons,
hyperbolic Josephson plasmons, the Carlson-Goldman mode,
the amplitude (Higgs) mode and the Bardasis-Schrieffer
mode) couple linearly to the terahertz EM fields produced
by near field probes. As old arguments of Anderson show,
the dispersion of the plasmon (

√
q) is essentially unaffected

by superconductivity, but the gap substantially suppresses
the loss at low frequencies. Figure 3(a) shows the plasmon
dispersion expected for a monolayer superconductor. In super-
conducting bilayers, an additional acoustic (ω ∝ q) plasmon
(phase) mode exists and is also easily observable in near field
experiments [Fig. 6(b)]. As the temperature becomes close to
Tc, as shown by Fig. 3(b), the Carlson-Goldman mode appears
but as a very weak feature across the resonance, since it has
almost no net charge density fluctuation. Note that this mode
is not enhanced in multilayer systems. The amplitude (Higgs)
mode appears in the EM response because it couples to the
phase fluctuation with a matrix element that is nonzero if there
is no perfect particle-hole symmetry [Eq. (33)]. The ultimate
coupling to the terahertz near field is proportional to the
square of the near-field momentum q [Eq. (48)] and is strongly
enhanced by an anticrossing with the plasmon or phase
modes. The Higgs mode is only weakly visible for monolayer
materials, because the

√
q plasmon dispersion means that the

anticrossing occurs at a very small momentum [Fig. 3(a)].
The feature is much more easily visible in bilayer systems
as an anticrossing with the acoustic plasmon (phase) mode
[Fig. 6(b)]. Note that the Higgs mode does appear in nonlinear
far-field optics [27–32]. The coupling to Bardasis-Schrieffer

(subdominant order parameter) mode is very similar to that
of the Higgs mode, except that it does not require particle-
hole symmetry breaking. It is again most easily visible as
a large-q anticrossing with the phase [Fig. 6(b)] or plasmon
mode [Fig. 3(a)]. Note that an analogy of the BaSh mode in
excitonic insulators couples linearly to photons already at zero
momentum, developing into BaSh polaritons [72].

In multilayer superconductors, a multiplicity of phase
modes exist, coined the hyperbolic Josephson plasmons
(Fig. 7). The plasmon dispersion is hyperbolic (ε < 0
for in plane and ε > 0 for out of plane), leading to total
internal reflection [Fig. 7(a)] and many plasmon branches
with Higgs and BaSh modes visible as anticrossings. The
multiplayer nature means there are multiple branches of
Higgs modes/BaSh modes, but they are weakly separated and
may be difficult to resolve.

On the experimental side, detection of the collective modes
offers useful information about both the ground state and
the low-lying excited states. On the theoretical side, knowl-
edge of how to excite the collective modes is often the first
step towards understanding nonequilibrium dynamics [39,73].
From a technological point of view, the low-loss plasmonic
modes are promising as information carriers in supercon-
ductor waveguides. The multiplayer systems described in
Secs. VIII and IX can be viewed as a kind of naturally occur-
ring photonic cavities which enhance light-matter coupling.

The formalism presented here is for s-wave superconduc-
tors. For d-wave superconductors, the qualitative features of
the EM response, such as the two-fluid model Eq. (42) and all
the collective modes [74], should be the same. Nevertheless,
the CG mode might exist down to much lower temperature
because of the large proportion of the normal fluid [75],
although it might be heavily damped by normal disorder [63].
Due to the nodes in the d-wave gap, the terahertz plasmons
might experience substantial damping, even at zero tempera-
ture. The effect of disorder is not explicitly taken into account
and would be a useful extension of the present research,
e.g., disorder-assisted Cherenkov radiation of plasmons by
quasiparticles. It is also of interest to study the coupling of
photons to the Leggett mode [76,77] at nonzero momentum.
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FIG. 8. The bubble diagram for correlation function χσiσ j .
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APPENDIX A: CORRELATION FUNCTIONS

The correlation function χσiσ j shown in Fig. 8 is defined as

χσiσ j (q) = 〈T̂ (ψ†σiψ )(r,t )(ψ
†σ jψ )0〉|q =

∑
ωn,k

Tr[G(k, iωn)σiG(k + q, i(ωn + �))σ j], (A1)

where T̂ is the time order symbol, x = (r, t ), q = (q, i�), and

G(k, iωn) = G�(k, iωn) = 〈T̂ ψ (x)ψ†(0)〉|k,iωn = 1

iωn − ξkσ3 − �σ1
(A2)

is the electron Green’s function. Rotation from imaginary to real time makes the time-ordered correlation functions into retarded
ones. In the correlation functions involving the currents, one should change the σ vertex to the current vertex. For example,

χ jl σm (q) = 〈T̂ (ψ†vlσ0ψ )x(ψ†σmψ )0〉|q =
∑
ωn,k

1

2
(v(k) + v(k + q))Tr[G(k, iωn)σ0G(k + q, i(ωn + �))σl ] . (A3)

Evaluating the correlation function Eq. (A1) renders

χσiσ j (q)

=
∑
ωn,k

Tr

[
(iωn + ξσ3 + �σ1)σi(i(ωn + �) + ξ ′σ3 + �σ1)σ j

[(iωn)2 − E2)][(i(ωn + �))2 − E ′2)]

]

= 1

4

∑
k

{
Tr[σiσ j]

(
f (E ′) − f (E )

i� − (E − E ′)
+ 1 − f (E ′) − f (E )

i� − (E + E ′)
+ f (E ′) + f (E ) − 1

i� + (E + E ′)
+ f (E ) − f (E ′)

i� − (E ′ − E )

)

+ Tr

[
σi(ξ ′σ3 + �σ1)σ j

E ′

](
− f (E ′) − f (E )

i� − (E − E ′)
+ 1 − f (E ′) − f (E )

i� − (E + E ′)
− f (E ′) + f (E ) − 1

i� + (E + E ′)
+ f (E ) − f (E ′)

i� − (E ′ − E )

)

+ Tr

[
(ξσ3 + �σ1)σiσ j

E

](
− f (E ′) − f (E )

i� − (E − E ′)
− 1 − f (E ′) − f (E )

i� − (E + E ′)
+ f (E ′) + f (E ) − 1

i� + (E + E ′)
+ f (E ) − f (E ′)

i� − (E ′ − E )

)

+ Tr

[
(ξσ3 + �σ1)σi(ξ ′σ3 + �σ1)σ j

EE ′

](
f (E ′)− f (E )

i�−(E − E ′)
− 1− f (E ′) − f (E )

i� − (E + E ′)
− f (E ′) + f (E ) − 1

i� + (E + E ′)
+ f (E ) − f (E ′)

i� − (E ′ − E )

)}
,

(A4)

where ξ/E means ξ (k)/E (k), ξ ′/E ′ means ξ (k + q)/E (k + q), and f (E ) is the fermion occupation number at energy E . At zero
temperature, rotating i� to ω, Eq. (A4) simplifies to

χσiσ j (ω, q) = 1

4

∑
k

{
Tr

[
σiσ j − (ξσ3 + �σ1)σi(ξ ′σ3 + �σ1)σ j

EE ′

]
2(E + E ′)

ω2 − (E + E ′)2

+ Tr

[
σi(ξ ′σ3 + �σ1)σ j

E ′ − (ξσ3 + �σ1)σiσ j

E

]
2ω

ω2 − (E + E ′)2

}
. (A5)

1. The Higgs propagator

The Higgs propagator involves the correlation in the σ1

channel:

χσ1σ1 (ω, q) =
∑

k

{(
1 − �2 − ξξ ′

EE ′

)
E + E ′

ω2 − (E + E ′)2

}
.

(A6)

At zero momentum, it becomes

χσ1σ1 (ω, 0) =
∑

k

ξ 2

E

4

ω2 − 4E2
. (A7)

With the knowledge of the gap equation, the Higgs propagator
is thus [26]

G−1
a (ω) = 1

g
+ χσ1σ1 (ω, 0) = (ω2−4�2)

∑
k

1

E (ω2 − 4E2)

= −(ω2 − 4�2)F (ω) , (A8)

where

F (ω) =
∑

k

1

E (−ω2 + 4E2)
≈ 1

2
ν

∫
dξ

1

E (−ω2 + 4E2)

= ν

4�2

2�

ω

sin−1
(

ω
2�

)
√

1 − (
ω

2�

)2

= ν

2ω�

⎧⎪⎨
⎪⎩

sin−1( ω
2�

)√
1−( ω

2�
)2

ω � 2�

− sinh−1
(√

−1+( ω
2�

)2
)

√
−1+( ω

2�
)2

+i π

2
√

−1+( ω
2�

)2
ω > 2�

(A9)

is shown in Fig. 9.
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FIG. 9. Real and imaginary parts of F (ω) as functions of ω.

At nonzero momentum, the propagator is [24]

G−1
a (ω, q) = 1

2

∑
k

E + E ′

EE ′
ω2 − (ξ − ξ ′)2 − 4�2

ω2 − (E + E ′)2
, (A10)

whose O(q2) expansion gives

G−1
a (ω, q) ≈

(
−ω2 + 4�2 + 1

d
v2

F q2

)
F (ω) . (A11)

2. The Bardasis-Schrieffer propagator

The total order parameter can be written as �k = � +∑
l �l (r, t ) fl (k), where we have chosen the mean-field gap

� to be real. The subdominant pairing order-parameter fluc-
tuations �l can have two possible directions: (1) orthogonal to
� on the complex plane or in the “imaginary” direction, and
(2) parallel to � or in the “real” direction. The “imaginary”
fluctuations are the BaSh modes, while the “real” ones don’t
have poles and are not collective modes.

We first consider the BaSh mode correlator:

χ fl (k)σ2, fl (k)σ2 (i�, q)

=
∑
ωn,k

Tr{G(k, iωn) fl (k)σ2G[k + q, i(ωn + �)] fl (k)σ2} .

(A12)

In two dimensions with rotational symmetry, the dx2−y2 BaSh
mode correlator is in the cos(2θk )σ2 channel:

χcos(2θk )σ2,cos(2θk )σ2 (ω, 0) =
∑

k

4 cos2(2θk )Ek

ω2 − 4E2

= −1

2

(
1

g
+ ω2F (ω)

)
. (A13)

The BaSh mode inverse propagator is

G−1
BaSh(ω) = 1

gd
+ χcos(2θk )σ2,cos(2θk )σ2 (ω, 0)

= 1

gd
− 1

2g
− 1

2
ω2F (ω) , (A14)

which crosses zero at ωBaSh below the gap, as shown by
Fig. 10(a). For momentum along x, extending the correlator
to O(q2) gives

G−1
BaSh(ω) ≈ 1

gd
− 1

2g
− 1

2
ω2F (ω) + 1

16

ν

�2
v2

F q2 (A15)

in two dimensions. In the case of ωBaSh � 2�, the propagator
is simplified to

G−1
BaSh(ω) ≈ ν

8�2

(
ω2

BaSh + 1

2
v2

F q2 − ω2

)
, (A16)

where ω2
BaSh = 8�2( 1

νgd
− 1

2νg ). Thus the BaSh mode fre-

quency disperses as ωBaSh(q)2 = ω2
BaSh + 1

2v2
F q2.

We now consider the correlator of the “real” fluctuations:

χcos(2θk )σ1,cos(2θk )σ1 (ω, 0) =
∑

k

ξ 2

E

4 cos2(2θk )

ω2 − 4E2

= 1

2

[
−1

g
− (ω2 − 4�2)F (ω)

]
,

(A17)

which is different from the Higgs correlator Eq. (A7) only by
the cos2(2θk ) factor. The resulting propagator is

G−1
real(ω, 0) = 1

gd
+ χcos(2θk )σ1,cos(2θk )σ1 (ω, 0)

= 1

gd
− 1

2g
− 1

2
(ω2 − 4�2)F (ω) , (A18)

which never crosses zero, as shown by Fig. 10(b).

3. The linear coupling between phase
and Bardasis-Schrieffer/Higgs modes

The coupling between phase fluctuation and the Higgs
mode requires particle-hole symmetry breaking, which
we model using an energy-dependent DOS g(ξ ) = ν(1 +
λξ/EF ). The coupling constants are derived from the correla-
tion functions in Eq. (31). From the general formula Eq. (A6)
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FIG. 10. (a) Real and imaginary parts of the BaSh mode propagator G−1
BaSh(ω) as a function of ω. (b) Those of the real fluctuation G−1

real(ω).

at zero temperature, the temporal part is

χσ3σ1 (ω, q) =
∑

k

{
�

ξ + ξ ′

EE ′
(E + E ′)

(E + E ′)2 − ω2

}
q=0−−→ 4�

∑
k

ξ

E (4E2 − ω2)
= 4�

∫
dξ

g(ξ )ξ

E (4E2 − ω2)

= λ
�

2EF
ν

⎡
⎢⎣−

√(
2�

ω

)2

− 1 tan−1

⎛
⎜⎝ 1√(

2�
ω

)2 − 1
√(

�
ωD

)2 + 1

⎞
⎟⎠+ sinh−1

(
ωD

�

)⎤⎥⎦

≈ λν
�

2EF
sinh−1

(
ωD

�

)
, (A19)

which gives C0 in Eq. (33). The spatial part is

χviσ0, σ1 (ω, q) = �

2

∑
k

{
(vi + v′

i )
E − E ′

EE ′
ω

(E + E ′)2 − ω2

}
≈ �ωq j

∑
k

viv jξ

(4E2 − ω2)E3
= 1

12d
λν

�

EF

(vF

�

)2
ωqi , (A20)

which gives Ci in Eq. (34).
The coupling of phase to the “real” d-wave order-

parameter fluctuations is similar to Eqs. (A19) and (A20),
except that another fd (k) term should be added to the momen-
tum summation. The coupling constants are also suppressed
by the small particle-hole breaking factor λ�/EF . We do
not calculate them here, since the “real” fluctuations are not
collective modes.

We now calculate the coupling of phase to the d-wave
BaSh fluctuations, which are in the σ2 fd (k) channel. The
temporal part is

χσ3, σ2 fd (k)(ω, q) = i�ω
∑

k

{
fd (k)

E + E ′

EE ′
−1

(E + E ′)2 − ω2

}

≈ i

4
�ω

∑
k

fd (k)
1

E6

(
−5

4

ξ 2

E
+ 3

4
E

)
(vq)2 .

(A21)

The expansion to O(q2) is necessary because of the d-wave
symmetry of fd (k). It proves the temporal term in Eq. (35), but
we do not calculate it since this term affects the EM response
at higher orders in q. The spatial part is

χviσ0, σ2 fd (k)(ω, q) = i�
∑

k

{
fd (k)vi

ξ−ξ ′

EE ′
E + E ′

(E + E ′)2 − ω2

}

≈ i2�q j

∑
k

fd (k)viv j
1

(4E2−ω2)E
. (A22)

There are two d-wave BaSh modes in two dimensions: the
dx2−y2 and dxy modes, which correspond to fd1 = cos 2θk and
fd2 = sin 2θk , respectively. Since they are different only by a
π/4 rotation, we focus on the dx2−y2 mode only. Replacing fd

by cos 2θk in Eq. (A22) renders

χviσ0, σ2 fd (k)(ω, q) = iπ�v2
F F (ω)Mi jq j , (A23)

where M̂ = σ3.

4. The density-density correlation

The density-density correlation is in the σ3 channel:

χ (0)
ρρ = χσ3σ3 (ω, q)

= 1

2

∑
k

{(
1 − ξξ ′ − �2

EE ′

)
2(E + E ′)

ω2 − (E + E ′)2

}
. (A24)

At zero momentum it becomes

χσ3σ3 (ω, 0) =
∑

k

�2

E

4

ω2 − 4E2
= −4�2F (ω) . (A25)

In the limit of ω � �, q � ξ−1, we have χσ3σ3 = −ν.

023413-15



SUN, FOGLER, BASOV, AND MILLIS PHYSICAL REVIEW RESEARCH 2, 023413 (2020)

FIG. 11. Schematics of the near field reflection problem in (a) monolayer, (b) double-layer, and (c) slab systems. The tip is shown as a
dipole moment polarized along ẑ direction.

APPENDIX B: NEAR-FIELD REFLECTION
COEFFICIENTS

1. Monolayer

In the near-field limit, there is only a longitudinal electric
field and no magnetic field. The incident and reflected fields
can be described by simply using electric potentials φ(r, t ), as
shown in Fig. 11(a). We write the electrical potential as

φi(r, t ) = e−iωt (φi↑eiqx−qz + φi↓eiqx+qz ) , (B1)

where φi↑/φi↓ are the amplitude of up-going/down-going
fields in the ith vacuum medium. We have explicitly noted
that the z direction momentum is ±iq due to the Laplace
equation satisfied by φ in vacuum, i.e., the electric potentials
are evanescent waves. The reflection problem is described by
the boundary conditions of E‖ being continuous across the 2D
layer and E⊥ satisfying Gauss’s law, or equivalently,

φ1↑ + φ1↓ = φ2↑ + φ2↓ , (qφ1↑ − qφ1↓) − (qφ2↑ − qφ2↓)

= 4πρ2D = 4π
q

ω
j2D

= 4π
q

ω
σ (ω, q)(−iq)(φ1↑ + φ1↓). (B2)

Written in matrix form, Eq. (B2) becomes

(
1 1

q + i4πq2

ω
σ −q + i4πq2

ω
σ

)(
φ1↑
φ1↓

)
=
(

1 1
q −q

)(
φ2↑
φ2↓

)
,

(B3)

whose solution gives the linear relation between the fields on
each side of the 2D layer:

(
φ1↑
φ1↓

)
= 1

−2q

(
−q + i4πq2

ω
σ −1

−q − i4πq2

ω
σ 1

)(
1 1

q −q

)(
φ2↑
φ2↓

)

=
(

1 − i2πq
ω

σ − i2πq
ω

σ
i2πq

ω
σ 1 + i2πq

ω
σ

)(
φ2↑
φ2↓

)
≡ M̂

(
φ2↑
φ2↓

)
,

(B4)

where M̂ is the transfer matrix. Setting φ2↑ = 0, one obtains
the near-field reflection coefficient for a 2D layer,

Rp ≡ φ1↑
φ1↓

= − i2πq
ω

σ

1 + i2πq
ω

σ
= 1 − 1

ε2D
, (B5)

where ε2D = 1 + i2πq
ω

σ is the dielectric function in 2D.

2. Double layer

As shown in Fig. 11(b), by applying the reflection problem
twice one obtains(

φ1↑
φ1↓

)
= M̂

(
φ2↑
φ2↓

)
= M̂

(
e−qa 0

0 eqa

)
M̂

(
φ3↑
φ3↓

)
. (B6)

Setting φ3↑ = 0 yields the reflection coefficient Eq. (60) for
the double-layer system. A characteristic plot of the reflection
coefficient of the double-layer system is Fig. 12, where res-
onances due to the symmetric and antisymmetric plasmons
show up. The plasmonic field excited by a spatially local
source can be obtained by summing up the reflection coef-
ficients at all momentums, as shown in Fig. 13.

3. A slab with nonlocal optical response

If the polarization function is nonlocal, more unfortunately,
if it depends also on the z direction momentum kz such as
that of the layered superconductor Eq. (64), the near-field
reflection coefficient of the vacuum-infinite superconductor
interface should be modified to

Rp(ω, q) = iq − kzεz(ω, q, kz )

iq + kzεz(ω, q, kz )
, (B7)

where q is the in-plane momentum which is a conserved
quantity and kz is that in the nonlocal medium determined by
the condition ε(ω, q, kz ) = 0. Reference (B7) can be derived
in a similar fashion to Appendix B 1. For a slab with finite
thickness a, as shown in Fig. 11(c), the transfer matrix method
for solving the reflection problem renders

Rslab(ω, q) = Rp
1 − e2ikzd

1 − e2ikzd R2
p

, (B8)

where Rp is from Eq. (B7).

FIG. 12. Horizontal cut of the color plot in Fig. 6(b) at ω =
4 THz, i.e., Im[Rp(4 THz, q)] as a function of q.
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FIG. 13. (a) Schematic of the near-field experiment. (b) Distribution of z direction electric field Ez(x, y, z = 30 nm) excited by a dipole
oscillating at the frequency ω = 5 THz placed on top of a superconductor double-layer system shown in Fig. 6(a). The large/small period is
due to the symmetric/antisymmetric mode. The dipole is polarized in z direction and is placed at (x, y, z) = (0, 0, 30 nm) above the top layer.
The parameters are kF = 2π/(3 nm), vF = 2.5 × 105 m/s, γ = 30 THz, a = 3 nm, � = 3.0 THz, κ = 0.2, and κBaSh = 0.2. Higgs/BaSh
frequencies are assumed to be 4.5 THz/3.0 THz at zero momentum.

APPENDIX C: DERIVATION OF THE TWO-FLUID MODEL

In principle, the two-fluid formula, Eq. (42), can be ob-
tained from the general derivation, Eq. (39), with electron-
impurity or electron-phonon scattering taken into account.
Here we sketch the derivation of Eq. (42) by calculating the
polarization function from Eq. (39):

χρρ = χ (0)
ρρ −

(
ωχ (0)

ρρ + qχ
(0)
ρj

)2

ω2χ
(0)
ρρ + qiq jχ

(0)
ji j j

+ n
m q2 + 2ωqχ

(0)
ρj

. (C1)

Close to Tc, we have

χ (0)
ρρ = χ (0) + χs = χ (0) − π

4

�

Tc
ν , (C2)

where χ (0) comes from the “intraband” process among ther-
mally excited quasiparticles, while χs is the “interband”
contribution from exciting quasiparticle pairs, which has the
interpretation of superfluid susceptibility (compressibility).
Close to Tc, the χ (0) should resemble the polarization function
of a normal Fermi liquid, i.e., the Lindhard function [48,52]
with nonzero scattering rate. Similarly [43,53],

χ
(0)
jx jx

+ n

m
= −iωσn + ns

m
, (C3)

where σn is the “intraband” part, and

ns = n
∫

dξ (∂E f (E ) − ∂ξ f (ξ ))

= n
�2

2

∫
dξ

1

ξ
∂2
ξ f (ξ ) + O

(
�4

T 4

)

≈ 7ζ (3)

4π2

�2

T 2
c

n = 2(1 − T/Tc)n (C4)

is the superfluid density of a clean superconductor. Moreover,
close to Tc, the intraband contributions to the correlation
functions should approximately satisfy the continuity equa-
tions ωχ (0) + qχ

(0)
ρj = 0 and q jσni j + ωχ

(0)
ρ ji

= 0, since they
are identical to those of the normal state at � = 0. With these

simplifications Eq. (C1) becomes

χρρ = χ (0) + χs − (ωχs)2

ω2χs + ns
m q2

= χ (0) + q2

ω2 − v2
gq2

Ds/π . (C5)

The corresponding conductivity is just Eq. (42), with σn =
χ (0)iω/q2 and vg = √ ns

m /χs.

APPENDIX D: LONGITUDINAL OPTICAL
CONDUCTIVITY OF THE NORMAL FERMI LIQUID

In the low-frequency hydrodynamic regime (ω � �ee,
q � l−1

ee ) of a Fermi liquid, the longitudinal optical conduc-
tivity reads [49]

σ (ω, q) = i
ne2/m

ω + i�d − v2
d q2/ω

. (D1)

In the above formula, n is the electron density, m is the elec-
tron effective mass, �d is the momentum relaxation rate, and

vd =
√

1
m ( ∂P

∂n )
ise

is the first sound velocity of a neutral Fermi
liquid. Neglecting the effect of the Landau parameter F0s,
vd = vF /

√
D, where D is the space dimension. In the limit of

ω � vd q, D f q2, where D f = v2
d/�d is the diffusion constant,

Eq. (D1) becomes the Drude formula. In the opposite limit,
ω � vd q, D f q2, it crosses over to the Thomas-Fermi case.

APPENDIX E: GINZBURG-LANDAU ACTION AROUND Tc

In this section we derive the Ginzburg-Landau action at
around Tc of an s-wave BCS superconductor, where the col-
lective modes (except for the CG mode) are all overdamped.
Without EM field, the action reads [43]

S(�) = Tr ln G� +
∫

dτdr
1

2g
|�|2 =

∫
dτdrL, (E1)
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where L is the “Lagrangian.” Expansion of S up to |�|2 gives

S =
∑
ω,q

(
1

2g
+ χ (ω, q)

)
�(−ω,−q)�(ω, q), (E2)

where

χ (ω, q) = 1

V

∑
k

1 − f (ξk ) − f ξ (−k + q)

iωn − ξk − ξ−k+q

= ν

(
− 1

2
ln

c0ωD

T
− c1iω

T
− c2ω

2

T 2

+ csn

mT 2
q2 + O(ω3, q4)

)
(E3)

is the susceptibility for superconducting fluctuations, and c0,
c1, c2, cs are O(1) positive constants. We note that c0 =
2eγE /π , where γE ≈ 0.577 is Euler’s constant. The |�|4
contribution from a uniform static order parameter has the
coefficient

χ4 = 2

V

∑
k,iωn

1
(
(iωn)2 − ξ 2

k

)2 = ν
cβ

T 2
, (E4)

where cβ is an O(1) positive constant. Thus the effective
Lagrangian reads

L = ν

(
c1

T
�∗∂t� − c2

T 2
|∂t�|2 + csn

mT 2
|∇�|2

+ 1

2

(
1

gν
− ln

�

T

)
|�|2 + cβ

T 2
|�|4

)
. (E5)

The EM field enters through the gauge-invariant form ∂μ →
∂μ + ieAμ.

The �∗∂t� term should not exist in a well-defined La-
grangian but should be understood as describing a dissipative
term. It is apparent that close to Tc, the amplitude dynam-
ics is overdamped [78] with the damping rate ∼T . As the
temperature lowers to T � Tc, this Lagrangian predicts that
the amplitude dynamics crosses over to an underdamped one.
However, the power expansion in � is no longer valid there,
and the formalism in the main text should be employed.
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