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Fixation in competing populations: Diffusion and strategies for survival
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How should dispersal strategies be chosen to increase the likelihood of survival of a species? We obtain the
answer for the spatially extended versions of three well-known models of two competing species with unequal
diffusivities. Though identical at the mean-field level, the three models exhibit drastically different behavior
leading to different optimal strategies for survival, with or without a selective advantage for one species. With
conserved total particle number, dispersal has no effect on survival probability. With a fluctuating number, faster
dispersal is advantageous if intraspecies competition is present, while moving slower is the optimal strategy
for the disadvantaged species if there is no intraspecies competition: it is imperative to include fluctuations to
properly formulate survival strategies.
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I. INTRODUCTION

Biological dispersal refers to the movement of individuals
and is a key feature of population dynamics. Dispersal has
consequences not only for species distribution but also for in-
dividual survival, thereby influencing many different aspects
of evolutionary dynamics, from epidemic outbreaks to the
evolution of language [1–7]. The importance of dispersal rates
for ultimate survival stems from the fact that two individuals
need to be in the same locality in order to interact. Evidently,
the nature of interactions is also crucial, both within species
and across species, possibly including selective advantage
that favors one species. Thus the likelihood that a particu-
lar species eventually prevails depends on multiple factors
[8–13]. Indeed, when intraspecies interactions dominate, the
optimal strategy for choosing dispersal rates has been ex-
plored earlier. In the presence of logistic-type competition
for resources between members of the same species, the
survival probability of a species increases as the dispersal
rate increases [14–16], while in the presence of cooperation
between members of the same species the survival probability
increases as the dispersal rate decreases [17]. In general, how
should dispersal strategies be chosen so as to increase the
likelihood of survival of a species?

In this paper, we address this broad and important question
by focusing on the dispersal properties of two competing
species in a spatially extended system. The dynamics involves
random diffusive motion and may also include stochastic
birth and death of competing individuals. Indeed, scenarios
where the number of individuals is not fixed are ubiquitous
[8–11]. We will see below that choosing an optimal strategy to
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maximize survival probability needs a nuanced understanding
of factors which arise from the dynamics.

To understand these factors, we carry out a parallel inves-
tigation of three simple well-studied models with different
reaction dynamics [18–22]. We will show that, although for
equal-diffusivity cases with no selective advantage all the
models have similar statistical behavior, a slight imbalance in
either the diffusivity or the selective advantage dramatically
alters the outcome.

II. MODELS

The models are defined on a one-dimensional (1D) lattice
of L collocated points with unit separation and involve two
competing species (say A and B). Interactions are local and
involve two individuals at a time on the same lattice site. We
start with an initially well-mixed population with a number
N/2 of A and B particles. The onsite interactions in the three
models of interest are defined by Eqs. (1)–(3) below; in every
case, these are supplemented by diffusive dispersal.

A. Voter-type model with diffusion

In a single microstep, the interspecies reactions on each site
follow Moran dynamics with rates λ(1 + 1

2 s) and λ(1 − 1
2 s):

A + B
λ(1+ 1

2 s)−−−−→ A + A, B + A
λ(1− 1

2 s)−−−−→ B + B. (1)

Here s is the selective advantage, which gives a preference
to either A(s > 0) or B(s < 0) in the competition, with s = 0
being the neutral case. For s > 0 (s < 0), species A (B) has a
selective advantage.

Evidently the total number of particles in the full system
is strictly conserved, but on each site the evolution differs
from the strict Moran process [11,12,23,24] as the number of
particles fluctuates owing to diffusion. The dynamics on each
site resembles that of the voter model [25,26].

B. Fluctuating voter-type model with diffusion

In addition to the competitive Moran moves Eq. (1),
we allow individuals to give birth or die, at equal
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rates μ [18]:

A
μ−→ 2A, A

μ−→ 0, A + B
λ(1+ 1

2 s)−−−−→ A + A,

B
μ−→ 2B, B

μ−→ 0, B + A
λ(1− 1

2 s)−−−−→ B + B. (2)

In our numerical work, we choose μ = λ = 2. The dy-
namics leads to a quasisteady state where the total number of
particles fluctuates around an average value and one of the two
species fixates [27]. This is followed by, on very long times,
an overall extinction (see Appendix A).

C. Competitive Lotka-Volterra model with diffusion

In this model, individuals can give birth at rate μ but death
occurs because of intraspecies and interspecies competition,
at rates γ1 and γ2(1 ± s), respectively [14,21]. The reactions
are

A
μ−→ 2A, A + A

γ1−→ A, A + B
γ2(1+s)−−−−→ A,

B
μ−→ 2B, B + B

γ1−→ B, B + A
γ2(1−s)−−−−→ B. (3)

In steady state the mean concentration or carrying capacity ρ

is given by μ/γ1.
In addition to the reactions [Eqs. (1)–(3)], individuals can

move stochastically to neighboring sites but with different
hopping rates for A and for B, reflecting different dispersal
rates DA and DB. Note that unlike the stepping stone model
[11,28,29] the number of individuals on a site can fluctuate.

The models which are defined by Eqs. (1)–(3) show very
different behavior, as evidenced by Fig. 1, which shows the
time evolution for the three, with equal (top panels) and
unequal (bottom panels) dispersal rates and with s = 0 for
the two species. This happens, as we show later, even though
the mean field and well-mixed [19] descriptions of all three
are identical, underscoring the importance of fluctuations in
formulating survival strategies.

III. MEAN-FIELD EQUATIONS

The mean field equations for the models can be derived
from the corresponding master equation [19,20,27,30,31]. Be-
low we present the mean-field equation for the concentration
of the two species (cA and cB) for each of models and from
it derive the equation for the total concentration c = cA + cB

and the fraction f = cA/c.

A. Mean-field equation for the voter model with diffusion and
the fluctuating voter model with diffusion

Note that because the birth rate and death rate in the
fluctuating voter model with diffusion (FVMD) are the same,
the mean-field equation for the voter model with diffusion
(VMD) and that for the FVMD are identical. The equations
for the concentration of A and B species are

dcA

dt
= λ

2
scAcB + DA

∂2cA

∂x2
, (4)

dcB

dt
= −λ

2
scAcB + DB

∂2cB

∂x2
. (5)

FIG. 1. Space-time plots for the three models, namely, voter
model with diffusion (VMD), fluctuating voter model with diffu-
sion (FVMD), and competitive Lotka-Volterra model with diffusion
(CLVMD), with equal (top panels) and unequal (bottom panels)
diffusivities and with zero selective advantage. Red (species A)
and green (species B) indicate two competing species, with green
diffusing slower (bottom panels), with the intensity of color being an
indicator of local density. Yellow indicates empty space. At left (a),
the top and bottom panels are shown when A wins, and similarly, at
right (b), top and bottom panels are shown when B wins. The initial
state has well-mixed populations with equal densities ρA = ρB = 8
of the two species, where ρA = N/(2L). The diffusion constant for
the slower species is taken to be zero for the VMD and FVMD,
resulting in pillarlike structures localized at sites. For CLVMD, the
slower species has diffusion constant 0.96. It is evident that the
dynamics of fluctuations is very different in the three cases.

Using the above equations for cA and cB, we obtain the
following equations c and f :

dc

dt
= (DA − DB)

∂2(c f )

∂x2
+ DB

∂2c

∂x2
, (6)

df

dt
= λs f (1 − f ) + DA

∂2 f

∂x2
+ 2DA

c

∂c

∂x

∂ f

∂x

+ f
DA − DB

c

∂2c

∂x2
− f

DA − DB

c

∂2(c f )

∂x2
. (7)

For DA = DB, Eq. (7) reduces to the Fisher equation [32,33].

B. Mean-field equation for the competitive Lotka-Volterra
model with diffusion

For the competitive Lotka-Volterra model with diffusion
(CLVMD), we set γ1 = γ2 = γ and obtain the following
reaction-diffusion equations:

dcA

dt
= μcA + γ cA(cA + cB) − γ scAcB + DA

∂2cA

∂x2
, (8)

dcB

dt
= μcB + γ cB(cA + cB) + γ scAcB + DB

∂2cB

∂x2
. (9)

023412-2



FIXATION IN COMPETING POPULATIONS: DIFFUSION … PHYSICAL REVIEW RESEARCH 2, 023412 (2020)

Again, from the above equations we get the following equa-
tions for the evolution of c and f :

dc

dt
= μc

(
1 − γ

μ
c

)
+ (DA − DB)

∂2(c f )

∂x2
+ DB

∂2c

∂x2
, (10)

df

dt
= γ s f (1 − f ) + DA

∂2 f

∂x2
+ 2DA

c

∂c

∂x

∂ f

∂x

+ f
DA − DB

c

∂2c

∂x2
− f

DA − DB

c

∂2(c f )

∂x2
. (11)

The homogeneous stable solution for the concentration equa-
tion is c = μ/γ . Around this homogenous initial state, it is
easy to see that the equations for CLVMD and VMD models
are identical.

We focus on the fixation probability F , which is the
likelihood that a certain species would prevail over the other,
and ask for the dispersal strategy which would maximize F .
Here is a summary of our main results.

(i) In the VMD where the total number of individuals is
strictly conserved, F is invariant with respect to change in
diffusivity irrespective of selective advantage. Thus in this
case the variation of dispersal rate is ineffective as a strategy.

(ii) In the FVMD, birth and death lead to fluctuations of
the total number of individuals. In the neutral case (s = 0),
F remains independent of diffusivity. However, a new effect
arises when s �= 0: the optimal strategy for disadvantaged
individuals is then to move slower.

(iii) In the CLVMD, number fluctuations due to in-
traspecies competition dominate; the best strategy to enhance
F is then to move faster. In a nutshell, dispersal strategies
become crucial in the presence of number fluctuations, but
exactly what the optimal strategy is depends on the form of
nonconservation. Below we present details of our investiga-
tion which lead to these conclusions and also remark on the
fixation times for each species in the neutral case.

An important point is that the mean-field descriptions
of the three models are similar, as shown in Eqs. (7) and
(11). Therefore, for investigating the nontrivial effects that
we highlighted in the introduction, we performed agent-based
simulations for the models, supplementing these by analytic
arguments to support the numerical results.

IV. METHODOLOGY

We simulate the reaction along with the diffusion dynam-
ics, by splitting the two processes. A single time step is broken
into many substeps, each of duration �t . At the first substep,
for reactions, we implement the event-based variant of the
Gillespie algorithm [34] at each site up to a small time �t
and repeat it for all sites. After a reaction process, the spatial
positions of individuals are updated for time �t according
to their diffusivities. We follow the processes until global
fixation is achieved.

Numerical simulation

In our numerical simulations, we start with N/2 individuals
of type A and an equal number of type B, placed randomly on
a 1D lattice with L sites with N > L. Thus the average density
of individuals ρ0 = N/L > 1. In each of the three models
of population dynamics under study, there are two physical

processes: (i) reactions, namely birth, death, and intra- and
interspecies competition; and (ii) movement of individuals via
diffusion. In our lattice model, reactions are on-site processes
and diffusive moves happen between nearest-neighbor lattice
sites. We split the reaction and diffusion processes, i.e., only
reactions occur for a time interval �t , followed by only
diffusive moves for time �t . The time interval �t is chosen to
be much smaller than one Monte Carlo step yet large enough
that many reactions occur in �t .

For reactions, we implement the event-based Gillespie
algorithm [34] at each site. To do so, we first calculate the
propensity of all possible reactions on that site. A particular
reaction would occur with a probability that is proportional to
its rate. Let us consider a site i containing nA individuals of
type A and nB number of type B. At this site, the total number
of possible reactions due to birth, death, and intraspecies and
interspecies reactions is

R = (
μA

birth + μA
death

)
nA + (

μB
birth + μB

death

)
nB + γ1

× [nA(nA − 1) + nB(nB − 1)] + 2(λ + γ2) nA nB. (12)

We choose μA
birth = μB

birth = μA
death = μB

death = μ in our nu-
merical simulation. The probability of a particular reaction
event occurring is the ratio of the rate of the event to the total
rate R. For instance, A would become 2A with probability
μ nA

R . If the reaction happens, the next step is to increase
the time by ln(1/r)/R where r ∈ (0, 1] is a random number
chosen from uniform distribution. The number of A’s and B’s
changes after each successive reaction, thereby affecting the
total rate R at the site. Quite a few reactions occur until
the sum of the reaction time steps just crosses the chosen
�t . We follow the same procedure for all other sites. Recall
that during this time step �t we solely do the reaction, and
intersite diffusive hops are not allowed.

Once the reactions are completed on every site of the
system up to time �t , we move a randomly chosen set of
ND�t individuals to one of the nearest-neighbor sites, where
D is the hopping rate of the species. The time evolution is
averaged over a number Nhist of histories, each starting from a
new initial condition, a typical value of Nhist being 30 000.

V. RESULTS

In the following, let the diffusivities of the A and B species
be DA = D, and DB = D − �D, respectively. In all our simu-
lations we set D = 1. We assume �D > 0; this corresponds to
A particles diffusing faster than B particles. We are interested
in the effect of �D on the behavior of the models defined
in Eqs. (1)–(3), both when the selective advantage s is zero
(neutral case) and when it is nonzero. We take up these cases
separately, focusing on the fixation probabilities FA(s,�D)
and FB(s,�D), where the explicit dependence on s and
�D may be suppressed if not required. Evidently we have
FA + FB = 1. For the neutral case (s = 0), we also discuss
the fixation times tA and tB required to reach a state with all
A (all B). Mean fixation times 〈tA〉 and 〈tB〉 are quite different
even when the fixation probabilities of both species are equal,
a reflection of differences of dispersal dynamics when �D
is nonzero. Below we present a detailed investigation for the
three models. We first discuss the case with s = 0.
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FIG. 2. In the neutral case s = 0, the fixation probability FB does
not vary with respect to relative diffusivity �D for VMD and FVMD,
while it shows a strong variation with �D for the CLVMD.

A. Neutral case (s = 0)

Numerical simulations show that the variation of
FB(0,�D) with �D is quite different for the three models
(Fig. 2). While FB is immune to changing �D for the VMD
and FVMD, it is very sensitive to �D for the CLVMD. These
pronounced differences occur even though the mean-field
equations for the concentration of species are the same for
all three models.

1. VMD

The full dynamics involves diffusion with unequal A and
B diffusivities along with A − B symmetric reaction kinetics.
The result of each reaction step is 2A or 2B with equal proba-
bility, implying that the overall numbers of A and B particles
follow a Moran process. Thus FA(0,�D) = FB(0,�D) =
1/2.

To understand the fixation dynamics, let us consider the
case where DA = D and DB = 0. Starting from uniformly
distributed A and B particles, very quickly isolated pillars with
a large number of B particles are formed [see Figs. 1(a) and
1(b) (bottom left)]. Consequently, the A particle concentration
in the vicinity of the pillar is strongly depleted. Furthermore,
because of number fluctuations, with finite probability the
local pillar can eventually convert quickly into all A’s. This
leads to an increased local concentration of A, which then
diffuses away as in Fig. 1 (bottom left). We have verified
that this effect persists even when DB is nonzero, so long as
�D > 0.

We observe that the mean fixation times for the species
satisfy 〈tA〉 < 〈tB〉 (see Table I). First consider the case where

TABLE I. Fixation time with unequal diffusivities for different
system sizes L where ρ ≡ N/L = 64. We consider DB = 0 for the
VMD and FVMD and DB = 0.96 for CLVMD.

VMD FVMD CLVMD

L 〈tA〉 〈tB〉 〈tA〉 〈tB〉 〈tA〉 〈tB〉
32 146 955 118 232 172 110
64 587 4102 380 625 742 735
128 2328 17721 1101 1587 1904 1841

B fixates. At long times, we observe a single B pillar with few
scattered A particles [see Fig. 1(b)]. The scenario is exactly
opposite for the case of A fixation, where the last B pillar is
in a sea of a large number of A particles (see Fig. 1). Thus
the frequency of reaction in the latter case is larger than for B
fixation.

It is possible to obtain analytic results for the fixation
probability as well as mean fixation times 〈tA〉 and 〈tB〉 in the
limit of VMD dynamics in which one species (say B) has zero
diffusivity, and the reactions happen infinitely fast. Consider
the neutral case with an initial condition with N0 = N/2 B’s at
a single site S0 and no A particles. At each time step, a single
A particle is assumed to reach S0, on-site reactions being
completed before the next A arrives. We now show that the
fixation probability equals 1/2 for both species, while mean
times 〈tA〉 and 〈tB〉 for A and B fixation satisfy 〈tA〉 < 〈tB〉.

Let us compute the probability PA(n) that global A fixation
occurs at the nth step. A particles arriving earlier at site S0

must have converted to B, so that the number of B particles af-
ter the (n − 1)th step is N0 + n − 1. The probability Q(n − 1)
of this event is g0 × g1 · · · ×gn−1 where gi = (N0 + i)/(N0 +
i + 1) is the probability that an A particle arriving at the ith
step is converted to B. Thus Q(n − 1) = N0/(N0 + n − 1).
Now consider the arrival of the next A particle. The probability
that reactions result in the N0 + n particles becoming all A’s
is then 1/(N0 + n). If this happens, the system would fixate
globally to all A’s. Thus the probability PA(n) that A fixation
happens at the nth time step is Q(n − 1) × 1/(N0 + n). The
overall A fixation probability is then

∑N0
n=1 PA(n) = 1/2, and

the mean time of A fixation is straightforwardly found to be

〈tA〉 = 2N0[H (2N0) − H (N0)] − (N0 − 1) (13)

where H (M ) = ∑M
m=1

1
m . For large N0, it then follows that

〈tA〉 ≈ CN0 with C = (2 ln2 − 1) ≈ 0.386N0.
On the other hand, in order for B fixation to occur, the

B’s must have survived at each of the earlier steps. The cor-
responding probability is Q(N0) = 1

2 , and the corresponding
survival time is 〈tB〉 = N0. Evidently, 〈tA〉 < 〈tB〉 holds. This
result accords with the qualitative point that the faster species
fixates earlier on average.

2. FVMD

All reaction steps, whether interspecies competition or
individual births or deaths, continue to maintain A − B sym-
metry even if �D �= 0, as for the VMD. Thus inclusion of
birth-death fluctuations in the FVMD does not change the con-
clusion FA(0,�D) = FB(0,�D) = 1/2. For the same reason
as VMD, the inequality 〈tA〉 < 〈tB〉 (see Table I) continues to
hold for the FVMD.

3. CLVMD

An advantage for the faster species results from a com-
bination of unequal diffusivities and intraspecies death terms
[Eq. (3)], which act on several particles of the same species on
the same site. Consider first the A particles. Owing to the faster
A diffusivity, A-particle concentration fluctuations spread out
quickly, thus minimizing the effects of intraspecies death.
Dispersal of B particles is slower, so fluctuations which lead
to B particle clustering decay relatively slowly. This makes
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FIG. 3. Cartoon of some moves and reactions to illustrate the contrasting effects of �D > 0 in the three models when s > 0. Starting from
the same initial configuration (top row) we depict configurations which occur just before (second row) and just after (third row) a possible
A−B interaction event. A particles (open red circles) are stronger and faster; B particles (solid green circles) are weaker and slower. VMD:
Each reaction event can be mapped onto a step in the Moran process irrespective of diffusion constants. FVMD: In this model, an individual
can die on its own. When the lifetime of an A particle is less than τDiff, it is likely to die before interaction (depicted by the faint red circle in
the second row), which is advantageous for the weaker B species, as the number of interactions would drop. Thus the optimal strategy for the
weaker species is to make τDiff large, which it can do by moving as slowly as possible. CLVMD: The lifetime of a cluster of slow B’s formed
by chance on a site is larger than that of a corresponding A particle cluster, leading to more intraspecies extinction, in turn making it easier to
fixate A.

B particles more prone to intraspecies death. A depleted B
population on a given site is then easier to convert to all A’s on
that site through the competitive A − B conversion terms [see
Eq. (3)] [19]. Thus, overall, the optimal strategy to maximize
the fixation probability within the CLVMD is to move fast.

We observe that 〈tA〉 > 〈tB〉 holds for relatively small L, but
the difference narrows down as L increases (see Table I). In the
minority of cases in which the B species does achieve fixation,
it must be before the intraspecies terms have had much effect.
Thus B fixation occurs at relatively early times.

B. Role of selective advantage (s > 0)

Going beyond the neutral case, in order to study the change
of fixation probability brought in by unequal diffusivity, we
define

�FB(s,�D) ≡ FB(s,�D) − FB(s,�D = 0) (14)

with �FA being defined similarly. Evidently we have �FA +
�FB = 0. Below, we see how �FA,B behaves in the three
models under study.

1. VMD

The argument used in the neutral case applies also when
s �= 0, implying that the fixation probability is the same as
that of the Moran process with the corresponding value of s.
The outcome of a particular Moran step does not depend on
the manner in which an A and a B reach the same site (Fig. 3).
Hence �FA = �FB = 0.

2. FVMD

The inclusion of birth-death processes has a strong effect
and the best dispersal strategy now depends on the strength
of the species. For instance, if s > 0, then moving slowly is
a better strategy than moving fast for the weaker B species.
Evidence for this comes from Fig. 4, which shows that �FB

is positive when �D and s are both positive. To see how

birth-death fluctuations can affect fixation, refer to Fig. 3,
which compares the sequence of events with DB = DA and

FIG. 4. Strategy plot: The change of �FB(s,�D) of the slower B
species for given values of selective advantage s for the three models;
recall that s > 0 (s < 0) implies selective advantage for A(B). VMD:
�FB vanishes for all s, as depicted by the thick red line in (a).
Diffusing faster or slower does not change the fixation probability.
FVMD: When B is weaker, �FB is positive, implying that moving
slowly is a better strategy than moving fast. �FB reverses sign when
s < 0, implying reversal of the strategy. CLVMD: the faster species
gets a benefit for all values of s as shown in (b).
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FIG. 5. Plot of �FB(s,�D) with respect to s for different �t and
with �D = 1 fixed.

DB < DA. The separation R between an A and B particle
undergoes a random walk with an effective diffusion constant
Deff = DA + DB = 2D − �D. Thus, provided they survive,
the typical time for the particles to meet is τdiff ≈ R2/Deff.
Further, owing to the birth-death process, the typical time of
survival of an A particle is 1/μ, implying there is a probability
(1 − e−μ τdiff ) that the A particle would not survive for time
τdiff. Thus the best strategy for the weaker particle B to survive
is to increase τdiff (decrease Deff) to the maximum extent
possible, which it can do by setting DB = 0, i.e., by standing
still. This is corroborated by Fig. 4, which shows that �FB

is positive for s > 0, meaning that the disadvantage for the
B species is reduced. The accrued advantage increases with s
for small s. As s increases in magnitude, selective advantage
effects override the effects of unequal diffusivities, hence
�FB → 0 as |s| becomes large. This leads to the extrema
in Fig. 4(a). In addition, we checked that our results do not
depend on �t by varying a factor 4, and found that there is no
appreciable change in our numerical estimates of the fixation
probability (Fig. 5).

3. CLVMD

Reduction of B diffusivity increases the residence time,
thus allowing more intraspecies competition (B + B → B) in
time τdiff. The fall of the number of B’s makes A fixation
more likely on that site. For s = 0, we already showed the
faster species is favored, implying �FB < 0. The fact that
�FB(s,�D) → 0 in Fig. 4(b) as |s| increases follows from
the same considerations as in the FVMD.

VI. CONCLUSIONS

In conclusion, our results for three well-known models
of competing populations with unequal diffusivity show that
it is crucial to account for fluctuations beyond mean-field
theory to understand their behavior and formulate dispersal
strategies. The fixation probability is maximized by increasing
the dispersal rate if intraspecies competition is present; but,
in a situation where the species is disadvantaged and subject
to fluctuations due to birth and death, fixation probability is
maximized by moving slowly; and it is unaffected by dispersal
if competing interactions are described by number-conserving
dynamics that can be mapped onto a Moran process. It would

be interesting to explore the effects of fluctuations in broader
contexts, such as competing populations in compressible
flows, or with clustered initial conditions. Finally, in a large
population, it may be interesting to ask for an optimal strategy
to achieve a larger fixation probability within a fixed time.
Our studies of mean fixation times constitute a step in this
direction.
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APPENDIX: QUASISTATIONARY STATE AND GLOBAL
EXTINCTION IN FVMD

In this Appendix we show the presence of a long-lived
quasisteady state (QSS) in which 〈N〉 fluctuates around a
constant value before eventual extinction. Our numerical
simulations, even with small system size L = 8 and density

FIG. 6. (a) Long-time dynamics showing extinction for our sim-
ulation with L = 8 and ρ = 2. (b) Average number of particles
〈N (t )〉 vs time t for equal (black solid line) and unequal (red solid
line) diffusivities. The angular brackets denote averaging over 10 000
independent realizations. Average fixation (〈tA〉, 〈tB〉) and extinction
(〈tExt〉) times are marked with arrows.
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ρ = 2, demonstrate that the fixation of one of the two species
occurs well before extinction [see Fig. 6(a)]. For the large

system sizes used in the main text, we are always in the QSS
regime [see Fig. 6(b)].
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