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Synthetic non-Abelian gauge fields and gravitomagnetic effects in tilted Dirac cone systems
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In planar tilted Dirac cone systems, the tilt parameter can be made space-dependent by either a perpendicular
displacement field or by chemical substitution in certain systems. We show that the symmetric partial derivative
of the tilt parameter generates non-Abelian synthetic gauge fields in these systems. The small velocity limit of
these gauge forces corresponds to Rashba and Dresselhaus spin-orbit couplings. At the classical level, new forms
of forces from conservative and Lorentz-type to (anti-)friction-like forces emerge from the effective spacetime
structure in these materials. The velocity-dependent forces are odd with respect to tilt and therefore have opposite
signs in the two valleys when the system is inversion symmetric. Furthermore, toggling the chemical potential
between the valence and conduction bands by a gate voltage reverses the sign of the all these classical forces,
which indicates these forces couple to the electric charge of the carriers. As such, these “gravitomagnetic” forces
are natural extensions of the electric and magnetic forces that appear in the particular geometry of the tilted Dirac
cone systems.
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I. INTRODUCTION

In solid-state physics, the lattice breaks the Lorentz sym-
metry of the vacuum. But in certain lattices, such as the hon-
eycomb lattice of graphene, the Lorentz symmetry emerges
in a lower energy scale and with a velocity scale vF , which
is much smaller than the seed of light,1 with the following
effective Hamiltonian:

HD = vF γ 0γ i pi + mv2
F γ 0, (1)

where a possibly nonzero Dirac mass m corresponds to the
band gap. Here d is the space dimensions, i = 1 . . . d and
γ μ are Dirac matrices [1,2]. As usual Greek indices run from
0, . . . , d with μ = 0 denoting the “time.” The Dirac cone in
the dispersion relation of the electronic degrees of freedom in
Dirac solids at a deeper level can be attributed to an emergent
effective Minkowski spacetime (at length scales much larger
than the lattice constant), from which the Lorentz symmetry
immediately and quite naturally follows.

But unlike the Lorentz symmetry of the vacuum of the
standard model of particle physics, the emergent Lorentz
symmetry of the condensed matter systems is not stringent
and can be broken in a number of interesting ways. One way
to break the Lorentz symmetry is to tilt the Dirac/Weyl cone
in the spectrum. This can be done by adding a term h̄vF ζ i pi
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1In general, a mass term γ 0m can also be included.

proportional to unit matrix of appropriate dimension to the
above Hamiltonian to give

HD = vF γ 0γ i pi + mv2
F γ 0 + vF ζ i pi. (2)

There are two approaches to study the Hamiltonian Eq. (2):
(i) The first one is the standard solid-state approach to take
this equation as the starting point and study its consequences
and explore the effect of “tilt parameters” ζ ≡ ζ i in vari-
ous physical properties. (ii) The second approach is to start
from an effective spacetime structure specified by a metric
gμν (ζ i ) that reduces to the Minkowski structure as ζ i → 0,
namely gμν (ζ i → 0) = ημν = diag(−1, δi j ), where δi j is the
Kronecker δ function.

We start by providing a comprehensive introduction to
relevant materials in various dimensions supporting the tilted
cone dispersion, followed by a subsection introducing the
spacetime structure of these materials. Those readers from
gravitational physics background gan skip Sec. I A.

A. Materials hosting tilted Dirac/Weyl cones

Such tilted Dirac cone materials (TDCMs) and correspond-
ing tilted Dirac fermions (TDFs) can exist in three (3D), two
(2D), and even one (1D) space dimensions. For historical
reasons, let us start the discussion with 2D TDFs. Histori-
cally, the layered organic compound α-(BEDT-TTF)2I3 was
the first realization of tilted Dirac cone [3–8], which was
discovered in Japan [9]. The Dirac structure of charge carriers
in this compound is imprinted in their π Berry phase inferred
from their Landau quantization [10]. The tilt of the Dirac
cone in organic compound can be inferred from interlayer
magnetoresistance [11,12]. Landau levels were obtained from
semiclassical quantization [13]. Quantum mechanically, from
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the solution in the presence of an in plane electric field, it
was found that the valley degeneracy is lifted [14]. Mag-
netoplasmons in organic compound were studied by Sári
et al. [15]. NMR measurements suggest that this compound
is a strongly correlated TDF system [16] marked by three
orders of magnitude enhancement of the Korringa ratio [17]
and the reshaping of Dirac cone caused by strong Coulomb
interactions in organic TDF system [18].

The list of TDFs in 2D is expanding rapidly. Starting
from the above organic compound, substitution of iodine with
halogens was examined, and it was found that replacement
I → F can over-tilt the Dirac cone [19]. This is particularly
important as it corresponds to transition from type-I to type-II
Dirac fermions. Type-II 2D DFs are suggested by ab initio
calculations for quantum wells of LaAlO3/LaNiO3/LaAlO3

[20], where varying the number of LaNiO3 layers can shift
the Dirac node. The surface of crystalline topological in-
sulators [21] is also predicted to host TDFs. Furthermore,
TDFs are proposed in the antiferromagnetic phase of the
Iron-based superconductors as excitations above a spin den-
sity wave mean field state [22]. Angular resolved photoe-
mission measurements of Varykhalov et al. which is also
supported by ab initio calculations, find a tilted Dirac cone
on the metallic surface of W caused by Rashba spin-orbit
interaction [23]. Ultra-low dissipation in the conductivity
of BaFe2As2 was attributed to the tilted Dirac cone in its
spectrum [24].

The above examples are 2D TDFs based on layered com-
pounds. TDFs are also expected in purely 2D, namely one-
atom-thick compounds. First principle calculations suggest
that partially hydrogenated graphene compound, C6H2 has a
tilted Dirac cone (TDC) in its spectrum [25]. The left neighbor
of Carbon in the periodic table of elements, namely, boron
in 8Pmmn lattice structure is also predicted to host TDFs
[26,27]. Group theory analysis of this structure of elemental
boron suggests that the tilt of the Dirac cone in its spectrum
can be tuned by a perpendicular electric field [28]

There has been many theory efforts to understand TDCMs.
Kawarabayashi et al. [29] find a generalized chiral symmetry
that protects the Dirac node in these systems. A generalized
hopping model on honeycomb lattice supporting TDC is given
by Kishigi et al. [30] as well as in quinoid-type graphene
[13]. Initially motivated by the above organic compound, and
later by the 2D 8Pmmn borophene, many physical properties
of TDF systems are calculated. TDFs in 2D also exhibit the
minimal conductivity phenomenon of upright Dirac fermions
in graphene. In this case,

√
σxxσyy approaches the same value

as in graphene [31]. Proskurin et al. study longitudinal con-
ductivity of 2D TDCMs in magnetic fields and find non trivial
Landau levels transverse to tilt direction [32] and a divergent
transverse conductivity [33]. Rostamzadeh et al. using Boltz-
mann and Kubo formulas obtain the ratio of the transverse and
longitudinal conductivities diverges as

√
1 − ζ 2 [34], where ζ

is the dimensionless quantity that determines the tilt. For type-
I (II) TDFs one has ζ < 1 (>1). The effect of particle-hole
asymmetry in the optical conductivity of TDFs was examined
in [35]. Nishine et al. [36] find cusps in dynamical polarization
that leads to new plasmon modes [37]. The analytical results
of Jalali-Mola et al. also show a kink in the plasmon disper-

sion, and an additional over-damped plasmon mode arising
from the tilt [38,39]. The tilted is a very essential element in
a minimal model that is able to generate a finite quadruple
moment Qi j [40]. It has been suggested that the tilt of the
Dirac cone influences the spin transport [41]. Anomalous heat
flow driven by the tilt was found by Sengupta et al. [42] for
2D TDFs. Given the relevance of strong correlations in the
organic TDF systems, the effect of disorder and Coulomb
interactions was also studied in 2D DFs [43,44]. The role
of Coulomb interactions in generating dynamical (excitonic)
gap in two-dimensional TDCMs was investigated in [45]
where it was found that the tilt suppresses the dynamical gap.
Excitonic instability of the tilted Dirac fermions is also inves-
tigated by Ohki and coworkers [46]. Tilt plays important role
when superconductivity is introduced: Faraei et al. find that
both retro and specular Andreev reflected holes come closer to
the normal to the interface upon increasing the tilt parameter
and the Andreev reflection becomes perfectly perpendicular
when ζ → 1 [47]. Furthermore in SNS junctions based on 2D
TDFs, the Andreev mode that propagates along the channel
will acquire an electric charge when the tilt parameter is
nonzero [48]. The pairing correlations are in general enhanced
upon approaching the limit ζ = 1 that separates the type-I and
type-II Dirac/Weyl fermions [49].

In three dimensions the tilted or type-II Weyl fermions in
WTe2 were originally predicted and noticed as their Weyl
node was protected as the meeting point of electron and
hole pockets [50]. This prediction was soon confirmed in
experiment [51–53]. Later on MoTe2 was also predicted [54]
and confirmed [55–59] to be a tilted Weyl material. The Fermi
arcs in WTe2 compound were observed in [52]. Later on, also
type-II Dirac fermions were predicted in PtSe2, PtTe2, PdTe2

and PtBi2 family of dichalcogenides [60]. Single crystals of
bulk PtSe2 were grown and evidence for type-II Dirac cone
was found in Ref. [61]. Fei et al. [62] found nontrivial Berry
phase in layered type-II Dirac fermion in PdTe2 crystals.
They also found that Pt alloying of IrTe2 can shift the node
to approach the type-II Dirac semimetal [63]. The PdTe2

compounds hosts both superconductivity and type-II Dirac
fermions [64]. ARPES evidence for Lorentz violating type-II
Dirac fermions was found in bulk PtTe2 [65]. The inverse
Perovskite compound Ca3PbO also hosts 3D TDFs [66].
Subsulfide Ir2In8S is also shown to host type-II 3D Dirac
fermions [67].

On the theory side, Trescher and coworkers found that a
simple anisotropy affects the conductance, but not the Fano
factor, while the tilt affects both Fano factor and conductance
[68]. Effect of disorder was also found to be enhanced in
three-dimensional tilted Weyl materials [69]. Landau quanti-
zation of 3D type-I and type-II Weyl semimetals was inves-
tigated by Tchoumakov et al. [70]. Optical signature of the
tilt in type-I and type-II Weyl semimetals was calculated by
Carbotte [71]. In effect of disorder and Coulomb interactions
was studied using renormalization group method in 3D TDFs
[72]. It was found that the disorder enhances the effective tilt
[72]. Furthermore, the tilt was found to give rise to intrinsic
anomalous Hall conductivity [73].

Finally, regarding possible materials for 1D TDFs, it has
been suggested that the sodium termination of zigzag edges in
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graphene nano-ribbons can give rise to 1D tilted Dirac cone
spectrum [74].

B. Tilted Dirac/Weyl materials as new spacetime structure in
the solid state

The list of materials exhibiting tilted Dirac/Weyl fermions
is being expanded in both theory and experimental fronts in
d = 1, 2, 3 dimensions. There are two approaches to such
systems. (i) The first approach is to take the tilt in the energy
dispersion as granted. Then one can write an effective Hamil-
tonian compatible with the tilt and study its consequences.
(ii) The second line of thought is to attribute the tilt in
the dispersion relation to a new spacetime structure. This
approach is pioneered by Volovik in three-dimensional Weyl
semimetals and is followed by others. The later approach
enjoys a covariant mathematical structure and necessitates the
use of the geometric language of general relativity. Therefore,
the powerful language of geometry can make certain phe-
nomena more manifest and/or transparent by expressing the
physics in a covariant and mathematically neat form. In this
way, the plethora of phenomena associated with the structure
of spacetime can be examined in a solid-state setting. In
this part of the introduction we would like to elaborate on
this aspect and review existing attempts in this direction: As
pointed out for Dirac/Weyl materials with upright cone, the
emergent structure of the spacetime felt by the electrons is
the Minkowski spacetime. Tilting the cone-shaped dispersion
spoils the Lorentz symmetry and hence the Minkowski struc-
ture of the emergent spacetime. Therefore, a valid and perti-
nent question would be, what is the new spacetime structure
behind a tilted Dirac/Weyl cone spectrum?

This geometric line of thought in 3 + 1-dimensional Weyl
semimetals is pioneered by Volovik [75,76]. Indeed the energy
spectrum of Eq. (2) can be written as an invariant equation as
gμνkμkν = m2, where m can be either zero or nonzero Dirac
mass, kμ = (E , k) is the energy-momentum four-vector and
gμν is given by the so called Painelevé-Gullstrand (PG) metric
[28],

ds2 = −v2
F dt2 + (dr − vF ζdt )2. (3)

In 3 + 1 dimensions this metric can be brought to the standard
Schwarzschild format [77] which admits a black-hole horizon
[78]. The explicit form of the above metric in 3 + 1 dimen-
sions is

gμν =

⎡
⎢⎢⎢⎣

ζ 2 − 1 −ζx −ζy −ζz

−ζx 1 0 0

−ζy 0 1 0

−ζz 0 0 1

⎤
⎥⎥⎥⎦, (4)

where ζ 2 = |ζ|2 = ζ 2
x + ζ 2

y + ζ 2
z . In 2 + 1 dimensions, the

last column and row of the above matrix will be omitted.
Note that embedding the two-dimensional graphene and de-
forming it by strain, possible Lobachevsky space geometry
can be constructed [79,80]. But the important difference of
graphene metric with the 2 + 1 D version of metric Eq. (4)
is that in graphene only the spatial components gi j can be
influenced by strain, while in tilted Dirac/Weyl materials the
g0 j components mixing space and time are subject to change.

Furthermore, strain-induced changes are typically very small
effects. Formally, the PG metric is basically a combination of
a Galilean boost on a Minkowski metric and can be realized
in rotating frames which can lead to interesting coupling
between (quantum mechanical) spin and mechanical rotation
[81,82].

Although the tilting deformation of the Dirac theory de-
stroys the standard Lorentz symmetry, but even for a uniform
tilt parameter (i.e., a tilt parameter independent of spacetime
coordinates), a deformed version of the Lorentz symmetry
appears [83]. Such a modified Lorentz symmetry can be ob-
tained as isometry of the deformed Minkowski spacetime via
standard mathematical procedure [83]. Therefore, this sym-
metry can be attributed to a new spacetime structure. Indeed,
the polarization function of tilted Dirac cone systems was
shown to acquire a covariant form in the deformed Minkowski
spacetime that is precisely defined by metric Eq. (4) [84].

Ojanen and coworkers propose that spatially varying time-
reversal (TR) and inversion (I) breaking sources in Weyl
semimetals are equivalent to a curved spacetime for chiral
fermions [85]. Such structures give rise to synthetic gauge
fields. The present authors have proposed that in 2 + 1 di-
mensions, the 2D spatial atomic arrangements allow to tune
the geometry of the spacetime by electric fields [28]. Unlike
strain induced changes in the metric of the spacetime, the
changes introduced by TR or I breaking agents in (particularly
2D materials) is not a small effect. These ideas are further
extended to meta-materials based on Weyl semimetals by
Ojanen and coworkers [86] to design the structure of the
spacetime.

In this paper we are interested in a 2D material hosting
a tilted 2 + 1-dimensional tilted Dirac cone. There are two
Dirac cones that in the inversion symmetric case are described
by two tilted Dirac cones with opposite tilt parameters ζ and
−ζ. Otherwise, their tilt parameters are arbitrary. In this paper
we will study in detail the consequences of the spacetime-
dependent tilt parameter ζ and will show the emergence of
non-Abelian gauge fields that in the nonrelativistic limit can
be interpreted as geometry induced spin-orbit couplings. We
further obtain the effect of curvature on the semi-classical
motion (geodesics) and show that the tilt parameter gives rise
to new forces which will be required in appropriate extensions
of the Boltzmann equation in such spacetimes.

II. NON-ABELIAN GAUGE THEORY IN TILTED DIRAC
CONE MATERIALS

In this paper we will be interested in the Dirac materials
with tilted conic spectrum in two space dimensions. The
metric of the resulting 2 + 1-dimensional spacetime with tilt
parameters ζ = (ζx, ζy) is given by

gμν =
⎡
⎣

ζ 2 − 1 −ζx −ζy

−ζx 1 0

−ζy 0 1

⎤
⎦,

gμν = [gμν]−1 =

⎡
⎢⎣

−1 −ζx −ζy

−ζx 1 − ζ 2
x −ζxζy

−ζy −ζxζy 1 − ζ 2
y

⎤
⎥⎦ (5)
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where ζ 2 = ζ 2
x + ζ 2

y . The components ζx ≡ ζ1 and ζy ≡ ζ2 of
the tilt are assumed to have arbitrary functional dependence on
the space coordinates (x, y) inside the material. As a concrete
example of how to generate such a space dependence in the tilt
parameter ζ, we have previously shown in 8pmmn borophene,
that an external displacement field perpendicular to the 2D
material couples to electronic degrees of freedom in such a
way that it controls the tilt parameters ζ [28]. Therefore, a
given space-dependent profile of perpendicular electric field
will imprint a corresponding profile on the metric. This will
in general amount to electric-field control of the geometry
of the spacetime. Another possible rout based on organic
compounds would be the replacement of iodine with halogens
[19] in a space-dependent manner.

Before studying the effect of a generic spacetime-
dependent entries ζ in Eq. (5) on the physical properties
of TDCMs, let us recall the physics of strain in graphene.
The strain in 2D materials can be formalized in terms of
space-dependent metric entries. The resulting metric induced
from a 3D Euclidean space to describe a deformed graphene
gives rise to a curvature [87]. The Gaussian curvature of the
deformed graphene will be equivalent to an effective (pseudo)
magnetic field.2 Therefore, it is tempting to think that in the
spacetime Eq. (5) of the TDCMs too, the role of spatial vari-
ation in ζ parameters will mimic an effective magnetic field.
However, as we will show in this section, allowing ζ(xμ) to
depend on spacetime coordinates, will generate non-Abelian
gauge fields which in the nonrelativistic limit correspond to
various forms of spin-orbit interactions. This is unlike the
Abelian (pseudo)gauge fields arising from strain in graphene.

To understand the source of this difference, please note
that in the case of strain fields in typical 2D materials, the
strain field affects the spatial components gi j of the resulting
metric. Due to the Minkowski nature of the parent graphene
Hamiltonian, the strain field can not induce gμ0 entries (off-
diagonal entries mixing space and time). However, in the
present case, the structure of the emergent metric Eq. (5) of
the TDCMs is such that, allowing the ζ to vary in space, can
only modify the off-diagonal components gμ0. The space part,
gi j remains totally diagonal. As such, as long as there is no
strain field to generate off-diagonal entries in the spatial part,
gi j of Eq. (5), we will not have any effective pseudo magnetic
field corresponding to U (1) gauge fields. Then the question is,
what type of forces are generated in this case?

To answer this question, we will need a brief reminder from
standard geometry knowledge (see any standard textbook on
general relativity, e.g., Refs. [78,88,89]). For a spacetime with
arbitrary metric gμν , the Christoffel symbols defined by [90],


 ρ
μν = 1

2 gρσ (∂μgνσ + ∂νgμσ − ∂σ gμν ), (6)

are the essential entities that allow us to (i) construct “covari-
ant” derivative, (ii) construct equations of motions of particles
(geodesics), (iii) to obtain the curvature tensor [78,88,89].

2Here pseudo means that the sign of such magnetic field is opposite
the two valleys.

Emergent non-Abelian gauge fields

As we pointed out, the first use of Christoffel symbols
Eq. (6) is to construct covariant derivatives. Assume that
a vector is specified by its components V μ (or Vμ). The
covariant derivative is given by

∇νV μ ≡ V μ
;ν = V μ

,ν + 

μ

λνV λ, ∇νVμ ≡ Vμ;ν = Vμ,ν − 
λ
μνVλ,

(7)
where V μ

,ν ≡ ∂νV μ is the partial derivative. Let us see where
do we need to use these derivatives. The Dirac equation in
general is expressed by first-order derivative (γ μ∂μ + m)ψ =
0. In an arbitrary geometry, the curvature of spacetime re-
quires to take the derivative of the spinor ψ in a covariant
form. This amounts to replacement γ μ∂μ → γ aeμ

a (∂μ + �μ)
where the �μ is called the “spin” connection, as it needed to
take covariant derivative of an “spinor” [78,88,91,92]. When
the parameters ζ do not depend on space coordinate, the
spin connection is �μ = 0 (for details see Appendix B). The
frame fields eμ

a will be required to change the basis in a way
that a locally flat Minkowski spacetime is obtained. When
ζ becomes space-dependent, in addition to the basis change,
one has to worry about the spin connection �μ which will
be defined and computed below. The spin connection �μ is
related to the covariant derivatives defined in Eq. (7) through
the Christoffel symbols 
’s as follows: For a generic manifold
defined by metric gμν with μ, ν = 0, 1, 2, there is a locally flat
(Minkowski) manifold defined by metric ηab (a, b = 0, 1, 2)
tangent to this manifold. Requiring the spacetime length ele-
ment in both cases to be identical gives

gμν = ηabea
μeb

ν ↔ gμν = ηabeμ
a eν

b, (8)

which defines the frame fields ea
μ (in 3 + 1 dimensions are

called vierbeins). From these frame fields one can construct

ωab
μ = ea

λ(x)gλσ (x)∇μeb
σ (x), (9)

where the covariant derivative of the frame fields are

∇μea
σ = ∂μea

σ − 
 λ
μσ ea

λ. (10)

Finally employing the generators �ab = [γa, γb]/4 of the
Lorentz group, we can form the spin connection as

�μ = 1
2ωab

μ �ab. (11)

With the above quick reminder from geometry, we are now
ready to compute the effect of arbitrary space dependence of ζ

in 2 + 1-dimensional TDCMs. The first thing we need to do is
to compute the Christoffel symbols 
’s. It is straightforward,
but cumbersome3 to use Eq. (6) to explicitly obtain Eq. (A4).
For details please see Appendix A. Applying the steps out-
lined above to the metric (5) after a long but straightforward
algebra we obtain the components ωab

μ of the spin connection.
The nonzero components will be given by Eq. (B14), which
can be compactly written as

ω
0 j
i = α

j
i , ω

0i
0 = −α

j
i ζ j, others = 0, (12)

3There are plenty of well established algebraic manipulation pro-
grams to calculate the above symbols and much more by just giving
the functional form of the entries of the metric. For example, see
GRQUICK, https://library.wolfram.com
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where the quantity α
j
i ≡ (∂iζ

j + ∂ jζi )/2 suggested by
Eq. (B14) is the symmetric partial derivative of the tilt ζ.4

Equipped with these results, we are now ready to dis-
cuss the effect of the above spacetime structure in 2 + 1
dimensions. To proceed further, let us choose the following
representation for the Clifford algebra,

γ 0 = iσz, γ 1 = σy, γ 2 = −σx. (13)

Using the definition Eq. (11) of the spin connection and
performing the summation over a, b = 0, 1, 2, only nonzero
ωab

μ s contribute whereby we obtain

�0 = 1
2ωab

0 �ab = − 1
4

[
α

j
1ζ jσx + α

j
2ζ jσy

]
,

�i = 1
2ωab

i �ab = 1
4

[
α1

i σx + α2
i σy

]
.

(14)

Once the spin connections �μ are computed, one can readily
construct the associated gauge fields [91,92],

Aa = eμ
a �μ. (15)

Using the explicit forms of the frame fields eμ
a given in

Appendix B, we obtain

A0 = e0
0�0 + e1

0�1 + e2
0�2 = 0,

A1 = e0
1�0 + e1

1�1 + e2
1�2 = �1,

A2 = e0
2�0 + e1

2�1 + e2
2�2 = �2.

(16)

This equation establishes that the space dependence of the tilt
parameters ζ in metric Eq. (5), induces non-Abelian gauge
fields given by Eq. (16).

III. SPIN-ORBIT FROM GEOMETRY

In the context of graphene, it is well known that strain
fields induce U (1) gauge fields [93–96]. As can be seen in
Eq. (16), the components or the gauge field in the context of
the spacetime structure Eq. (5) related to tilted Dirac materials
have matrix structure which makes the non-Abelian gauge
fields. In the context of solid-state systems, the Pauli matrices
σi can denote the real spin (such as the helical states of
a topological insulator) or the pseudospins (as in the case
of graphene). In this section we will show that the space
dependence of ζ will generate a coupling between the orbital
motion and the (pseudo-)spin σ. To develop an intuition for
the meaning of such gauge fields, it is useful to consider a
massive Dirac particle with m �= 0 that allows to study the
“nonrelativistic limit” of the underlying Dirac system. Such
a mass term does not change the structure of the metric. The
only modification arising from the mass term will appear in
the right side of the dispersion relation which is given by the
invariant form gμνkμkν = m2.

The meaning of the gauge structure Eq. (16) can be best
understood by expanding the Dirac hyperbolas around the

4Note that ζi = ζ i are parameters of the spacetime metric, and the
indices here are not raised or lowered by the metric itself. So the
locations of indices in the right side of this equation does not matter
and are just set to balance the location of the indices in the left side.
This is manifest when comparing to Eq. (B14).

band minima and approximating them by parabolas. There-
fore, in tilted Dirac/Weyl systems too, the states near the
bottom of the conduction band (or top of the valence band)
of the Dirac dispersion can be approximated by a parabolic
band structure. In the context of the standard model of par-
ticle physics, this corresponds to nonrelativistic limit where
velocities are much less than the speed of light (which in
our case is replaced by the Fermi velocity, vF ). In this limit
a Dirac-Foldy-Wouthuysen transformation reveals how the
spin-orbit interaction emerges from the Dirac equation. In
our case, the same procedure will lead to a rich structure of
pseudospin-orbit coupling.

The nonrelativistic limit of the tilted Dirac equation will be
given by

1

2m
(p1 − gA)2, (17)

where A is given by Eq. (16). Expanding the above expres-
sion, one generates three type of terms, (i) A.A, (ii) A.p, and
(iii) ∂.A terms. They are given by the following expressions:

A.A = 1

16

[(
α1

1 + α2
1

)2 + (
α2

2 + α2
1

)2] =
∑
i, j,k

α
j
i α

k
i ,

2A.p = 1

4

[
α1

1 pxσx + α2
2 pyσy + α2

1 (pxσy + pyσx )
]
,

−i∂ · A = 1

4

[(
∂iα

i
1

)
σx + (

∂iα
i
2

)
σy

]
. (18)

The nonrelativistic limit of this Hamiltonian becomes

1

2m
[p2 + gA · A + gd.σ + gb.σ], (19)

where

dn(p) = α j
n p j, bn = −i∂ jα

j
n, (20)

where n, j run over the spatial indices 1,2. This analysis
clearly shows that the non-Abelian gauge potential, in the non-
relativistic limit corresponds to two contributions: (i) The d
term that directly couples momentum and (pseudo)spin, is the
emergent spin-orbit coupling that arises from the coordinate
dependence of the ζ that parametrizes the metric Eq. (5). (ii)
The b term gb.σ is emergent Zeeman term. Note that, this must
be distinguished from the curvature induced U (1) field that
couples to orbital motion of the electrons and can generate
Landau quantization. This term being a Zeeman-like term, can
only couple to the (pseudo-) spin degree of freedom. Note
that both d and b terms are odd functions of ζ. Therefore,
in an inversion symmetric Dirac material where one can
toggle between the two valleys by ζ → −ζ, this Zeeman-like
term also changes sign and are therefore pseudo-Zeeman like
terms.

Mathematically, the field ζ i ≡ ζi being a vector field either
has a zero circulation, or nonzero circulation. When its circu-
lation is zero, it can be written as

ζi = ∂i�. (21)

In this case, the important parameters α
j
n are given by, α

j
n =

∂n∂ j� which then for dn and bn gives

dn(p) = ∂n p · ∂�, bn = −i∂n∂
2�. (22)
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For an inversion symmetric material, if one valley has a tilt
parameter ζ, then the other valley must have −ζ. Therefore, it
is reasonable to assume that in real space too, the field ζ arises
from sinks and sources of equal charges ±Q.5 Therefore,
except for isolated pairs of points, the condition ∂ · ζ = 0 is
satisfied. The implication of this condition on � is, ∂2� =
±Qδ(r − r±). Choosing a linear combination of Harmonic
functions to satisfy the boundary condition ∂�(r → ∞) =
ζ∞ (assuming a flat spacetime profile specified by ζ∞) gives
� = ζ∞.r + Q ln(|r − r±|). The charges ±Q are integer topo-
logical charges of the field ζ. Nonzero values of Q when
inserted in Eq. (22) give a singular contribution ∂nQδ(r − r±).
Therefore, the topological index Q governing bn, can not be
nonzero. The only remaining term ζ∞.r when inserted in
Eq. (22) will give zero. The conclusion is that, if ∂ × ζ =
0, both the spin-orbit coupling and the curvature induced
Zeeman fields vanish.

Now let us consider the second possibility, namely a
nonzero ∂ × ζ. A general enough choice of ζ = ρ f (ρ)ϕ̂
where ϕ̂ is the unit vector in cylindrical coordinate corre-
sponding to azimuthal angle ϕ, and ρ is the distance from the
origin. This choice gives

∂ × ζ = 1

ρ

∂

∂ρ
[ρ2 f ]ẑ. (23)

In this case, the important parameters α
j
n are given by

ρ−1 f ′(xnε j�x� + x jεn�x�), (24)

where ε12 = −ε21 = 1 and ε11 = ε22 = 0 defines the Levi-
Civita symbol and f ′ = ∂ρ f . Inserting the above result in
Eq. (20) gives

d1 = f ′ρ(px sin 2ϕ + py cos 2ϕ)/2,

d2 = f ′ρ(px cos 2ϕ − py sin 2ϕ)/2, (25)

b1 = (−i)ρ sin ϕ(ρg′ sin2 ϕ − 3g),

b2 = (−i)ρ cos ϕ(−ρg′ cos2 ϕ − 3g),
(26)

where we define g = f ′/ρ. Adopting a representation for the
Clifford algebra that differs by the one in Eq. (13) in σx ↔ σy,
for the spin-orbit coupling term we obtain

f ′ρ(cos 2ϕσ · p − sin 2ϕσ × p)/2. (27)

An important feature of the above spin-orbit coupling is
its highly anisotropic nature. The nice-looking terms σ · p
is actually the Dresselhaus spin-orbit coupling. To see this
one can transform back to the old representation Eq. (13).
The second term, σ × p in the new representation is clearly
seen to be a Rashba spin-orbit coupling. Therefore, the space
dependence of the tilt parameter ζ, whose circulation is
nonzero (determined by f ) gives rise to Dresselhaus and
Rashba spin-orbit couplings that are, (i) highly anisotropic,
(ii) their existence depends on the value of f ′. Therefore, a
ρ-independent f , despite giving rise to a nonzero constant
circulation in Eq. (23) will have f ′ = 0 and hence both d

5Note that here Q is a topological charge associated with the
configuration of the tilt field ζ.

FIG. 1. Vector plot of spin-orbit coupling and pseudo-Zeeman
field. (a–c) By choosing f (ρ ) = ln ρ which is equivalent to ζ =
2ρ ln ρϕ̂, girves rise to f ′ρ = 2 which eliminates the radial depen-
dence of the spin-orbit coupling d, plotted when φ = 0, π/4, π/2.
(d) Choosing g = 2ρ−2 leave a 1/ρ radial dependence in the pseudo-
Zeeman field b.

and b vanish. This feature distinguishes the pseudo-Zeeman
and pseudo-spin-orbit coupling that are generated by space
dependence of the tilt parameter ζ from the other forms of
spin-orbit coupling arising from rotation [81,82,97].

As an example, choosing f (ρ) = ln ρ which is equivalent
to ζ = 2ρ ln ρϕ̂, gives rise to f ′ρ = 2 which eliminates the
radial dependence of the spin-orbit coupling d in Eq. (25).
Correspondingly we have g = 2ρ−2 which will leave a 1/ρ

radial dependence in the pseudo-Zeeman field b. These fea-
tures are plotted in Fig. 1. The above analysis in the small
p reveals the structure of spin-orbit coupling (or pseudospin-
orbit coupling if σ is not the real spin) arising from space-
dependent tilt parameter ζ. When the ζ that enters as an
off-diagonal term mixing space and time is absent, as can be
seen from Eq. (12), the ωi0

μ components of the spin-connection
vanish from which it follows that the non-Abelian gauge
fields in Eq. (16) vanish. When the ζ term is introduced in
tilted Dirac/Weyl systems and for whatever reason possess
a nontrivial space dependence, the connections ω0i

μ (which
multiply the matrices γ0γi) become nonzero and generate the
non-Abelian gauge structure in Eq. (16). Allowing the spatial
components of the metric to depend on space (driven, e.g.,
by strain), will generate the ω

i j
μ components which are well

known in the context of graphene and can only generate the
U (1) gauge structure, as they couple to γiγ j combination of
Dirac matrices [93,94].

IV. CLASSICAL GEODESICS

When the length scale of applied fields are much larger
than the spread of the wave packets, and the wave packets
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themselves are larger than the lattice constant, the semi-
classical Boltzmann transport can be used to study the electron
dynamics. In tilted Dirac/Weyl materials too, such a regime
does exist and it is therefore appropriate to study the classical
geodesics in a generic background metric Eq. (5) with space-
dependent ζ. This will allow us to develop a feeling at the
classical level to the nature of the forces that correspond to
the the non-Abelian gauge structure Eq. (16).

It is a well known textbook fact that gravitational forces
around a rotating source that only slightly deform the metric
ημν of the flat spacetime, can be effectively described by
forces that resemble the electromagnetic forces. These effects
go under the name of gravitomagnetic effects.6 The effect
of rotation goes into a weak off-diagonal element that mixes
space and time. This feature is similar to our metric Eq. (5),
except that (i) ζ in our case is not necessarily weak and
(ii) its functional dependence on space coordinates (x, y) can
in principle be anything. Therefore, in this section we set
out to understand the meaning of the space-dependent tilt
parameter ζ in the metric Eq. (5) of the tilted Dirac/Weyl
materials. We will follow the textbook approach of Ryder
and will start by writing down the geodesics equations in
the background metric Eq. (5) to identify the structure of
the new forces that arise from spatial variation of ζ at the
classical level. In the case of graphene where only the spatial
components gi j of the metric are allowed to depend on space
(due to strain field), it has been found that the curvature
induced U (1) forces, lead to spatial separation of the valley
currents [98].

Our classical treatment in this section, parallels the quan-
tum treatment of Sec. III as in both cases we consider the limit
where a mass term is present that allows to approximate the
Dirac hyperbola by a parabola. The geodesic equation is given
by [88]

d2xμ

ds2
+ 


μ

νλ

dxν

ds

dxλ

ds
= 0, (28)

where s is the proper time. In the nonrelativistic (or in grav-
itational jargon the “Newtonian”) limit, s ≈ t and dx0/ds ≈
vF and dxi/ds ≈ v 
 vF . In this limit the acceleration ai =
d2xi/dt2 will become

ai = −(
v2

F 
i
00 + 2vF 
i

0kv
k + 
i

kmvkvm
)

+ (
v2

F 
0
00 + 2vF 
0

0kv
k + 
0

kmvkvm
) vi

vF
. (29)

Performing the summations over k, m the separate compo-
nents i = 1, 2 of the acceleration can be organized in pow-
ers of v/vF , where v is the band velocity near the bot-
tom of conduction band and vF is the asymptotic velocity
of Dirac electrons at large momenta. The leading (zeroth)
order is

a(0) = v2
F

2
(∂ζ 2 − ζζ · ∂ζ 2). (30)

The first term in this equation is a gradient term. If ζ 2 can
be interpreted as negative of an “electrostatic” potential, then

6See, e.g., chapter 6 of the Ryder’s textbook [88].

the first term will correspond to the electric field arising from
such term. There is, however, additional structure in the sec-
ond term. When the variations of ζ are purely transverse, the
longitudinal derivative ζ · ∂ will vanish. If the spatial profile
of ζ 2 generated by external fields is localized around some
origin,7 and decays away from origin, then it corresponds to
an inward acceleration if m is positive (i.e., we for states near
the bottom of conduction band). The gate voltage can be used
to tune the chemical potential and therefore enables us to tune
the Fermi level between the conduction and valence bands.
This process will change the sign of m. Therefore, if the above
term is attractive for electrons, then it will be repulsive for
holes, and vice versa.

The first-order contribution is

ai
(1) = vF

(�ζ · �∂ζ 2 − ∂īζ
3
ī − 1

3∂iζ
3
i

)
vi

+ vF v īζi
(�ζ · �∂ζī + 1

2∂īζ
2
) + vF (v × ∂ × ζ)i, (31)

where i = 1, 2 correspond to ī = 2, 1, respectively. Note that
i is the free index of the left side and there is no sum over i on
the right side.

For the inversion symmetric tilted Dirac materials the two
valleys have opposite ζ. The velocity independent terms, a(0)

in Eq. (29) are even in ζ. Therefore, they do not change upon
ζ → −ζ. Hence, these terms are the same in both valleys
in such materials. The first-order terms in Eq. (31) are odd
in ζ. Therefore, these can be attributed to the pseudoforces
in inversion symmetric system. Particularly, the third line in
Eq. (31) is a Lorentz-type force provided ζ can be imagined
as the spatial part of a vector potential such that ∂ × ζ would
correspond to a pseudomagnetic field. Again by pseudo we
mean that this field begin odd in ζ, changes sign in the
other valley. The first line resembles a “friction” force as
the ith component of the acceleration is proportional to vi.
Depending on the sign of the term in the parenthesis, this
can be friction or antifriction! In the later case, this term
will cause an increase in the velocity, until the Newtonian
regime ceases to be valid. In analogy with the first line, one
can think of the second line as a kind of transverse friction”
force which is then expected to enhance the shear viscosity
when the interactions are turned on to form an electron
liquid.

To develop a feeling for the classical dynamics in the
spacetime Eq. (5), let us consider the special case where ζ =
[h(x), 0] is varied only unidirectionally along the ζ direction.
We will further assume that h(x) = ζ0 tanh( x

λ
). In this case,

for the zeroth-order contribution we get,

a1
(0) = v2

F

2
(∂xζ

2 − ζx(ζx∂x + ζy∂y)ζ 2)

= v2
F

2
h(x)h′(x)(1 − h2(x))

= v2
F

2

ζ 3
0

λ
tanh

(
x

λ

)
sech2

(
x

λ

)(
1 − ζ 2

0 tanh2

(
x

λ

))

(32)

7Perhaps this can be achieved by applying the electric field via a tip
of thickness of several tens of nanometers.
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and

a2
(0) = v2

F

2
(∂yζ

2 − ζy(ζx∂x + ζy∂y)ζ 2) = 0 (33)

and the first-order contribution is

a1
(1) = vF h′(x)h2(x)v1, a2

(1) = −vF h′(x)h2(x)v2 (34)

which for our step-like function becomes,

(
a1

(1), a2
(1)

) = vF
ζ 3

0

λ
sech2

(
x

λ

)
tanh2

(
x

λ

)
(v1,−v2). (35)

Note that in this section what we have calculated is the
acceleration. To convert it to the force, one must note that it
has to be multiplied by a mass term m. This term is positive
for the states near the bottom of the conduction band. For
those near the top of the valence band, this term (determining
the parabola) is negative. Therefore, the sign of the above
forces can be reversed by, e.g., gate doping and toggling the
chemical potential between the valence to conduction bands.
In this way, the sign of the force depends on the sign of charge
carriers. Therefore the electric and magnetic forces emerging
from the structure of the spacetime Eq. (5) reverse their signs
by changing the “charge” of the carriers. As such, these forces
can be regarded as a natural generalizatioins of electric and
magnetic forces that arise from the geometry of the spacetime
itself. The external electric or magnetic fields are assumed to
be absent here. Therefore, in studying the effect of external
electric and magnetic fields on the transport of electrons, one
must in addition to external electric and magnetic fields worry
about the forces that arise from the curved nature of spacetime
Eq. (5).

For a fixed chemical potential corresponding to a given
sign of the energy, the sign of m is fixed. In that case, all
the terms, including the term that resebles the Lorentz-force
in the third line of Eq. (31) change sign. As such the classical
Landau orbits for electrons in the two valleys have opposite
directions. Therefore, this term (when strong enough) can
generate valley-polarized edge currents. So the curvature en-
gineering can in principle generate valley Hall effect. Even if
the material is not perfectly inversion symmetric, the symmet-
ric part of it (for which two valleys are related by ζ → −ζ) is
capable of generating valley polarized effects.

V. DISCUSSIONS AND SUMMARY

In this work we have investigated the effects arisging
from spatial dependence in the tilt parameter ζ that defines
the metric (5) in tilted Dirac cone materials. The essential
quantity is α

j
i defined under Eq. (12). At quantum level this

quantity gives rise to non-Abelian gauge fields. The meaning
of such gauge fields becomes clear in the nonrelativistic
limit pertinent the bottom of conduction or top of valence
band states which corresponds to various forms of spin-
orbit coupling. This agrees with recent proposal by Shitade
and coworkers on geometric spin-orbit coupling [97]. At the
classical level, from geodesic equations one can infer various
forms of forces that have no analogs in solid-state systems
with Galilean spacetime structure. The sign of these forces
can be changed by toggling between conduction and valence
bands via a gate voltage and therefore for opposite charge

carriers they have opposite signs. This means that these forces
are natural extensions of electric and magnetic forces that
arise from geometry (5). In studying transport properties of
such systems, these forces are also expected to play role in
addition to the external electric and magnetic fields acting on
the charge carriers.

It is worth to reiterate why unlike the strain induced
pseudo-gauge forces in graphene, here we have a non-Abelian
gauge structure. The reason is that strain appears in spatial
components gi j while the space dependence of the tilt in
TDCMs appears through the off-diagonal entries g0μ that mix
space and time coordinates. These two ways of modifying the
gμν metric have two different physics. Therefore, strain can
be used as additional control parameter to generate a pseudo-
magnetic field in addition to the spin-orbit interactions arising
from the spatial variations of g0μ entries of the metric in
TDCMs. Indeed generation of spin-orbit couplings by spatial
variation of ζ seems quite plausible: In our previous work
[28] we have found that the displacement field couples to ζ

via Rashba spin-orbit coupling. Now here we have a reversed
situation.

In terms of possible materials realizations, in 2D materials
there are many possibilities. The most prominent example
is the organic compound. Replacing the iodine (I, ζ < 1)
by halogens, such as F (ζ > 1) an average control of F
substitution correspond to a space-dependent tilt [19]. Even
a random substitution of halogens can lead to randomness in
the ζ which seems to be an interesting element to randomize
and worth investigation, particularly from the point of view of
the spacetime structure. Or the interface between I-rich and
F-rich compound based on this organic systems can mimic
black-hole horizon.8 This transition corresponds to crossing
a black-hole horizon Furthermore, magnetic textures [85] can
also generate space dependet tilt parameter ζ(xi).

Therefore, the tilted Dirac cone systems in two space
dimensions are promising frameworks for generation of spin-
orbit coupling (synthetic gauge fields). The effect of space-
time geometry is not limited to such synthetic forces. The
quantum emission which is at the heart of solid-state spec-
troscopies will also be affected by the spacetime curvature
[100]. This might require a careful examination of the linear
response theory that links theoretical calculations within the
Kubo formula with experiments [101].
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APPENDIX A: DERIVATION OF CHRISTOFFEL SYMBOLS

In this Appendix we present details of calculations related
to the Christoffel symbols defined by,


 ρ
μν = 1

2 gρσ (∂μgνσ + ∂νgμσ − ∂σ gμν ), (A1)

where the metric of the resulting 2 + 1-dimensional spacetime
with tilt parameters ζ = (ζx, ζy) is given by

gμν =
⎡
⎣

ζ 2 − 1 −ζx −ζy

−ζx 1 0

−ζy 0 1

⎤
⎦, (A2)

gμν = [gμν]−1 =

⎡
⎢⎣

−1 −ζx −ζy

−ζx 1 − ζ 2
x −ζxζy

−ζy −ζxζy 1 − ζ 2
y

⎤
⎥⎦ (A3)

with ζ 2 = ζ 2
x + ζ 2

y . The components ζx ≡ ζ1 and ζy ≡ ζ2 of
the tilt are assumed to have arbitrary functional dependence
on the space coordinates (x, y) inside the material. Then
Christoffel symbols are given by


0
00 = ζxζy(∂yζx + ∂xζy) + ζ 2

x ∂xζx + ζ 2
y ∂yζy


0
10 = 
0

01 = −ζx∂xζx − 1
2ζy(∂yζx + ∂xζy)


0
20 = 
0

20 = −ζy∂yζy − 1
2ζx(∂yζx + ∂xζy)


0
12 = 
0

21 = 1
2 (∂yζx + ∂xζy)


0
11 = ∂xζx


0
22 = ∂yζy


1
00 = ζxζy(ζx∂yζx + ζy∂yζy) + (

ζ 2
x − 1

)
(ζx∂xζx + ζy∂xζy)


1
01 = 
1

10 = − 1
2ζx(2ζx∂xζx + ζy(∂yζx + ∂xζy))


1
02 = 1

2

((
1 − ζ 2

x

)
∂xζy − (

ζ 2
x + 1

)
∂yζx

) − ζxζy∂yζy


1
21 = 
1

12 = 1
2ζx(∂yζx + ∂xζy)


1
22 = ζx∂yζy


1
11 = ζx∂xζx


2
00 = (ζ 2

y − 1)(ζx∂yζx + ζy∂yζy) + ζxζy(ζx∂xζx + ζy∂xζy)


2
01 = 
2

10 = − 1
2

(
ζ 2

y − 1
)
∂yζx − 1

2

(
ζ 2

y + 1
)
∂xζy − ζxζy∂xζx


2
02 = 
2

20 = − 1
2ζxζy(∂yζx + ∂xζy) − ζ 2

y ∂yζy


2
21 = 
2

12 = 1
2ζy(∂yζx + ∂xζy)


2
22 = ζy∂yζy


2
11 = ζy∂xζx (A4)

APPENDIX B: DERIVATION OF THE SPIN CONNECTION

In an arbitrary geometry, the curvature of spacetime re-
quires to take the derivative of the spinor ψ in a covariant
form. This amounts to replacement γ μ∂μ → γ aeμ

a (∂μ + �μ)
where the �μ is called the “spin” connection, as it needed
to take covariant derivative of an “spinor” [78,88,91,92]. The
frame fields eμ

a will be required to change the basis in a way
that a locally flat spacetime is obtained. For a generic manifold
defined by metric gμν with μ, ν = 0, 1, 2, there is a locally flat

(Minkowski) manifold defined by metric ηab (a, b = 0, 1, 2)
tangent to this manifold. Requiring the spacetime length ele-
ment in both cases to be the same gives,

gμν = ηabea
μeb

ν ↔ gμν = ηabeμ
a eν

b (B1)

which defines the frame fields ea
μ. In units of vF = 1 the tilt

metric changes to flat space ηab to

ds2 = (−1 + ζ 2)dt2 − 2ζxdxdt − 2ζydydt + dx2 + dy2

= −dt ′2 + du2 + dv2 (B2)

which can be obtained by affecting a Galilean boost in
Minkowski spacetime:

x′0 = t ′ = t,

x′1 = u = x − ζxt,

x′2 = v = y − ζyt .

(B3)

Using the transformation law of tensors,

gμν = ∂x′a

∂xμ

∂x′b

∂xν
ηab (B4)

and comparing with Eq. (B1) gives the frame fields ea
μ = ∂x′a

∂xμ

as follows:

e0
0 = ∂t ′

∂t
= 1, e1

0 = ∂u

∂t
= −ζx, e2

0 = ∂v

∂t
= −ζy,

e0
1 = ∂t ′

∂x
= 0, e1

1 = ∂u

∂x
= 1, e2

1 = ∂v

∂x
= 0,

e0
2 = ∂t ′

∂y
= 0, e1

2 = ∂u

∂y
= 0, e2

2 = ∂v

∂y
= 1.

(B5)

From these frame fields one can then construct,

ωab
μ = ea

λ(x)gλσ (x)∇μeb
σ (x) (B6)

where the covariant derivative of the frame fields are

∇μea
σ = ∂μea

σ − 
 λ
μσ ea

λ. (B7)

To construct spin connection we calculate ωab
μ as follows:

ω12
μ = e1

λgλσ∇μe2
σ = e1

0g0σ∇μe2
σ + e1

1g1σ∇μe2
σ + e1

2g2σ ∇μe2
σ

= (
e1

0g00 + e1
1g10 + e1

2g20
)∇μe2

0 + (
e1

0g01 + e1
1g11

+e1
2g21

)∇μe2
1 + (

e1
0g02 + e1

1g12 + e1
2g22

)∇μe2
2, (B8)

so that

ω12
μ = (

e1
0g00 + e1

1g10
)∇μe2

0 + (
e1

0g01 + e1
1g11

)∇μe2
1

+ (
e1

0g02 + e1
1g12

)∇μe2
2. (B9)

Next we have

∇μe2
0 = ∂μe2

0 − (

0

μ0e2
0 + 
2

μ0

)
, ∇μe2

1

= −(

0

μ1e2
0 + 
2

μ1

)
, ∇μe2

2

= −(

0

μ2e2
0 + 
2

μ2

)
(B10)

and furthermore,

ω12
μ = (

ζy

0
μ1 − 
2

μ1

) = 0. (B11)
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In the same way we are able to find other components of ωab
μ ,

ω02
μ = e0

λgλσ∇μe2
σ

= e0
0g0σ∇μe2

σ + e0
1g1σ∇μe2

σ + e0
2g2σ ∇μe2

σ

= (
e0

0g00)∇μe2
0 + (

e0
0g01)∇μe2

1 + (
e0

0g02)∇μe2
2

= −∇μe2
0 − ζx∇μe2

1 − ζy∇μe2
2

= −∂μe2
0 + ( − ζy


0
μ0 + 
2

μ0

) + ζx
( − ζy


0
μ1 + 
2

μ1

)
+ζy

( − ζy

0
μ2 + 
2

μ2

)
(B12)

ω01
μ = e0

λgλσ∇μe1
σ = e0

0g0σ∇μe1
σ + e0

1g1σ ∇μe1
σ + e0

2g2σ ∇μe1
σ

= −∇μe1
0 − ζx∇μe1

1 − ζy∇μe1
2

= ∂μζx + ( − ζx

0
μ0 + 
1

μ0

) + ζx
( − ζx


0
μ1 + 
1

μ1

)
+ ζy

( − ζx

0
μ2 + 
1

μ2

)
. (B13)

Therefore, the nonzero components of the spin connection are
eventually given by

ω02
0 = − 1

2ζx(∂xζy + ∂yζx ) − ζy∂yζy

ω01
0 = − 1

2ζy(∂xζy + ∂yζx ) − ζx∂xζx

ω01
x = ∂xζx

ω02
x = 1

2 (∂xζy + ∂yζx )

ω01
y = 1

2 (∂xζy + ∂yζx )

ω02
y = ∂yζy

(B14)

It begs to define the following quantity,

α
j
i = 1

2 (∂iζ
j + ∂ jζ

i ), (B15)

then the compact form of above equations leads to

ω
0 j
i = α

j
i , ω

0i
0 = −α

j
i ζ j, others = 0. (B16)

Now that we have all the components ωab
μ we can contract

it with the generators �ab = [γa, γb]/4 of the Lorentz group
to obtain the spin connection �μ = 1

2ωab
μ �ab. As we dis-

cussed in the main text of the paper, definition of covariant
derivative in the presence of variable eμ

a (variable frame
fields) is

∇a = eμ
a (∂μ + �μ) (B17)

when the frame fields are not position-dependent, the above
equation reduces to

∇a = eμ
a ∂μ (B18)

or
⎛
⎜⎝

∇0

∇1

∇2

⎞
⎟⎠ =

⎛
⎜⎝

1 ζx ζy

0 1 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

∂0

∂1

∂2

⎞
⎟⎠, (B19)

so that the Lagrangian density for a tilted system is

L = iψ̄ (γμ∂μ + γ0�ζ · �∂ )ψ + c · c, (B20)
but for a variable (position-dependent) tilt we get the gauge
fields as

Aa = eμ
a �μ. (B21)

This equation establishes that the space dependence of the tilt
parameters ζ in metric Eq. (5), induces non-Abelian gauge
fields given by Eq. (16).
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