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Stochastic action for tubes: Connecting path probabilities to measurement
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The trajectories of diffusion processes are continuous but nondifferentiable, and each occurs with vanishing
probability. This introduces a gap between theory, where path probabilities are used in many contexts, and
experiment, where only events with nonzero probability are measurable. Here we bridge this gap by considering
the probability of diffusive trajectories to remain within a tube of small but finite radius around a smooth path.
This probability can be measured in experiment, via the rate at which trajectories exit the tube for the first time,
thereby establishing a link between path probabilities and physical observables. Considering N-dimensional
overdamped Langevin dynamics, we show that the tube probability can be obtained theoretically from the
solution of the Fokker-Planck equation. Expressing the resulting exit rate as a functional of the path and ordering
it as a power series in the tube radius, we identify the zeroth-order term as the Onsager-Machlup stochastic
action, thereby elevating it from a mathematical construct to a physical observable. The higher-order terms
reveal the form of the finite-radius contributions which account for fluctuations around the path. To demonstrate
the experimental relevance of this action functional for tubes, we numerically sample trajectories of Brownian
motion in a double-well potential, compute their exit rate, and show an excellent agreement with our analytical
results. Our work shows that smooth tubes are surrogates for nondifferentiable diffusive trajectories and provide
a direct way of comparing theoretical results on single trajectories, such as pathwise definitions of irreversibility,
to measurement.
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I. INTRODUCTION

Stochastic effects are ubiquitous in physical systems, and
are widely modeled by diffusion processes [1–4]. Physical
examples include the motion of individual colloidal particles
[5–9], the dynamics of polymers and proteins [10–13], or
the dynamics of active particles such as driven colloidal
systems, cells, or bacteria [14,15]. Diffusion processes are
also employed beyond the physical sciences, for example, in
quantitative finance [16] or the dynamics of ecosystems [17].

A fundamental concern in stochastic dynamics is to mean-
ingfully quantify the probability of a given trajectory. These
probabilities fully characterize a given stochastic dynamics
and are indispensable in applications. For example, path-
wise definitions of irreversibility as ratios of probabilities of
forward- and time-reversed trajectories are central to the field
of stochastic thermodynamics [18,19]. As a second example,
reaction pathways between states, obtained from the most
probable path connecting them, are essential to the study
of rare events such as chemical reactions or conformational
changes in biomolecules [20–22].

For any diffusive dynamics, as, for example, the over-
damped Langevin equation [2–4], which is the most widely
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used model for stochastic dynamics, the probability of any
single trajectory is zero. Consequently, over the last decades,
much work has been going into quantifying relative prob-
abilities of Langevin paths [23–35]. However, because it is
not possible to directly access experimentally the ratio of two
vanishingly small quantities, hitherto these theoretical results
could not be put to the experimental test. More generally,
the fact that a given individual stochastic trajectory occurs
with probability zero is the reason that no theoretical result
pertaining to individual stochastic trajectories can be checked
directly in experiment.

We here overcome this limitation, by shifting the focus
from individual stochastic trajectories to the finite-radius
tubular ensemble, composed of all stochastic trajectories that
remain within a small but finite threshold distance R from a
smooth reference path ϕ(t ) [see Fig. 1 for an illustration].
The name “tubular ensemble” is motivated by the fact that this
neighborhood around the reference path is a tube in spacetime.
The probability to observe any of those stochastic trajectories,
which is called the sojourn probability, is nonzero and can
be measured directly in experiment or simulation, simply by
counting which ratio of observed trajectories remains within
the threshold distance from the reference path until the final
observation time. Thus, considering this ensemble yields a
systematic approach to regularizing and connecting to exper-
iment the theoretical discussion of path probabilities, which
are recovered as tubes shrink to zero radius. Importantly, our
paper elevates stochastic actions, a widely used theoretical
concept to quantify ratios of path probabilities, to physical
observables. This allows the testing of theoretical results
involving path probabilities directly in experiment.
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FIG. 1. For a one-dimensional system, a smooth path ϕ is shown
as a black solid line, around which a tube of radius R is indicated
as a gray shaded area. Initial and final positions of ϕ are shown
as horizontal dotted lines. While the blue trajectory is a realization
of the Langevin Eq. (1) which stays inside the tube at all times,
the orange trajectory leaves the tube before the final time t f , and
therefore contributes to the exit rate from the tube.

The relevance of the tubular ensemble, however, goes
beyond serving as a bridge between theory and experiment. In
physical applications, one is typically not interested in a single
path, but rather in a pathway, that is a family of trajectories
that remain within a threshold distance of a reference path.
This is precisely the family of trajectories that the tubular
ensemble describes.

Our paper establishes the tubular ensemble as a generaliza-
tion of the very concept of an individual stochastic trajectory,
which allows us to connect to experiment or simulation any
question related to individual paths in systems subject to
stochastic dynamics. For the overdamped Langevin equation,
we provide a conceptually simple derivation of the sojourn
probability. In the limit R → 0 we recover the Onsager-
Machlup (OM) stochastic action Lagrangian, which is known
to characterize relative path likelihoods [23–35]; in particular,
we show explicitly that this Lagrangian appears as a contri-
bution to the exit rate with which stochastic trajectories first
leave the tubular neighborhood around ϕ. By calculating the
first radius-dependent corrections to the OM Lagrangian, we
go beyond single-trajectory asymptotics.

The remainder of this paper is organized as follows. In
Sec. II we discuss our general theory for N-dimensional
Langevin dynamics. In Sec. III we illustrate our general
results by considering explicitly the special case of barrier
crossing in a one-dimensional system, N = 1. We in particular
show how our theoretical predictions can be compared di-
rectly to observables from simulated Langevin time series. We
close in Sec. IV by summarizing our results, and discussing
their further implications.

II. THEORY

We consider the overdamped Langevin equation,
which for an N-dimensional coordinate X t ≡ X (t ) ≡

(X1(t ), . . . , XN (t )) is given by

Ẋ t = DβF(X t , t ) +
√

2Dξt , (1)

where D = kBT/γ is the diffusivity; β−1 = kBT is the inverse
thermal energy with kB the Boltzmann constant and T the
temperature; γ is the friction coefficient; F(x, t ) is a deter-
ministic, possibly time-dependent, force; and ξ is Gaussian
white noise with vanishing mean and unit covariance matrix.
We assume that D is position independent; an extension of
our results to position-dependent diffusivity is discussed in the
conclusions.

A. The tubular ensemble

One approach to relative path likelihoods of overdamped
Langevin dynamics is to derive a formal path-integral repre-
sentation of the propagator associated with Eq. (1), and then
to use the resulting symbolic expression as a basis for rela-
tive path probabilities [23–28,36,37]. However, this approach
suffers from ambiguities arising from the time discretization
of the short-time propagator [38,39]. In essence, the formal
expression one obtains depends on which of infinitely many
time-discretization schemes one uses [38]; while for most
purposes these discretizations are equivalent, the theoretically
derived most probable path, which is sometimes thought of as
representing the typical behavior of the dynamics, depends on
the choice of discretization [39].

A different route towards quantifying relative path proba-
bilities is to consider the tubular ensemble, which consists of
those realizations X t of the Langevin Eq. (1) that stay inside
a ball of radius R with its center a smooth reference path ϕ(t ),
t ∈ [ti, t f ] [29–35,40], up to time t � t f :

X ϕ
R (t ) ≡ {

X
∣∣ ||X s − ϕ(s)|| < R ∀ s ∈ [ti, t]

}
, (2)

where ||X || ≡
√

X 2
1 + . . . + X 2

N ; see Fig. 1 for an illustration

of X ϕ
R . We use the name “tubular ensemble” for X ϕ

R because a
ball with a time-dependent center is a tube in spacetime (x, t );
see Fig. 1.

The corresponding sojourn probability

P ϕ
R (t ) ≡ P

(
X ∈ X ϕ

R (t ); X ti ∼ Pi
)

(3)

is the probability for a stochastic trajectory X to remain closer
than a distance R to ϕ until time t ; for finite R this probability
of course depends on the distribution of initial positions X ti ∼
Pi inside the tube. Because the probability of any individual
trajectory is zero for Langevin dynamics, the sojourn prob-
ability vanishes as R → 0. The relative probability for two
reference paths ϕ and φ can still be quantified by [29–35]

e−S[ϕ]

e−S[φ]
≡ lim

R→0

P ϕ
R (t f )

P φ
R (t f )

, (4)

where the stochastic action S[ϕ], which is a functional of the
smooth path ϕ, is found to be

S[ϕ] =
∫ t f

ti

dt LOM(ϕ(t ), ϕ̇(t ), t ), (5)

with the OM Lagrangian

LOM(ϕ, ϕ̇) = 1

4D
[ϕ̇ − DβF(ϕ)]2 + 1

2
Dβ∇ · F(ϕ). (6)
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The literature concerned with deriving Eq. (6) via the en-
semble Eq. (2) is rather technical [29–34], and is focused
on the tubular ensemble in the singular single-trajectory limit
R → 0.

The key difference between the previous literature and
our derivation is that, instead of working directly with the
Langevin Eq. (1), we consider the equivalent description of
the stochastic process inside the tube via the Fokker-Planck
equation (FPE) [3,4]

∂t P
ϕ

R (x, t ) = −∇ · [DβF(x, t )P ϕ
R (x, t )

]+ ∇2
[
DP ϕ

R (x, t )
]
,

(7)

with a time-dependent spatial domain given at time t by

x ∈ Bϕ
R(t ) ≡ {

x
∣∣ ||x − ϕ(t )|| < R

}
(8)

as illustrated by the gray shaded area in Fig. 1, and subject to
absorbing boundary conditions at the tube boundary,

P ϕ
R (x, t ) = 0 ∀x ∈ Bϕ

R(t ), (9)

so that P ϕ
R (x, t ) describes the distribution of those particles

that have never left the tube until time t . Once Eq. (7) is solved
for given initial condition X ti ∼ Pi, the sojourn probability up
to time t is simply the survival probability

P ϕ
R (t ) =

∫
Bϕ

R (t )
dN x P ϕ

R (x, t ), (10)

where here and in the following we suppress the dependence
on the initial condition Pi unless it is relevant for the discus-
sion. From Eq. (10) in turn we obtain the instantaneous exit
rate α

ϕ
R (t ) at which stochastic trajectories leave the tube for

the first time, defined by

P ϕ
R (t ) = exp

[
−
∫ t

ti

ds α
ϕ
R (s)

]
. (11)

As we show in the following subsections, this yields

α
ϕ
R (t ) = Dλ̃

(0)
1

R2
+ LOM(ϕ(t ), ϕ̇(t ), t )

+ R2L(2)(ϕ(t ), ϕ̇(t ), ϕ̈(t ), t ) + O(R4), (12)

where

αfree ≡ Dλ̃
(0)
1

R2
(13)

is the free-diffusion steady-state exit rate out of a ball of radius
R, with λ̃

(0)
1 the negative of the eigenvalue with the smallest

absolute value of the Laplace operator on the unit ball B1 with
absorbing boundary conditions, LOM is the OM Lagrangian
defined in Eq. (6), and L(2) is a quadratic correction to the exit
rate, which we calculate in this paper. According to Eq. (12),
for small radius R the exit rate is dominated by free diffusion.
The OM Lagrangian is the first correction to freely diffusive
exit from the tube, and with L(2) we include finite-radius
effects beyond OM theory. Our derivation directly relates LOM

to an experimentally measurable exit rate from a fictitious tube
around a smooth reference path ϕ; despite the appearance of
the term αfree in the mathematical literature on the subject
[33,34], this connection between stochastic action and a phys-
ical exit rate has not been made explicit before.

In the following subsections we discuss our general theory,
outlined just above, for N-dimensional Langevin dynamics.
In Sec. II B we derive a perturbative expression for the
propagator of the FPE, Eq. (7), with absorbing boundary
conditions. Based on this propagator, we in Sec. II C calculate
the instantaneous exit rate, defined in Eq. (11), as a power
series in the tube radius R, which finally leads to Eq. (12).

B. Perturbative solution of the FPE in the tube interior

1. FPE in dimensionless streaming coordinates

To eliminate the time dependence of the spatial domain
Eq. (8), we introduce the dimensionless streaming variables

t̃ (t ) ≡ t

τD
, x̃(x, t ) ≡ x − ϕ(t )

R
, (14)

where τD ≡ L2/D is the time scale on which a particle diffuses
over the typical length scale L of the external force F. The
domain for x̃ is then independent of time and given by the unit
ball:

x̃ ∈ B̃ ≡ {
x̃
∣∣ ||x̃|| < 1

}
. (15)

We furthermore define a dimensionless probability density P̃,
dimensionless force F̃, and dimensionless path ϕ̃ as

P̃ ϕ
ε (x̃, t̃ ) ≡ RN P ϕ

R (x, t ), (16)

F̃(x̃, t̃ ) ≡ LβF(x, t ), (17)

ϕ̃(t̃ ) ≡ ϕ(t )/L, (18)

where (x, t ) and (x̃, t̃ ) are related as defined in Eq. (14). Here
and below, dimensionless quantities are always indicated by a
tilde. In dimensionless form the FPE, Eq. (7), becomes

ε2∂t̃ P̃
ϕ

ε = F̃appP̃ ϕ
ε , (19)

with the dimensionless tube radius

ε ≡ R

L
, (20)

and the dimensionless apparent Fokker-Planck (FP) operator
F̃app, given by

F̃appP̃ ϕ
ε ≡ −ε∇̃ · [(F̃ − ˙̃ϕ)P̃ ϕ

ε

]+ ∇̃2
P̃ ϕ

ε , (21)

where ∇̃ denotes the gradient with respect to x̃ with compo-
nents ∇̃ j ≡ ∂/∂ x̃ j , and where ˙̃ϕ ≡ ∂t̃ ϕ̃. A dot over a func-
tion in dimensionless (dimensionful) form always signifies a
derivative with respect to dimensionless (dimensionful) time.
For example, ϕ̇ = L/τD ˙̃ϕ. Dots are used interchangeably with
the symbols ∂t and ∂t̃ . As can be seen directly from Eq. (21),
with respect to the coordinate system (x̃, t̃ ), the velocity of
the path ϕ acts as a fictitious spatially constant force inside
the tube, so that we obtain an apparent total force

F̃app = F̃ − ˙̃ϕ, (22)

which is why we call F̃app the apparent dimensionless FP
operator. In dimensionless streaming coordinates, the time-
dependent absorbing boundary condition, Eq. (9), becomes

P̃ ϕ
ε (x̃, t̃ ) = 0 ∀ ||x̃|| = 1, (23)
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which is independent of time. This is the principal advantage
of transforming to streaming coordinates.

2. FPE in terms of the instantaneous eigenbasis

We expand the probability distribution P̃ ϕ
ε in Eq. (19) in

terms of the instantaneous FP eigenstates ρ̃n(x̃, t̃ ) as

P̃ ϕ
ε (x̃, t̃ ) =

∞∑
m=1

ãm(t̃ )ρ̃m(x̃, t̃ ). (24)

At time t̃ the eigenvalues −λ̃n(t̃ ) and eigenfunctions ρ̃n(x̃, t̃ )
of the apparent dimensionless FP operator F̃app(t̃ ) fulfill the
eigenvalue equation

F̃app(t̃ )ρ̃n(x̃, t̃ ) = −λ̃n(t̃ )ρ̃n(x̃, t̃ ) (25)

and the absorbing boundary conditions ρ̃n(x̃, t̃ ) = 0 for
||x̃|| = 1. We assume the eigenvalues to be ordered, i.e., λ̃n �
λ̃m for n < m, and due to the absorbing boundary condition
we have λ̃1 > 0. We assume that at any time t̃ there exists
a steady-state solution ρ̃SS(x̃, t̃ ) of Eq. (19) with reflecting
boundary conditions at B̃; we do not require ρ̃SS to be nor-
malized. Using this instantaneous steady state we introduce
the instantaneous inner product

〈 f , g〉 ≡
∫

B̃
dN x̃ f (x̃)g(x̃)/ρ̃SS(x̃, t̃ ). (26)

With respect to this inner product, the FP operator F̃app is
self-adjoint so that the absorbing-boundary eigenfunctions ρ̃n

can be chosen orthogonal at each time t̃ [4]. If at any time
t̃ the force F(x, t ) inside the domain Bϕ

R(t ) originates from a
potential U (x, t ), such that F = −∇U , then the instantaneous
steady-state solution is given by

ρ̃SS(x̃, t̃ ) = exp[−ε Ũ (x̃, t̃ ) − ε x̃ · ˙̃ϕ], (27)

where Ũ (x̃, t̃ ) ≡ βU (x, t ), and the dot indicates the standard
Euclidean inner product on RN . We emphasize that Eq. (27)
does not require a global potential for F, but only a local
potential inside the ball Bϕ

R(t ). If such a local potential does
not exist, the instantaneous nonequilibrium steady state ρ̃SS

has to be determined by other means [41].
Expanding the probability distribution P̃ ϕ

ε in Eq. (19) in
terms of the instantaneous FP eigenstates as given by Eq. (24),
and projecting the equation onto ρ̃n using the inner product
Eq. (26), yields

− ˙̃an = λ̃n

ε2
ãn +

∞∑
m=1

〈ρ̃n, ˙̃ρm〉
〈ρ̃n, ρ̃n〉 ãm, (28)

where n ∈ N and a dot here denotes a derivative with respect
to t̃ . Because the apparent FP operator is time dependent,
both the eigenvalues λ̃n and the inner products 〈ρ̃n, ˙̃ρm〉 and
〈ρ̃n, ρ̃n〉 are functions of t̃ . The FPE, Eq. (7), with absorbing
boundary conditions is equivalent to Eq. (28); once the latter is
solved, the dimensionless probability density inside the tube is
obtained from Eq. (24), which can be recast in physical units
using Eq. (16).

Since F̃app depends on ε, so do the quantities λ̃n, 〈ρ̃n, ˙̃ρm〉,
and 〈ρ̃n, ρ̃n〉, which appear in Eq. (28). From Eq. (21) it is
apparent that the ratio of the drift to the diffusion is of order
ε and, therefore, to lowest order the spectrum is that of a free

diffusion inside a unit ball. The eigenvalues, eigenfunctions,
and steady-state distributions are independent of t̃ at this or-
der, and therefore any time dependence of the eigenfunctions
must be at least of order ε. This implies that the ratio of
the off-diagonal to diagonal terms in Eq. (28) is at least of
order ε3. Thus, mode-coupling effects are subdominant and
the uncoupled dynamics provides a good first approximation
for small ε. In the context of time-dependent perturbation
theory in quantum mechanics, this is known as the adiabatic
approximation [42].

3. Perturbative calculation of the instantaneous FP spectrum

In Appendix A, we discuss in detail the calculation of both
the instantaneous eigenvalues and eigenfunctions as perturba-
tion series in ε,

λ̃n =
∞∑

k=0

εk λ̃(k)
n , ρ̃n =

∞∑
k=0

εk ρ̃ (k)
n , (29)

and calculate explicit expressions for the eigenvalues λ̃n to
order ε3, and for the eigenfunctions ρ̃n to order ε. For n = 1,
and if the force F inside the tube is given by a potential also
for n > 1, we furthermore calculate explicitly the contribution
ρ̃ (2)

n at order ε2.

4. Perturbative solution of the FPE

In Appendix B we in detail derive a solution to Eq. (28),
given by

ã1(t̃ ) ≈ exp

[
− 1

ε2

∫ t̃

t̃i

dt̃ ′ �̃1(t̃ ′)

]

×
[

ã1(t̃i) − ε2
∞∑

m=2

〈ρ̃1, ˙̃ρm〉
〈ρ̃1, ρ̃1〉

∣∣∣∣
t̃i

ãm(t̃i )

��̃m1(t̃i )
+ O(εk )

]
,

(30)

ãn(t̃ ) ≈ −ε2 〈ρ̃n, ˙̃ρ1〉
〈ρ̃n, ρ̃n〉

∣∣∣∣
t̃

ã1(t̃ )

��̃n1(t̃ )
+ O(εk ), (31)

where n > 1 in Eq. (31), for a one-dimensional system N = 1
we have k = 6 and for N � 2 we have k = 5, and we define

�̃n ≡ λ̃n + ε2 〈ρ̃n, ˙̃ρn〉
〈ρ̃n, ρ̃n〉 , (32)

��̃mn ≡ �̃m − �̃n. (33)

The solution Eqs. (30) and (31) is valid after an initial transient
time, i.e., for

t̃ − t̃i � τ̃rel ≡ ε2

��21
, (34)

and neglects terms that are exponentially small as compared
to Eqs. (30) and (31).

The form of Eqs. (30) and (31) allows for an intuitive
interpretation. Initially all eigenmodes are excited, with their
respective amplitude ãn(t̃i ) determined by the initial condition.
The dynamics of each mode is dominated by the adiabatic
exponential decay, and after an initial relaxation time the
mode n = 1 (which decays slowest) dominates the probability
distribution Eq. (24); this is represented by the first term in
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the bracket in Eq. (30). The leading-order effect of the mode
coupling is twofold. First, during their initial decay the modes
n > 1 can transfer some of their initial amplitude ãn(t̃i ) to the
n = 1 mode, as described by the second term in the bracket
in Eq. (30). Second, after their initial decay the n > 1 modes
can be excited instantaneously by the lowest mode n = 1, as
described by Eq. (31).

For a particle initially localized at x̃i, we have a delta-peak
initial condition, P̃ ϕ

ε (x̃, t̃i ) ≡ P̃i(x̃) = δ(x̃ − x̃i ), so that the
initial amplitude of the nth mode is given by

ãn(t̃i ) =
〈
P̃ ϕ

ε , ρ̃n
〉

〈ρ̃n, ρ̃n〉

∣∣∣∣∣
t̃i

= ρ̃n(x̃i, t̃i )

ρ̃SS(x̃i, t̃i )〈ρ̃n, ρ̃n〉|t̃i
. (35)

Substituting the resulting coefficients Eq. (30) and (31) into
the eigenmode expansion Eq. (24) of the propagator then
yields

P̃ ϕ
ε ( x̃, t̃ | x̃i, t̃i )

= exp

[
− 1

ε2

∫ t̃

t̃i

dt̃ ′ �̃1(t̃ ′)

]
1

ρ̃SS(x̃i, t̃i )〈ρ̃1, ρ̃1〉|t̃i

×
[
ρ̃1(x̃, t̃ ) − ε2

∞∑
m=2

1

��̃m1(t̃ )

〈ρ̃m, ˙̃ρ1〉
〈ρ̃m, ρ̃m〉

∣∣∣∣
t̃

ρ̃m(x̃, t̃ )

]

×
[
ρ̃1(x̃i, t̃i ) − ε2

∞∑
m=2

1

��̃m1(t̃i )

〈ρ̃1, ˙̃ρm〉
〈ρ̃m, ρ̃m〉

∣∣∣∣
t̃i

ρ̃m(x̃i, t̃i )

]

+O(εk ), (36)

where k = 6 for a one-dimensional system, N = 1, and k = 5
for N � 2. Equation (36) is an approximate solution to the
FPE, Eq. (19), valid after an initial decay time τ̃rel defined in
Eq. (34). With the definitions Eqs. (32) and (33), the propaga-
tor Eq. (36) is fully expressed in terms of the instantaneous
eigenvalues and eigenvectors of the FP operator. Note that
Eq. (36) is factorized into a part that only depends on (x̃, t̃ ),
and a part that only depends on (x̃i, t̃i ). Thus, while the total
probability to have remained inside the tube until time t̃ is
affected by the initial condition, after the initial relaxation
time τ̃rel the spatial probability distribution inside the tube is
independent of the initial condition.

Using Eq. (36), we can express the solution for an arbitrary
initial distribution P̃i inside the tube as

P̃ ϕ
ε (x̃, t̃ | X̃ t̃i ∼ P̃i ) =

∫
B̃

dN x̃i P̃ ϕ
ε (x̃, t̃ |x̃i, t̃i )P̃i(x̃i ), (37)

from which the survival probability, Eq. (10), follows in
dimensionless form as

P̃ ϕ
ε (t̃ |X̃ t̃i ∼ P̃i ) =

∫
B̃

dN x̃ P̃ ϕ
ε (x̃, t̃ |X̃ t̃i ∼ P̃i ). (38)

Complementary to the survival probability is the normalized
probability density P̃ n,ϕ

ε inside the tube at any time t̃ , defined
as

P̃ n,ϕ
ε (x̃, t̃ ) ≡ P̃ ϕ

ε (x̃, t̃ | X̃ t̃i ∼ P̃i )∫
B̃ dN x̃′ P̃ ϕ

ε (x̃′, t̃ |X̃ t̃i ∼ P̃i )
, (39)

which describes the distribution inside the tube of those
particles that have stayed until the current time t̃ . Using

Eqs. (36) and (37), the distribution Eq. (39) can be shown to
be independent of P̃i.

C. Exit rate from the tube

For a particle starting at time ti according to a distribution
X ti ∼ Pi inside the tube, the instantaneous exit rate is given by

α
ϕ
R (t ) = − Ṗ ϕ

R (t )

P ϕ
R (t )

, (40)

where P ϕ
R (t ) ≡ P ϕ

R ( t | X ti ∼ Pi ) is the survival probability
defined in Eq. (10). Using Eqs. (14) and (16), the dimension-
less instantaneous exit rate Eq. (40) is defined as

α̃ϕ
ε (t̃ ) ≡ τD α

ϕ
R (t ) = −

˙̃P ϕ
ε (t̃ )

P̃ ϕ
ε (t̃ )

(41)

where the dot denotes a derivative with respect to t̃ , and
P̃ ϕ

ε (t̃ ) ≡ P̃ ϕ
ε ( t̃ | X̃ t̃i ∼ P̃i ) is the survival probability in di-

mensionless form, with P̃i(x̃) = RN Pi(x). Using the steady-
state FP solution Eqs. (36)–(38), the exit rate Eq. (41) is
evaluated to yield

α̃ϕ
ε (t̃ ) = λ̃1

ε2
+ 〈ρ̃1, ˙̃ρ1〉

〈ρ̃1, ρ̃1〉 −
˙̃I1

Ĩ1
+ O(ε4), (42)

with

Ĩn(t̃ ) ≡
∫

B̃
dN x̃ ρ̃n(x̃, t̃ ), (43)

and where we used that 〈ρ̃m, ˙̃ρ1〉Ĩm is of order ε2 (see Ap-
pendix A3).

Equation (42), which is valid after the initial transient
decay time τ̃rel defined in Eq. (34), is independent of the
initial distribution P̃i; this is because in Eq. (36) the initial
condition only contributes an overall prefactor independent of
(x̃, t̃ ), which does not affect the relative change of particles
inside the tube quantified by Eq. (41). With Eq. (42) the
instantaneous exit rate is expressed solely in terms of the
instantaneous FP spectrum inside the tube. Expanding the
quantities that appear in Eq. (42) in powers of ε, and using the
symmetry properties of these quantities (see Appendix A), a
power-series expansion of the exit rate is obtained as

α̃ϕ
ε = λ̃

(0)
1

ε2
+ α̃(0) + ε2α̃(2) + O(ε4), (44)

where

α̃free = λ̃
(0)
1

ε2
, (45)

α̃(0) = λ̃
(2)
1 = τDLOM, (46)

α̃(2) = λ̃
(4)
1 + 〈ρ̃1, ˙̃ρ1〉(2)

〈ρ̃1, ρ̃1〉(0)
−

˙̃I (2)
1

Ĩ (0)
1

, (47)

where at Eq. (46) we use the perturbative result for λ̃(2)
n (see

Appendix A), the definition of the OM Lagrangian LOM is
given in Eq. (6), and

Ĩ (k)
n (t̃ ) ≡

∫
B̃

dN x̃ ρ̃ (k)
n (x̃, t̃ ). (48)
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Note that we suppress the dependence on ϕ in the notation of
the α̃(k), and that α̃free is independent of ϕ.

Using Eq. (41) the exit rate in physical units can be
obtained from Eqs. (44)–(47); note that according to Eq. (41)
a scaling εk in α̃ϕ

ε (dimensionless form) translates to a scaling
Rk in α

ϕ
R (physical units). The order-ε2 term in Eq. (12)

is thus given by L(2) = α̃(2)/(τDL2); according to Eq. (21)
the instantaneous FP spectrum depends on (ϕ, ϕ̇); because
of the additional time derivative in Eq. (47), the term L(2)

additionally depends on ϕ̈.
Equations (44)–(47), which express the exit rate α̃ϕ

ε fully
in terms of the perturbative spectrum of the FP operator
inside the tube, are one of the main results of this paper. The
equations show that for small tube radius ε � 1 the exit from
the tube is dominated by the steady-state free-diffusion exit
rate given by Eq. (45); this is consistent with the fact that the
Langevin Eq. (1) is on short times dominated by the noise term
ξ (as opposed to the deterministic force F). From Eq. (44) we
see that the free-diffusion exit rate in fact diverges as 1/ε2,
which gives a physical picture as to why the probability for
observing the single path ϕ is zero.

According to Eqs. (44) and (46), the first correction to the
free-diffusion exit rate, which occurs at order ε0, is given
by the OM Lagrangian LOM; this establishes a direct link
between LOM and the physical observable α

ϕ
R . The next cor-

rection Eq. (47), which is quadratic in the tube radius, is still
in the adiabatic limit, meaning that only the n = 1 eigenvalue
and eigenfunction appear in Eq. (47).

III. ONE-DIMENSIONAL SYSTEMS AND
NUMERICAL EXPERIMENTS

In the present section we consider the special case of a one-
dimensional system, N = 1, for which it is straightforward to
calculate explicit expressions for the results derived in Sec. II.
To illustrate and verify our perturbative analytical results, we
compare to numerical simulations throughout; in Sec. III A we
introduce the corresponding example system, a double-well
system with a barrier-crossing transition path ϕ. While in
Sec. III B we discuss the normalized probability density inside
the tube, we in Sec. III C consider the exit rate.

A. Model

For a length scale L and a time scale T , we consider
the Langevin Eq. (1) with a diffusion coefficient D = L2/T ,
so that τD = T . We consider a force F that is given as
the gradient of a potential, F (x) = −(∂xU )(x), and for the
potential U (x) use a quartic double well,

U (x) = U0

[( x

L

)2
− 1

]2

, (49)

with βU0 = 2, as illustrated on the right-hand side of Fig. 2.
For the smooth reference path ϕ we choose a barrier crossing
path, parametrized as

ϕ(t ) = L

arctan(κ/2)
arctan

[
κ ·

(
t − t f /2

τD

)]
, (50)

where for κ , which controls the maximal barrier crossing
speed, we use κ = 10; we furthermore choose ti = 0, t f = τD.

0 0.5 1
t̃ = t/τD

−2

0

2

x
/L

0 2
βU

FIG. 2. Potential and path considered in the numerical examples
in Sec. III. The plot on the right-hand side shows the quartic double-
well potential Eq. (49) for barrier height βU0 = 2. In the plot on
the left-hand side, the potential is shown as a color map in the
background, with the two minima of the potential represented by
horizontal dashed lines. The reference path ϕ, defined in Eq. (50),
is shown as a solid black line. Around the reference path, a tube
of radius ε = R/L = 0.5 is depicted by a shaded gray region. The
vertical dashed lines denote the times t̃ = 0.1, 0.5, and 0.6, which
are considered in Fig. 3.

The prefactor in Eq. (50) ensures that the path starts at x = −L
and ends at x = L. The reference path Eq. (50) is illustrated in
Fig. 2.

B. Perturbative solution of the FPE in the tube interior

As we show in detail in Appendix C 1, for N = 1 the
eigenvalue/eigenfunction Eq. (25) can be solved recursively
for increasing k, and the solution at order k is of the form

ρ̃ (k)
n (x̃, t̃ ) = Q̃(k)

n,s(x̃, t̃ ) sin
[
n
π

2
(x̃ + 1)

]
+ Q̃(k)

n,c(x̃, t̃ ) cos
[
n
π

2
(x̃ + 1)

]
, (51)

where Q̃(k)
n,s(x̃, t̃ ) and Q̃(k)

n,c(x̃, t̃ ) are polynomials in x̃ of order
� k, and depend on t̃ via Ẽl (t̃ ), 1 � l � k, which are given by

Ẽk (t̃ ) ≡ −Lkβ

k!

∂k−1F

∂xk−1

∣∣∣∣
(ϕ(t ),t )

+ δk,1 ˙̃ϕ(t̃ ). (52)

In Appendix C 1, we give explicit expressions for λ̃(k)
n , Q̃(k)

n,s,
and Q̃(k)

n,c, up to k = 5.
Using the perturbative spectrum Eq. (51), the propagator

Eq. (36) can be calculated as a power series in ε. From the
propagator, in turn, the perturbation series for the normalized
probability density P̃ n,ϕ

ε inside the tube is obtained using
Eq. (39). It is found that P̃ n,ϕ

ε is of the form

P̃ n,ϕ
ε (x̃, t̃ ) =

5∑
k=0

εk
{

Ñ (k)
s (x̃, t̃ ) sin

[π

2
(x̃ + 1)

]

+ Ñ (k)
c (x̃, t̃ ) cos

[π

2
(x̃ + 1)

]}
+ O(ε6), (53)

where the coefficients Ñ (k)
s (x̃, t̃ ) and Ñ (k)

c (x̃, t̃ ) are polynomi-
als in x̃ of order � k, and depend on t̃ via Ẽl (t̃ ), 1 � l � k, as
defined in Eq. (52). The explicit expressions for Ñ (k)

s and Ñ (k)
c

for k � 5 are given in Appendix C 3.
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FIG. 3. Subplots (a), (b), and (c) show the normalized probability density P̃ n,ϕ
ε (x̃, t̃ ), defined in Eq. (53), as a function of position x̃ for time

(a) t̃ = 0.1, (b) t̃ = 0.5, and (c) t̃ = 0.6, and for tube radius ε = 0.1 (green), ε = 0.3 (blue), and ε = 0.5 (orange). The legend given in subplot
(b) is valid for subplots (a), (b), and (c). Solid colored lines denote results from numerical simulation of the FPE, Eq. (19) (see Appendix C 5
for details on the numerical algorithm). Colored broken lines denote the perturbative result Eq. (53), calculated to order ε5. Vertical dashed
lines indicate the tube center x̃ = 0. Subplots (d), (e), and (f) show the exit rate α̃ϕ

ε , defined in Eq. (44), as a function of time t̃ , for tube radii
(d) ε = 0.1, (e) ε = 0.5, and (f) ε = 0.7. From all rates the free-diffusion exit rate is subtracted and the result is divided by the free-diffusion
exit rate, as defined in Eq. (57). Colored solid lines denote exit rates calculated from numerical simulation of the FPE, Eq. (19). Colored broken
lines show perturbative exit rates according to Eqs. (44) and (54)–(56). Black solid lines denote the OM Lagrangian Eq. (55), from which the
free-diffusion exit rate has already been subtracted so that in fact α̃(0)/α̃free is plotted. Vertical dashed lines indicate the times t̃ = 0.1, 0.5, 0.6
used for subplots (a), (b), and (c).

In Figs. 3(a)–3(c), we compare the perturbative analytical
probability density Eq. (53) to order ε5 with results from direct
numerical solution of the FPE, Eq. (19). Figure 3 shows the
probability density inside the tube at times (a) t̃ = 0.1, (b)
t̃ = 0.5, and (c) t̃ = 0.6, as indicated by vertical dashed lines
in Fig. 2. At each time we show results for radii ε = 0.1
(green), ε = 0.5 (blue), and ε = 0.7 (orange). Note that the
intermediate tube radius ε ≡ R/L = 0.5 is in fact so large that
during the ascent of the path ϕ towards the barrier top there
is a time at which the interval Bϕ

R(t ) = [ϕ(t ) − R, ϕ(t ) + R]
spans from the minimum x = −L to the barrier top x = 0.

For all times displayed, we observe that, while for ε = 0.1
and 0.5 numerical and perturbative results agree very well
with each other, for the largest radius considered, ε = 0.7,
clear deviations between the two are discernible. At the time
t̃ = 0.1 considered in Fig. 3(a), the path ϕ is close to the
minimum at x = −L and has a small velocity (see Fig. 2).
While for the smallest radius ε = 0.1 the probability density is
almost symmetric around x̃ = 0, indicating that the dynamics
inside the tube is dominated by free diffusion, for ε = 0.5
and 0.7 the influence of the potential leads to a slight shift
of the most probable position towards small negative values
of x̃. The perturbative probability density for ε = 0.7 takes on
negative values close to x̃ = −1, which is clearly unphysical
and signifies a breakdown of the perturbative results of order
ε5. In Fig. 3(b) we show probability densities at time t̃ = 0.5,
which according to Fig. 2 is when the path ϕ traverses the

barrier top. Despite the fact that at the maximum the potential
U is a symmetric function of x̃, all probability densities shown
in Fig. 3(b) are tilted towards negative values of x̃. This is
because the velocity of the path ϕ leads to a fictitious force,
as seen explicitly in Eq. (22); due to this fictitious force the
symmetry of the potential U is broken at the barrier top,
which leads to the tilted probability densities observed in the
figure. This effect is less pronounced at small ε, where the
dynamics inside the tube is dominated by free diffusion, as
compared to the apparent deterministic force due to U and
ϕ̇. In Fig. 3(c) we consider the time t̃ = 0.6, at which the
path ϕ descends from the barrier top towards the minimum
at x = L (see Fig. 2). Here we observe that, even though
the force resulting from the potential U pushes towards the
positive x̃ direction, due to the velocity of the path ϕ the
apparent force Eq. (22) leads to a probability density that is
still slightly tilted towards the negative x̃ direction, i.e., uphill
in the potential-energy landscape.

In the Supplemental Material [43] we provide videos that
show the full time evolution of the normalized probability
density for radius ε = 0.1, 0.3, 0.5, and 0.7. For ε = 0.1 and
0.3, numerical and analytical results show perfect agreement
throughout. Consistent with Fig. 3, for ε = 0.5 small devia-
tions between numerical and analytical density are observed,
and become most pronounced as the path ϕ ascends the barrier
(t̃ ≈ 0.45); however, given the size of the tube the agree-
ment between numerical and analytical probability density is
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remarkably good overall. For ε = 0.7 the breakdown of our
perturbative results can be observed; the analytical probability
takes on negative values and at times deviates considerably
from the numerical data.

Overall, from Figs. 3(a)–3(c), and also the Supplemental
Material [43], we conclude that for small to intermediate tube
radius our analytic result Eq. (53) very well approximates the
actual FP dynamics inside the tube.

C. Exit rate from the tube

Using the explicit expressions for the spectrum given in
Appendix C, the expansion of the exit rate Eq. (44) in powers
of ε is given by

α̃free = π2

4ε2
, (54)

α̃(0) ≡ L̃OM = Ẽ2
1

4
− Ẽ2, (55)

α̃(2) = − Ẽ1
˙̃E1

4

(
1 − 8

π2

)
+

˙̃E2

3

(
1 − 9

π2

)

+
(

Ẽ1Ẽ3

2
+ Ẽ2

2

3
− 2Ẽ4

)(
1 − 6

π2

)
, (56)

where the Ẽl ≡ Ẽl (t̃ ) are defined in Eq. (52), and a dot
denotes a derivative with respect to t̃ . We again consider
barrier crossing in the double-well system, as defined in
Eqs. (49) and (50) and illustrated in Fig. 2. In Figs. 3(d)–3(f),
we compare numerically calculated exit rates to perturbative
results obtained from Eqs. (44) and (54)–(56). In the plots the
exit rate is shifted and rescaled according to

�α̃ϕ
ε

α̃free
≡ α̃ϕ

ε − α̃free

α̃free
, (57)

so that (i) the sign of a curve indicates whether the exit rate
is enhanced or diminished as compared to the free-diffusion
limit α̃free and (ii) the magnitude yields the relative importance
of the terms Eqs. (55) and (56) as compared to α̃free. Numer-
ical data are shown as solid colored lines, and perturbative
analytical results are given as broken colored lines. To gauge
the importance of the quadratic correction Eq. (56) relative to
the OM Lagrangian Eq. (55), we furthermore include plots of
the latter as solid black lines in Figs. 3(d)–3(f). As detailed
in Appendix C 5, we use as initial distribution P̃i for our
simulations the instantaneous steady state of the FPE, so that
there is no transient initial decay in our numerical data; a brief
discussion of the transient effects of the initial condition on
the exit rate is given in Appendix C 4.

In Fig. 3(d) we consider the radius ε = 0.1. As can be seen,
the numerical and analytical results agree perfectly with each
other, and also with the OM Lagrangian Eq. (55). This means
that the quadratic correction Eq. (56) is not yet relevant at this
radius. Relative deviations from the free-diffusion exit rate
α̃free are less than 10% throughout, so that the exit rate is dom-
inated by free diffusion. Figure 3(e) shows data for the inter-
mediate radius ε = 0.5. Numerical and perturbative analytical
results agree very well with each other, with minor deviations
at t̃ ≈ 0.5. However, clear deviations between numerical data
and the OM Lagrangian Eq. (55) are visible, meaning that the

quadratic correction Eq. (56) to the exit rate is now relevant.
The deviations between our perturbative/numerical results
and OM theory are twofold. First, when the path is close to the
minima, the OM action underestimates the true (numerical)
exit rate. During these times, the numerical exit rate is rather
insensitive to the exact position of the tube center within the
well, because the rate limiting step to exit the tube is to climb
the potential barrier, which is expected to be rather insensitive
to the exact position of the tube center in the well. The
second difference between our perturbative/numerical results
and OM theory is that during barrier crossing the numerical
exit rate is delayed as compared to the OM Lagrangian. From
the magnitude of the rescaled exit rate Eq. (57), we conclude
that for ε = 0.5 the free-diffusion exit rate is of the same order
as the corrections Eqs. (55) and (56).

Figure 3(f) shows data for the largest radius ε = 0.7.
Overall the perturbative result Eq. (44) still shows reasonable
agreement with the numerical exit rate, which is surprising
since the corresponding probability density at times deviates
strongly from the numerical results [see Fig. 3(a) and the Sup-
plemental Material [43]]. However, clear deviations between
numerical and analytical exit rate can be discerned, most
prominently during barrier crossing at t̃ ≈ 0.5. Numerical
exit rate and OM Lagrangian Eq. (55) disagree considerably,
showing the importance of the quadratic correction Eq. (56).
During barrier crossing, the contributions to the exit rate from
Eqs. (55) and (56) are about five times larger than the free-
diffusion exit rate α̃free.

In summary, Figs. 3(d)–3(f) show that our perturbative
results Eqs. (44) and (54)–(56) describe the exit rate quan-
titatively up to a tube radius well comparable to the typical
length scale of the potential U , and in particular beyond the
regime where the OM Lagrangian is applicable.

To close this section, we illustrate how finite-radius exit
rates obtained directly from measured trajectories compare to
our perturbative analytical results. For this, we consider a tube
radius ε = R/L = 0.5, as also discussed in Fig. 3(e). Figure 4
depicts the exit rate obtained directly from a large number
of independent simulated time series. As Fig. 4 shows, the
exit rate obtained directly from Langevin time series agrees
well with our perturbative result Eq. (44), and shows clear
deviations from the OM Lagrangian Eq. (55). This shows that
it is possible to measure the exit rate for a finite-radius tube
directly from time series, without fitting any model to the data.
Note that since the FPE, Eq. (7), with absorbing boundary
conditions is equivalent to the Langevin Eq. (1), with tra-
jectories being discarded once they first cross the absorbing
boundary, it is expected that Figs. 3(e) and 4 lead to the
same conclusions; indeed, the agreement between numerical
FP solution and results obtained from Langevin simulations
is an important consistency check for our numerics. Apart
from illustrating how our results directly connect to measured
time series, the analysis based on Langevin trajectories also
highlights two features that appear when extracting the exit
rate from recorded data. First, since all Langevin simulations
are initiated at x = −L, which can be thought of as a definite
experimental initial condition, the exit rate shows a short
transient relaxation period for times t̃ � 0.05 (see Appendix
C 4 for further discussion). Second, the number of trajectories
inside the tube decreases over time, so that the statistics for
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calculating the exit rate become successively worse; this ex-
plains why the exit rate measured from Langevin trajectories
starts to become noisy around t̃ ≈ 0.5.

IV. SUMMARY AND CONCLUSIONS

In this paper we establish the finite-radius tubular en-
semble, which consists of all stochastic trajectories that stay
close to a smooth reference path ϕ, as a physically and
mathematically useful concept to regularize and extend the
path probabilities of individual stochastic trajectories. We in
particular derive explicit expressions for the probability to
observe any path of the tubular ensemble, thus generalizing
the OM stochastic action. Our results have several important
consequences.

From a mathematical perspective, we evaluate and study
the probability P(X ϕ

R ), i.e., the probability that a stochastic
trajectory stays close to a given smooth reference path, for
finite radius R. We therefore focus on a measure, which is in
contrast to previous work, which aimed to define probability
densities on the space of all continuous paths, and therefore
always involved the singular limit R → 0 [29]. Compared to
the approach to path probabilities via path integrals [23–28],
an advantage of our approach is that at no point do we need to
discretize time. Therefore, none of the technical/conceptual
difficulties arising from different time-discretization schemes
discussed in the literature arise [28,38,39]. Furthermore,
in our theory smooth and nondifferentiable stochastic tra-
jectories are cleanly disentangled. The former are used to
parametrize a set (a moving ball with finite radius), and the
latter are confined to this set.

In a sense, the approach used in the present paper is
opposite to Freidlin-Wentzell theory [44]. While Freidlin and
Wentzell also consider the tubular ensemble Eq. (2), they
investigate the double limit of vanishing radius R → 0 and
temperature 1/β = kBT → 0. Practically speaking, in their
analysis the deterministic force in the Langevin Eq. (1) is as-
sumed to be the dominant term. In our perturbative calculation
at constant temperature, on the other hand, we perturb around
the free-diffusion solution of the FPE, which means that in
our analysis the random force term in the Langevin Eq. (1)
is assumed to be the dominant term on short length scales.
That random noise dominates over deterministic forces at
short length and time scales is a basic feature of the Langevin
equation and is in fact the reason why a typical realization of
Eq. (1) is nowhere differentiable.

Our theory for the finite-radius tubular ensemble Eq. (2) is
also highly relevant from a physical perspective. By establish-
ing a direct relation between exit rate and stochastic action
Lagrangian, we put the latter within reach of experiments.
Indeed, substituting Eqs. (5) and (11) into Eq. (4), it follows
that

LOM(ϕ, ϕ̇) − LOM(φ, φ̇) = lim
R→0

[
α

ϕ
R − α

φ
R

]
. (58)

While directly measuring the probability of an individual
given path is experimentally unfeasible, simply because that
probability is zero, directly measuring experimentally the
probability for a trajectory to stay inside a moving ball with
finite radius is possible with present-day technology [9,45,46].
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FIG. 4. Exit rate as measured directly from Langevin simulations
for a tube of radius ε = R/L = 0.5. The black solid and blue dash-
dotted lines are replots of the corresponding lines in Fig. 3(e). The
blue solid line represents the exit rate as estimated from simulated
trajectories. For this, 2.4 × 106 independent Langevin simulations in
the quartic double-well Eq. (49) with a simulation time step �t̃ =
10−5 are performed, with each trajectory starting at x = −L. From
these trajectories, the sojourn probability for a tube of radius ε =
R/L = 0.5 around a reference path ϕ(t ), as defined in Eq. (50), is
evaluated directly, by counting which proportion of trajectories has
never left the tube until any given time. Subsequently, the exit rate is
numerically calculated via Eq. (41), and the result is smoothed using
a moving average with a Hann window of width �t̃ = 0.003. From
this exit rate, finally, the free-diffusion exit rate Eq. (54) is subtracted,
and the result is divided by the free-diffusion exit rate [see Eq. (57)].

This means the right-hand side of Eq. (58) can be measured
for finite R, as was done in Fig. 4, and then extrapolated to
the limit R → 0; this can be done without fitting a stochastic
model to the time series. Equation (58) thus allows us to com-
pare model-free measurements of exit rates (right-hand side
of the equation) to theoretical predictions for the stochastic
action Lagrangian (left-hand side of the equation). This will
allow us to experimentally validate theoretical predictions for
the stochastic action Lagrangian as a measure for relative
path likelihoods. Equation (58) can furthermore serve as
an operational and experimentally relevant definition for the
action Lagrangian for other models of stochastic dynamics,
for example, those used to describe active particles [47].

While irrelevant in the limit R → 0, for finite tube radius
it will be important to understand in more depth how tran-
sient effects due to the initial distribution X ti ∼ Pi affect the
sojourn probability. A basis for investigating such boundary
effects is given by the full perturbative solution considered in
Appendix B.

While we assume a smooth path ϕ, our derivation in fact
only uses that it is twice differentiable. The first derivative ϕ̇

emerges from applying the coordinate transformation Eq. (14)
to the FPE [see Eq. (21)]. The second derivative enters
because the FPE in terms of the instantaneous eigenbasis,
Eq. (28), contains the time derivative of FP eigenfunctions;
since these eigenfunctions depend on ϕ̇, their derivative de-
pends on ϕ̈. It will be interesting to extend our theory to
reference paths ϕ that are continuous, but not differentiable,
such as realizations of the Langevin Eq. (1). A starting point
for this would be to investigate how the FPE transforms under
a nondifferentiable coordinate transformation [48].
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Another possible extension of our theory is to include
position-dependent diffusivity, i.e., to replace the constant
diffusion coefficient D by a function D(x). Assuming that the
diffusivity varies slowly along the tube, a first approximation
is to simply replace D by D(x) in our results. In view of the
exit rate Eq. (12), the sojourn probability is then given by

P ϕ
R (t f ) = exp

[
− λ̃(0)

n

R2

∫ t f

ti

dt D(ϕ(t ))

−
∫ t f

ti

dt LOM(t,ϕ(t ), ϕ̇(t )) + O(R2)

]
, (59)

where the diffusivity in the OM Lagrangian Eq. (6) is now
evaluated at D(ϕ(t )). Equation (59) shows that for position-
dependent diffusivity for small tube radius R the leading-order
difference in sojourn probabilities along two paths ϕ and φ is
the mean free-diffusion exit rate along the paths, and the OM
action is now a sub-leading-order correction. Thus, in the limit
R → 0, instead of Eq. (6) one would rather want to consider
an action

SD[ϕ] ≡
∫ t f

ti

dt D(ϕ(t )) (60)

to quantify physically observed relative path probabilities.
Intuitively, a particle is more likely to diffuse away from
a given reference path in a region with large diffusivity, as
compared to a region with low diffusivity. In the mathematical
literature the leading-order effect due to free diffusion, given
by Eq. (60), is usually scaled away, essentially by introducing
a position-dependent tube radius R(x) such that D(x)/R(x)2

is constant as a function of x [29]. Thus, before applying
the OM theory in systems with position-dependent diffusivity,
one should decide whether one wants to quantify relative
path probabilities using a spatially constant threshold R, in
which case one would want to use Eq. (60) as action, or using
a varying threshold R(x) ∼ √

D(x), in which case the OM
action is the leading-order difference in sojourn probabilities
[29,37].

The present paper on the tubular ensemble Eq. (2) of-
fers an intuitive picture on (relative) path probabilities for
the Langevin Eq. (1), providing a physical approach to this
hitherto rather technical subject. Since any question that can
be posed for individual stochastic trajectories is straightfor-
wardly extended to the tubular ensemble, and through that
is made accessible to simulation or experiment, the theory
presented here is expected to find many applications in the
future. The results will be particularly useful for the field of
stochastic thermodynamics, where the concept of individual
trajectories, and ratios of their probabilities, is employed
extensively [18,19,47].
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APPENDIX A: PERTURBATIVE SPECTRUM OF THE
N-DIMENSIONAL FPE

1. Perturbation theory

In the present Appendix, we perturbatively solve the eigen-
value Eq. (25) up to order ε2. For this, we first expand the
right-hand side of the equation as a power series in ε.

a. Taylor expansion of the force

The multidimensional Taylor expansion of the force F
around the tube center ϕ(t ) is given by

F(x, t ) =
∞∑

k=0

1

k!

N∑
α1,...,αk=1

∂kF
∂xα1 . . . ∂xαk

∣∣∣∣
(ϕ(t ),t )

× [x − ϕ(t )]α1 . . . [x − ϕ(t )]αk , (A1)

where [x − ϕ(t )]αi ≡ xαi − ϕαi (t ) is the αith component of the
vector x − ϕ(t ). Substituting Eq. (A1) into the definition of
the dimensionless force Eq. (17) and using Eq. (14), we obtain
that

F̃app(x̃, t̃ ) = −
∞∑

k=1

εk−1k
N∑

α1,...,αk−1=1

Ẽk,α1...αk−1 (t̃ )x̃α1 . . . x̃αk−1

(A2)

≡ −
∞∑

k=1

εk−1k Ẽk,α(t̃ )x̃α (A3)

where we use the Einstein sum convention for the indices
α ≡ (α1, . . . , αk−1), we abbreviate x̃α ≡ x̃α1 . . . x̃αk−1 , and the
vector-valued (k − 1)-multilinear form Ẽk is defined as

Ẽk,α1...αk−1 (t̃ ) ≡ − 1

k!
Lkβ

∂k−1F
∂xα1 . . . ∂xαk−1

∣∣∣∣
(ϕ(t ),t )

+ δk,1 ˙̃ϕ(t̃ ),

(A4)

where dimensionless quantities (as indicated by a tilde) and
quantities with physical dimensions are related via Eqs. (14)
and (18). Note that if the derivatives of the force commute,
e.g., if the force is a smooth function of position for a time
t , then Ẽk is symmetric in the (α1, . . . , αk−1). If the force
is locally given by a potential U as F = −∇U , then the jth
vector component of Ẽk is given by

Ẽ j
k,α1...αk−1

(t̃ ) ≡ 1

k!
Lkβ

∂kU

∂xα1 . . . ∂xαk−1∂x j

∣∣∣∣
(ϕ(t ),t )

+ δk,1 ˙̃ϕ j (t̃ ), (A5)

so that Eq. (A3) is a multivariate Taylor expansion of the di-
mensionless potential Ũ = βU + x̃ · ˙̃ϕ around the tube center
x̃ = 0. Consequently, in that case the un-normalized instanta-
neous steady-state distribution inside the tube is given by

ρ̃SS(x̃, t̃ ) = exp

[
−

∞∑
k=1

εk
N∑

α1,...,αk=1

Ẽ
αk

k,α1,...,αk−1
x̃α1 . . . x̃αk

]
.

(A6)

023407-10



STOCHASTIC ACTION FOR TUBES: CONNECTING PATH … PHYSICAL REVIEW RESEARCH 2, 023407 (2020)

b. Hierarchy of equations for the spectrum

Inserting the power series Eq. (A3) into the eigenvalue
Eq. (25), we obtain

∇̃2
ρ̃n +

∞∑
k=1

kεk (Ẽk,α · ∇̃)(x̃αρ̃n) = −λ̃nρ̃n, (A7)

where the dot denotes a scalar product and ∇̃ denotes the
gradient operator with vector components ∇̃i ≡ ∂/∂ x̃i.

Expanding both the instantaneous eigenvalues and eigen-
functions as power series in ε, as defined in Eq. (29), substi-
tuting these into Eq. (A7), and demanding that the resulting
equation hold at each power εk , we obtain a hierarchy of
equations which for the nth eigenvalue/eigenfunction pair at
order εk read

∇̃2
ρ̃ (k)

n + λ̃(0)
n ρ̃ (k)

n

= −
k∑

l=1

λ̃(l )
n ρ̃ (k−l )

n −
k∑

l=1

l (Ẽ l,α · ∇̃)
(
x̃αρ̃

(k−l )
n

)
, (A8)

where we use the convention that for k = 0 the sums on
the right-hand side are zero. For the absorbing boundary
conditions to be fulfilled independently of ε, they need to hold
at each order separately, so that for all k ∈ {0, 1, 2, . . .} we
have

ρ̃ (k)
n (x̃, t̃ ) = 0 ∀ x̃ ∈ ∂B̃ ≡ {

x̃
∣∣ ||x̃|| = 1

}
. (A9)

While any solution to Eqs. (A8) and (A9) can be used in
practice for the spectrum, the solution to these equations is
not unique. To fix the solution uniquely, we introduce a nor-
malization condition 〈ρ̃n, ρ̃n〉 = 1. Inserting the power-series
expansion Eq. (29) for the eigenfunction into this normaliza-
tion condition, and demanding that the condition hold at each
power of ε, we obtain for k = 0 that∫

B̃
dN x̃ ρ̃ (0)

n ρ̃ (0)
n = 1, (A10)

while for k � 1 we have that∫
B̃

dN x̃ ρ̃ (k)
n ρ̃ (0)

n

= −1

2

k−1∑
l=0

k−max {1,l}∑
m=0

∫
B̃

dN x̃ ρ̃ (l )
n ρ̃ (m)

n

(
ρ̃−1

SS

)(k−l−m)
, (A11)

where we use the convention that for k = 1 the sum on the
right-hand side is zero and the expansion of ρ̃−1

SS in powers of
ε is discussed in Appendix A 2. Note that for any k there only
appear perturbation terms ρ̃ (l )

n with l < k on the right-hand
side of Eq. (A11).

Equations (A8)–(A11) constitute a closed system of equa-
tions that can be solved recursively to obtain the spectrum to
arbitrary order.

At order k = 0, the right-hand side of Eq. (A8) vanishes, so
that the equation is reduced to the eigenvalue equation of the
Laplace operator. Thus, λ̃(0)

n and ρ̃ (0)
n comprise the spectrum

of the Laplace operator with absorbing boundary conditions
on a unit ball, where we assume that ρ̃ (0)

n has been normalized
according to Eq. (A10).

Assuming the spectrum has been obtained up to order
k − 1, the contribution at order k is calculated as follows. An
equation for λ̃(k)

n is obtained by multiplying Eq. (A8) with
ρ̃ (0)

n , and subsequently integrating over x̃. Upon integrating the
result by parts and using the absorbing boundary conditions
Eq. (A9), it follows that the equation is in fact independent of
ρ̃ (k)

n and can be solved directly for λ̃(k)
n , leading to

λ̃(k)
n = −

k−1∑
l=1

λ̃(l )
n

∫ 1

−1
dx̃ ρ̃ (0)

n ρ̃ (k−l )
n

−
k∑

l=1

l
∫

B̃
dN x̃ ρ̃ (0)

n (Ẽ l,α · ∇̃)
(
x̃αρ̃

(k−l )
n

)
, (A12)

where we used the normalization condition Eq. (A10) for
ρ̃ (0)

n . Since the right-hand side only depends on λ̃(l )
n and

ρ̃ (l )
n with l < k, this equation can be used to calculate the

order k eigenvalue contribution in terms of the lower-order
contributions.

Once λ̃(k)
n has been obtained via Eq. (A12), the right-hand

side of Eq. (A8) is known, so that to obtain ρ̃ (k)
n the inhomoge-

neous Helmholtz Eq. (A8) with boundary conditions Eq. (A9)
has to be solved. While in general this can be done using the
corresponding Green’s function, we calculate the spectrum to
order ε2 directly using a simple ansatz below. Before that,
however, we establish some general properties of the spectrum
which follow from parity symmetry.

c. Parity properties of the spectrum

We introduce the parity operator P̃ , defined by its action
on a function f as

(P̃ f )(x̃) ≡ f (−x̃). (A13)

Consequently, for products of functions f and g, it holds
that P̃ ( f g) = (P̃ f )(P̃g), and for the gradient we have P̃∇̃ =
−∇̃. Therefore the operator P̃ commutes with the Laplacian,
P̃∇̃2 = ∇̃2P̃ , so that we can assume that the eigenfunctions
ρ̃ (0)

n of the Laplacian diagonalize ∇̃2
and P̃ simultaneously, so

that

P̃ ρ̃ (0)
n = pn ρ̃ (0)

n , (A14)

with pn ∈ {−1, 1}.
Via induction in k it follows from Eqs. (A8), (A9), (A12),

and (A14) that

λ̃(k)
n = 0 for k odd, (A15)

and furthermore that

P̃ ρ̃ (k)
n = (−1)k pn ρ̃ (k)

n . (A16)

Thus, ρ̃ (k)
n has the same parity as ρ̃ (0)

n if k is even, and the
opposite parity as ρ̃ (0)

n if k is odd.
We now calculate the lowest-order contributions to the

N-dimensional FP spectrum; higher-order results for one-
dimensional systems are given in Appendix C 1.
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d. Order ε1 contribution to the spectrum

For k = 1, Eq. (A15) yields λ̃(1)
n = 0. Substituting this into

Eq. (A8) for k = 1, we obtain

∇̃2
ρ̃ (1)

n + λ̃(0)
n ρ̃ (1)

n = −(Ẽ1 · ∇)ρ̃ (0)
n . (A17)

As can be verified by direct substitution, a solution to this
inhomogeneous Helmholtz equation is given by

ρ̃ (1)
n (x̃, t̃ ) = − 1

2 [Ẽ1(t̃ ) · x̃] ρ̃ (0)
n (x̃, t̃ ), (A18)

where the dot denotes the standard Euclidean inner product
between the two N-dimensional vectors Ẽ1(t̃ ) and x̃. Because
ρ̃ (0)

n vanishes on ∂B̃, the result Eq. (A18) fulfills the boundary
condition Eq. (A9). For k = 1, the normalization condition
Eq. (A11) is fulfilled by Eq. (A18), because upon substitution
of Eq. (A18) the integrand in Eq. (A11) has odd parity, while
the integration domain is symmetric with respect to a parity
transformation. With Eqs. (A15) and (A18), we thus have the
order ε1 contribution to the N-dimensional FP spectrum.

e. Order ε2 contribution to the spectrum

For k = 2, Eq. (A12) becomes

λ̃(2)
n = −

∫
B̃

dN x̃ ρ̃ (0)
n (Ẽ1 · ∇̃)

(
ρ̃ (1)

n

)
− 2

∫
B̃

dN x̃ ρ̃ (0)
n (Ẽ2,α · ∇̃)

(
x̃αρ̃ (0)

n

)
, (A19)

where we use λ̃(1)
n = 0. Substituting Eq. (A18) into Eq. (A19),

and performing the integrals, we obtain the second correction
for the eigenvalue as

λ̃(2)
n = Ẽ

2
1

4
− tr(Ẽ2), (A20)

where

(Ẽ2,α · ∇̃)(x̃α ) =
N∑

i=1

Ẽ
i
2,i ≡ tr(Ẽ2). (A21)

Substituting the definition of Ẽk,α, Eq. (A4), and using
Eqs. (17) and (18), it follows that

λ̃(2)
n = τD

[
(DβF|ϕ − ϕ̇)2

4D
+ Dβ

2
(∇ · F )|ϕ

]
, (A22)

which is the OM stochastic action in units of 1/τD ≡ D/L2.
To calculate ρ̃ (2)

n , we insert Eqs. (A15), (A18), and (A20) into
the right-hand side of Eq. (A8) (with k = 2), resulting in

∇̃2
ρ̃ (2)

n + λ̃(0)
n ρ̃ (2)

n =
[

Ẽ
2
1

4
− tr(Ẽ2)

]
ρ̃ (0)

n

+
[

1

2
(Ẽ1 · x̃)Ẽ1 − 2Ẽ2,αx̃α

]
· ∇̃ρ̃ (0)

n .

(A23)

This equation can be solved directly for the case where
the force inside the tube is given as the gradient of an
instantaneous potential, F = −∇U . According to Eq. (A5),
in that case the two-tensor (or vector-valued one form) Ẽ2 is

symmetric, i.e., we have Ẽ j
2,i = Ẽ i

2, j , and direct substitution
shows that Eq. (A23) is solved by

ρ̃ (2)
n = 1

2

[
(Ẽ1 · x̃)2

4
− x̃ · Ẽ2,α x̃α

]
ρ̃ (0)

n , (A24)

which fulfills both the normalization condition Eq. (A11) and
the boundary conditions Eq. (A9) (note that ρ̃ (0)

n vanishes on
∂B̃). The solution Eq. (A24) is also valid if ρ̃ (0)

n is radially
symmetric, as is the case for n = 1. In that case ρ̃ (0)

n depends
on x̃ only via ||x̃||, and consequently there is a scalar function
f such that ∇̃ρ̃ (0)

n = f (||x̃||) x̃. Using this, it is readily verified
that Eq. (A24) is a solution to Eq. (A23).

f. Order ε3 contribution to the eigenvalue

According to Eq. (A15), we have λ̃(3)
n = 0.

2. Parity properties of the reflecting-boundary steady state

In the present section we discuss the perturbative calcula-
tion and parity properties of both the steady state ρ̃SS and its
multiplicative inverse ρ̃−1

SS ≡ 1/ρ̃SS.

a. Perturbative calculation of ρ̃SS

According to Eq. (21), the instantaneous steady state ρ̃SS is
the solution of the boundary value problem

∇̃2
ρ̃SS − ε ∇̃ · [F̃appρ̃SS] = 0, (A25)

with boundary condition

n̂ · j̃ss|∂B̃ = 0, (A26)

where j̃ss ≡ −∇̃ρ̃SS + ε F̃appρ̃SS, where n̂ is the unit normal
vector on B̃, and where F̃app = F̃ − ˙̃ϕ, as defined in Eq. (22).

If the force F̃ originates from a potential, F̃ = −∇̃Ũ , then
the (un-normalized) instantaneous steady state is a Boltzmann
distribution [see Eqs. (27) and (A6)]. Using the Taylor expan-
sion of the exponential function, an expansion in powers of ε

for ρ̃SS is then obtained from Eq. (A6).
We now discuss how to perturbatively calculate ρ̃SS for the

general case, in which the force F̃ need not have an instan-
taneous potential inside the tube. Substituting into Eq. (A25)
the power-series expansion Eq. (A3) of F̃, we obtain

∇̃2
ρ̃SS +

∞∑
k=1

kεk (Ẽk,α · ∇̃)(x̃αρ̃SS) = 0, (A27)

where the dot denotes the standard Euclidean inner product.
Expanding the instantaneous steady state as power series in ε,

ρ̃SS =
∞∑

k=0

εk ρ̃
(k)
SS , (A28)

substituting this expansion into Eq. (A27), and demanding
that the resulting equation hold at each power εk , we obtain
a hierarchy of equations which at order εk reads

∇̃2
ρ̃

(k)
SS = −

k∑
l=1

l (Ẽ l,α · ∇̃)
(
x̃αρ̃

(k−l )
SS

)
, (A29)

where we use the convention that for k = 0 the sum on the
right-hand side is zero. Inserting the power-series expansions
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Eq. (A3) and (A28) into the boundary condition Eq. (A26),
and demanding that the resulting equation be fulfilled at each
power εk , we obtain

(n̂ · ∇̃)ρ̃ (k)
SS = −

k∑
l=1

l (n̂ · Ẽ l,α)x̃αρ̃
(k−l )
SS (A30)

where k � 0 and we use the convention that for k = 0 the sum
on the right-hand side is zero.

While at order ε0 the (un-normalized) solution to
Eqs. (A29) and (A30) is simply given by ρ̃

(0)
SS = 1, for k � 1

the equations have to be solved recursively, similar to the
spectrum in Appendix A1. The resulting corrections at order
1 and 2 are

ρ̃
(1)
SS = −Ẽ1 · x̃, (A31)

ρ̃
(2)
SS = 1

2 (Ẽ1 · x̃)2 − x̃ · Ẽ2,α x̃α. (A32)

Note that in Eq. (A32) only the symmetric part of the two-
tensor (or vector-valued one form) Ẽ2 contributes.

b. Parity properties of the ρ̃
(k)
SS

Similar to the parity properties of the FP spectrum, via
induction in k it can be shown that

P̃ ρ̃
(k)
SS = (−1)k ρ̃

(k)
SS , (A33)

where the parity operator P̃ is defined in Eq. (A13).

c. Perturbative calculation and parity properties of ρ̃−1
SS

By definition of the inverse, it holds that

ρ̃SS ρ̃−1
SS = 1. (A34)

Substituting the power-series expansion Eq. (A28) of ρ̃SS and
the expansion

ρ̃−1
SS =

∞∑
k=0

εk
(
ρ̃−1

SS

)(k)
, (A35)

into Eq. (A34), and demanding that the equation hold at any
order of ε, we obtain a recursive system of equations for the
expansion of ρ̃−1

SS given by(
ρ̃−1

SS

)(0) = 1, (A36)

(
ρ̃−1

SS

)(k) = −
n∑

l=1

ρ̃
(l )
SS

(
ρ̃−1

SS

)(k−l )
, (A37)

where in Eq. (A36) we use that ρ̃
(0)
SS = 1. Using Eqs. (A31)

and (A32), it follows from Eq. (A37) that(
ρ̃−1

SS

)(1) = Ẽ1 · x̃, (A38)(
ρ̃−1

SS

)(2) = 1
2 (Ẽ1 · x̃)2 + x̃ · Ẽ2,α x̃α. (A39)

Note that in Eq. (A39) only the symmetric part of the two-
tensor Ẽ2 contributes.

According to Eq. (A36), the parity of (ρ̃−1
SS )

(0)
is 1. Using

induction, and applying the parity operator to Eq. (A37), it
furthermore follows that

P̃
[(

ρ̃−1
SS

)(k)] = (−1)k
(
ρ̃−1

SS

)(k)
(A40)

for all k.

3. Properties of power-series expansions derived from parity

We now derive properties of some power-series expansions
used in the main text.

a. Integral over FP eigenfunctions

We consider

Ĩn ≡
∫

B̃
dN x̃ ρ̃n, (A41)

which we expand in a power series

Ĩn ≡
∞∑

k=0

εk Ĩ (k)
n , (A42)

with Ĩ (k)
n defined by Eq. (48). The integral on the right-hand

side of Eq. (48) vanishes if ρ̃ (k)
n has odd parity. According to

Eq. (A16), we thus have

Ĩ (k)
n = 0 if

{
k odd and pn = 1,

k even and pn = −1.
(A43)

In particular, since the lowest eigenfunction of the Laplace
operator (inside a unit ball and with absorbing boundary
conditions) is even, we have

Ĩ1 = Ĩ (0)
1 + ε2Ĩ (2)

1 + ε4Ĩ (4)
1 + O(ε6). (A44)

b. Inner product of FP eigenfunctions

We consider

〈ρ̃n, ρ̃m〉 =
∫

B̃
dN x̃ ρ̃nρ̃mρ̃−1

SS (A45)

[see Eq. (26)]. The power-series expansion of this inner prod-
uct is given by

〈ρ̃n, ρ̃m〉 =
∞∑

l=0

εl〈ρ̃n, ρ̃m〉(l ), (A46)

where

〈ρ̃n, ρ̃m〉(l ) =
∑

i, j, k � 0
i + j + k = l

∫
B̃

dN x̃ ρ̃ (i)
n ρ̃ ( j)

m

(
ρ̃−1

SS

)(k)
(A47)

with the power-series expansions Eq. (29) and (A35). If the
integrand has odd parity, the integral on the right-hand side
vanishes; applying the parity operator to the integrand we
calculate

P̃
[
ρ̃ (i)

n ρ̃ ( j)
m

(
ρ̃−1

SS

)(k)] = pn pm(−1)l
[
ρ̃ (i)

n ρ̃
( j)
m
(
ρ̃−1

SS

)(k)]
, (A48)

where we use Eqs. (A16) and (A40), and i + j + k = l . Thus,
we have

〈ρ̃n, ρ̃m〉(l ) = 0 if

{
l odd and pn pm = 1,

l even and pn pm = −1.
(A49)

In particular, we have

〈ρ̃n, ρ̃n〉 = 〈ρ̃n, ρ̃n〉(0) + ε2〈ρ̃n, ρ̃n〉(2) + ε4〈ρ̃n, ρ̃n〉(4) + O(ε6)

(A50)

for any n.
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c. Inner product of FP eigenfunctions including a time derivative

Since taking a time derivative does not change spatial
parity we, similar to the previous case, have for the power
series expansion

〈ρ̃n, ˙̃ρm〉 =
∞∑

l=0

εl〈ρ̃n, ˙̃ρm〉(l ) (A51)

that

〈ρ̃n, ˙̃ρm〉(l ) = 0 if

⎧⎪⎨
⎪⎩

l = 0,

l > 0 odd and pn pm = 1,

l > 0 even and pn pm = −1,

(A52)

where we note that ˙̃ρ (0)
m = 0, since the spectrum of the Laplace

operator (inside a unit ball and with time-independent absorb-
ing boundary conditions) is independent of time. In particular
we have

〈ρ̃n, ˙̃ρn〉 = ε2〈ρ̃n, ˙̃ρn〉(2) + ε4〈ρ̃n, ˙̃ρn〉(4) + O(ε6) (A53)

for any n.

d. Product of the inner product of FP eigenfunctions with a time
derivative and the integral over eigenfunctions

We now consider the power-series expansion of

〈ρ̃m, ˙̃ρ1〉 Ĩm =
∞∑

k=0

εk (〈ρ̃m, ˙̃ρ1〉 Ĩm)(k). (A54)

Since ρ̃1 has even parity, p1 = 1, we have according to
Eqs. (A43) and (A52) that the expansions in powers of ε of
both 〈ρ̃m, ˙̃ρ1〉 and Ĩm only have nonzero terms at even powers
of ε if pm = 1, and at odd powers of ε if pm = −1; therefore,
regardless of pm the product 〈ρ̃m, ˙̃ρ1〉 Ĩm only contains even
powers of ε, i.e.,

(〈ρ̃m, ˙̃ρ1〉 Ĩm)(k) = 0 if k odd. (A55)

The lowest-order term of the expansion is therefore

〈ρ̃m, ˙̃ρ1〉 Ĩm = ε2(〈ρ̃m, ˙̃ρ1〉 Ĩm)(2) + O(ε4) (A56)

with

(〈ρ̃m, ˙̃ρ1〉 Ĩm)(2) =
{〈ρ̃m, ˙̃ρ1〉(2) Ĩ (0)

m if pm = 1,

〈ρ̃m, ˙̃ρ1〉(1) Ĩ (1)
m if pm = −1.

(A57)

APPENDIX B: PERTURBATIVE SOLUTION OF THE FPE

1. Perturbative solution of the FPE in terms of the
instantaneous spectrum

We now derive an approximate solution of Eq. (28), which
incorporates the coupling between eigenmodes to order ε4

(and in the case of a one-dimensional system, N = 1, to order
ε5). The following derivation is similar to what in quan-
tum mechanics is called time-dependent perturbation theory
[42,49]. To render the following calculation easier to read, we
rewrite Eq. (28) as

− ˙̃an = 1

ε2
�̃nãn + ε

∞∑
m=1

C̃nmãm, (B1)

where we introduce

�̃n(t̃ ) ≡ λ̃n(t̃ ) + ε2 〈ρ̃n, ˙̃ρn〉
〈ρ̃n, ρ̃n〉

∣∣∣∣
t̃

, (B2)

C̃nm(t̃ ) ≡ (1 − δn,m)
1

ε

〈ρ̃n, ˙̃ρm〉
〈ρ̃n, ρ̃n〉

∣∣∣∣
t̃

, (B3)

with δn,m the Kronecker delta. From the spectrum calculated
in Appendix A 1, it follows that for all n and m we have that
�̃n = O(ε0) and C̃nm = O(ε0), so that the explicit powers of ε

on the right-hand side of Eq. (B1) represent the leading-order
scaling of each of the terms.

According to Eq. (B1), the dynamics of each mode is
for small ε dominated by the adiabatic exponential decay
described by the instantaneous decay rate �̃n(t̃ )/ε2. We now
derive an approximate solution to Eq. (B1) which incorporates
the leading-order effects of the mode coupling described by
the coupling matrix C̃nm.

To separate the adiabatic mode decay and the interaction
between modes, we introduce b̃n via

ãn(t̃ ) = b̃n(t̃ )P̃ad
n (t̃, t̃i ), (B4)

with the adiabatic propagator P̃ad
n for mode n given by

P̃ad
n (t̃, t̃i ) ≡ exp

[
− 1

ε2

∫ t̃

t̃i

dt̃ ′ �̃n(t̃ ′)

]
. (B5)

Substituting Eq. (B4) into Eq. (B1), we obtain

˙̃bn(t̃ ) = −ε

∞∑
m = 1
m �= n

C̃nm(t̃ ) P̃ad
mn(t̃, t̃i ) b̃m(t̃ ), (B6)

where in the sum bounds we make explicit the fact that C̃nn =
0, and where we define

P̃ad
mn(t̃, t̃i ) ≡ P̃ad

m (t̃, t̃i )/P̃ad
n (t̃, t̃i ) (B7)

= exp

[
− 1

ε2

∫ t̃

t̃i

dt̃ ′ ��̃mn(t̃ ′)

]
, (B8)

with ��̃mn(t̃ ) ≡ �̃m(t̃ ) − �̃n(t̃ ).
Integrating Eq. (B6), we obtain

b̃n(t̃ ) = b̃n(t̃i) − ε

∞∑
m = 1
m �= n

∫ t̃

t̃i

dt̃ ′ C̃nm(t̃ ′) P̃ad
mn(t̃ ′, t̃i ) b̃m(t̃ ′).

(B9)

To eliminate b̃m(t̃ ′) in the second term on the right-hand side
of Eq. (B9), we reinsert the expression Eq. (B9), similar to
the construction of the Dyson series in quantum mechan-
ics [49]. Iterating this procedure, by reinserting Eq. (B9)
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once more in the result, we obtain

b̃n(t̃ ) = b̃n(t̃i ) − ε

∞∑
m = 1
m �= n

M(1)
nm(t̃, t̃i ) b̃m(t̃i ) + ε2

∞∑
m = 1
m �= n

∞∑
k = 1
k �= m

M(2)
nmk (t̃, t̃i ) b̃k (t̃i )

− ε3
∞∑

m = 1
m �= n

∞∑
k = 1
k �= m

∞∑
l = 1
l �= k

∫ t̃

t̃i

dt̃ ′
∫ t̃ ′

t̃i

dt̃ ′′
∫ t̃ ′′

t̃i

dt̃ ′′′C̃nm(t̃ ′)P̃ad
mn(t̃ ′, t̃i )C̃mk (t̃ ′′)P̃ad

km(t̃ ′′, t̃i )C̃kl (t̃
′′′)P̃ad

lk (t̃ ′′′, t̃i )b̃l (t̃
′′′), (B10)

where we define

M(1)
nm(t̃, t̃i ) ≡

∫ t̃

t̃i

dt̃ ′ C̃nm(t̃ ′)P̃ad
mn(t̃ ′, t̃i ), (B11)

M(2)
nmk (t̃, t̃i ) ≡

∫ t̃

t̃i

dt̃ ′ C̃nm(t̃ ′)P̃ad
mn(t̃ ′, t̃i )M(1)

mk (t̃ ′, t̃i ). (B12)

The first term in Eq. (B10) represents the adiabatic decay of
the nth eigenmode, for which according to Eq. (B4) b̃n is
constant; the remaining terms describe the mode coupling.
Intuitively, one might interpret M(1)

nm as describing the direct
interaction between two modes n and m, and M(2)

nmk as describ-
ing the second-order interactions between two modes n and
k, via an intermediate mode m. By successively substituting
Eq. (B9) into Eq. (B10), interactions mediated by arbitrary
many intermediate modes can be constructed. From the form
of Eq. (B9) one might naively expect that to obtain the
dynamics of b̃n to order ε4 one needs to substitute Eq. (B9)
four times (and therefore discuss interactions mediated by
up to two intermediate modes at once). However, since P̃ad

nm

itself depends on ε, the interactions M(1)
nm and M(2)

nmk , and their
higher-order equivalents, also depend on ε; the naive scaling
argument that one substitution of Eq. (B9) corresponds to
increasing the order in ε by one therefore breaks down. As
we discuss now, for the steady-state solution of b̃n to order
ε4 (and ε5 for a one-dimensional system, N = 1), it is in fact
sufficient to discuss the mode-coupling effects mediated by
M(1)

nm and M(2)
nmk .

2. Direct interaction between two modes

To lowest order, the coupling between two modes n and m
is given by M(1)

nm(t̃, t̃i ) defined in Eq. (B11). To evaluate this
matrix element, we distinguish three possible scenarios.

(1) n < m, and the eigenvalues λ̃n and λ̃m are not pertur-
bations around the same eigenspace of the Laplace operator,
denoted by n /∈ eig(m) (i.e., λ̃(0)

n �= λ̃(0)
m ).

(2) n > m, and the eigenvalues λ̃n and λ̃m are not pertur-
bations around the same eigenspace of the Laplace operator,
denoted by n /∈ eig(m) (i.e., λ̃(0)

n �= λ̃(0)
m ).

(3) n �= m, but the eigenvalues λ̃n and λ̃m are perturbations
around the same eigenspace of the Laplace operator, denoted
by n ∈ eig(m) (i.e., λ̃(0)

n = λ̃(0)
m ).

Note that scenario 3 can only occur for dimensions N � 2;
in one dimension, N = 1, the absorbing boundary spectrum of
the Laplace operator inside a finite interval is nondegenerate.

a. Direct interactions between modes: Scenario 1

Since the eigenvalues of the Laplace operator are ordered,
for small ε we have ��̃mn(t̃ ) ≡ �̃m(t̃ ) − �̃n(t̃ ) > 0, and
since n /∈ eig(m) it holds that ��̃mn(t̃ ) = O(ε0). Therefore,
for small ε the exponential in the definition of P̃ad

mn(t̃, t̃i ),
Eq. (B7), decays on a time scale τ̃mn defined by

∫ t̃i+τ̃mn

t̃i

dt̃ ′ ��̃mn(t̃ ′) = ε2 (B13)

so that for small ε we have

τ̃mn ≈ ε2/��̃mn(t̃i ) = O(ε2). (B14)

Since C̃nm = O(ε0), the integral in Eq. (B11) is in scenario 1
thus dominated by t̃ ≈ t̃i. Assuming that C̃nm does not vary too
rapidly on the time scale τ̃mn, we Taylor expand around t̃ = t̃i:

C̃nm(t̃ ) ≈ C̃nm(t̃i) + (t̃ − t̃i ) · ˙̃Cnm(t̃i). (B15)

Furthermore assuming that ��̃mn does not vary too much on
the decay time scale τ̃mn, we approximate

P̃ad
mn(t̃, t̃i ) = exp

[
− 1

ε2

∫ t̃

t̃i

dt̃ ′ ��̃mn(t̃ ′)

]
(B16)

≈ exp

[
− t̃ − t̃i

ε2
��̃mn(t̃i )

]
. (B17)

Physically speaking, with approximations Eqs. (B15) and
(B17), we assume that the apparent force (and hence the FP
spectrum) inside the tube varies slowly as compared to the
relaxation times of the individual modes. Inserting approxi-
mations Eqs. (B15) and (B17) into Eq. (B11) the integral is
evaluated to

M(1)
nm(t̃, t̃i ) = ε2

��̃mn(t̃i )

{
C̃nm(t̃i )

− [C̃nm(t̃i ) + ˙̃Cnm(t̃i ) · (t̃ − t̃i )]

× exp

[
− t̃ − t̃i

ε2
��̃mn(t̃i )

]}
+ O(ε5).

(B18)

For t̃ − t̃i � τ̃mn, the result Eq. (B18) simplifies to

M(1)
nm(t̃, t̃i ) = ε2 C̃nm(t̃i )

��̃mn(t̃i)
+ O(ε5). (B19)
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b. Direct interactions between modes: Scenario 2

We first note that P̃ad
mn(t̃ ′, t̃i ) = P̃ad

mn(t̃, t̃i )P̃ad
nm(t̃, t̃ ′). Substi-

tuting this into Eq. (B11), we obtain

M(1)
nm(t̃, t̃i ) = P̃ad

mn(t̃, t̃i )
∫ t̃

t̃i

dt̃ ′ C̃nm(t̃ ′)P̃ad
nm(t̃, t̃ ′). (B20)

Similar to the discussion of scenario 1 the term P̃ad
nm(t̃, t̃ ′)

decays exponentially as t̃ ′ is decreased from t̃ , with a char-
acteristic decay time scale τ̃mn defined by∫ t̃

t̃−τ̃mn

dt̃ ′ ��̃mn(t̃ ′) = ε2, (B21)

which for small ε is given by

τ̃mn ≈ ε2/��̃mn(t̃ ) = O(ε2). (B22)

Thus, in scenario 2 the integral in Eq. (B11) is dominated by
t̃ ′ ≈ t̃ . Assuming that C̃nm does not vary too rapidly on the
time scale τ̃mn, we Taylor expand around t̃ :

C̃nm(t̃ ′) ≈ C̃nm(t̃ ) + (t̃ ′ − t̃ ) · ˙̃Cnm(t̃ ′), (B23)

where a dot here denotes a derivative with respect to t̃ .
Furthermore assuming that ��̃mn does not vary too much on
the time scale τ̃mn, we approximate

P̃ad
nm(t̃, t̃ ′) = exp

[
− 1

ε2

∫ t̃

t̃ ′
dt̃ ′ ��̃nm(t̃ ′)

]
(B24)

≈ exp

[
− t̃ − t̃ ′

ε2
��̃nm(t̃ )

]
. (B25)

Inserting approximations Eqs. (B23) and (B25) into
Eq. (B20), in scenario 2 the integral is evaluated to

M(1)
nm(t̃, t̃i ) = P̃ad

mn(t̃, t̃i )
ε2

��̃nm(t̃ )

×
{

C̃nm(t̃ ) − [C̃nm(t̃ ) + ˙̃Cnm(t̃ ) · (t̃ − t̃i )]

× exp

[
− t̃ − t̃i

ε2
��̃nm(t̃ )

]}
+ O(ε5). (B26)

After an initial transient decay time, i.e., for t̃ − t̃i � τ̃nm with
τ̃mn defined in Eq. (B22), the result Eq. (B26) simplifies to

M(1)
nm(t̃, t̃i ) = ε2 P̃ad

mn(t̃, t̃i )
C̃nm(t̃ )

��̃nm(t̃ )
+ O(ε5). (B27)

c. Direct interactions between modes: Scenario 3

According to the perturbative FP spectrum calculated in
Appendix A 1, for n ∈ eig(m) we have

��̃mn(t̃ ) ≡ �̃m(t̃ ) − �̃n(t̃ ) = O(ε3) (B28)

[see Eqs. (29), (A15), (A20), and (B2), and note that
〈ρ̃n, ˙̃ρn〉 = O(ε)]. It follows that

P̃ad
mn(t̃ ′, t̃i ) = exp

[
− 1

ε2

∫ t̃

t̃i

dt̃ ′ ��̃mn(t̃ ′)

]
= 1 + O(ε),

(B29)

so that to leading order in ε Eq. (B11) becomes

M(1)
nm(t̃, t̃i ) =

∫ t̃

t̃i

dt̃ ′ C̃nm(t̃ ′) + O(ε). (B30)

d. Direct interactions between modes: Summary

According to Eqs. (B10), (B19), (B27), and (B30), the
leading-order contribution to the coupling between two modes
n and m scales with ε as

ε M(1)
nm(t̃, t̃i ) ∼

⎧⎪⎨
⎪⎩

ε3, n < m and n /∈ eig(m),

ε3 P̃ad
mn(t̃, t̃i ), n > m and n /∈ eig(m),

ε, n ∈ eig(m),
(B31)

where P̃ad
mn(t̃, t̃i ) grows exponentially with an exponent that

scales as 1/ε2. These scalings are valid after an initial transient
time of the order of

t̃ − t̃i � τ̃mn ≡ ε2

|��̃mn|
, (B32)

where we assume that the order of magnitude of τ̃mn is
independent of the time at which ��̃mn(t̃ ) is evaluated in
Eq. (B32), so that we omit the time dependence in ��̃mn.
From the leading-order scalings Eq. (B31) we can infer the
largest term in the sum

ε

∞∑
m = 1
m �= n

M(1)
nm(t̃, t̃i ) b̃m(t̃i ), (B33)

which appears in Eq. (B10). Assuming that all the b̃m(t̃i) are
of comparable order of magnitude, which term dominates in
Eq. (B33) depends on n.

(1) For n = 1 only scenario 1 is relevant (note that the
lowest eigenvalue of the Laplace operator is nondegenerate
[50]); the leading-order correction to b̃n(t̃i) is thus at order ε3,
and all modes m > 1 contribute to this correction, meaning
that all terms in Eq. (B33) are relevant.

(2) For n > 1 the dominant correction is given by scenario
2, m = 1; this is because the corresponding P̃ad

mn(t̃, t̃i ) grows
fastest, as

��1n = min
m<n

{��mn}, (B34)

which follows for small ε from the fact that we perturb around
the ordered eigenvalues of the Laplace operator. In particular,
note that even though in scenario 3, where n ∈ eig(m), the
coupling between modes has a lower-order prefactor (order
ε), the fact that in scenario 2 the factor P̃ad

mn(t̃, t̃i ) grows
exponentially (with an exponent that scales as 1/ε2) makes
this the dominant contribution. This means that for n > 1 the
sum Eq. (B33) is dominated by the term m = 1, i.e.,

ε

∞∑
m = 1
m �= n

M(1)
nm(t̃, t̃i ) b̃m(t̃i ) ≈ ε M(1)

n1 (t̃, t̃i ) b̃1(t̃i), (B35)

which is expected to hold after a time τ̃1n as defined in
Eq. (B32).
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Intuitively, these results tell us that (i) the dominant cor-
rection to the adiabatic decay of the lowest mode n = 1
is due to its interaction with the modes m > 1 during the
initial relaxation of the initial conditions [note that C̃nm and
��̃mn in Eq. (B19) are evaluated at t̃i] and (ii) the dominant
correction to the adiabatic decay of any mode n > 1 is due to
instantaneous excitation by the lowest mode m = 1 [note that
C̃nm and ��̃mn in Eq. (B27) are evaluated at t̃], which after an
initial relaxation is expected to be the dominant mode.

3. Higher-order coupling between modes

From Eq. (B31) and the subsequent discussion we see
that after the initial relaxation of the system the interaction
between two modes n �= m leads to corrections of order ε3 if
n /∈ eig(m) (with an exponentially growing factor if n > m),
and of order ε if n ∈ eig(m). To calculate the leading-order
corrections to b̃n up to order ε4 in the steady-state limit, we
therefore only need to take into account two scenarios for the
three-mode coupling described by Eq. (B12).

(1) k > 1, m ∈ eig(k), n = 1. In this scenario, a mode k >

1 couples to a mode m �= k from the same Laplace eigenspace
(→ interaction of order ε), which then couples to the lowest
mode n = 1 (→ interaction of order ε3).

(2) k = 1, m > 1, n ∈ eig(m). In this scenario, the lowest
mode k = 1 excites a mode m > 1 (→ interaction of order ε3,
with an exponentially growing prefactor), which then couples
to a mode n �= m from the same Laplace eigenspace (→
interaction of order ε).

Note that these cases are only relevant for dimensions N �
2; since for N = 1 the spectrum of the Laplace operator is
not degenerate, higher-order couplings between modes always
scale as ε6 for a one-dimensional system.

a. Higher-order coupling between modes: Scenario 1

Since 1 = n < m the factor P̃ad
mn(t̃ ′, t̃i ) decays exponen-

tially as a function of t̃ ′, so that the t̃ ′ integral in Eq. (B12) is
dominated by t̃ ′ ≈ t̃i. We therefore approximate

P̃ad
mn(t̃ ′, t̃i ) ≈ exp

[
− t̃ ′ − t̃i

ε2
��̃mn(t̃i)

]
, (B36)

and furthermore Taylor expand

C̃nm(t̃ ′) ≈ C̃nm(t̃i ) + (t̃ − t̃ ′) · ˙̃Cnm(t̃i ), (B37)

M(1)
mk (t̃ ′, t̃i ) ≈ (t̃ ′−t̃i ) · C̃mk (t̃i ) + 1

2 (t̃ ′−t̃i )
2 · ˙̃Cmk (t̃i ) + O(ε),

(B38)

where at the last equality sign we use that for m ∈ eig(k)
we have P̃ad

km(t̃ ′′, t̃i ) = 1 + O(ε) [see Eq. (B29)]. Substituting
Eqs. (B36)–(B38) into Eq. (B12), the t̃ ′ integral is evaluated
using integration by parts to yield

M(2)
nmk (t̃, t̃i ) = −ε2 t̃ − t̃i

��̃mn(t̃i )
[C̃nm(t̃i) + (t̃ − t̃i ) · ˙̃Cnm(t̃i)]

×
[
C̃mk (t̃i ) + 1

2
(t̃ − t̃i ) · ˙̃Cmk (t̃i )

]

× exp

[
− t̃ − t̃i

ε2
��̃mn(t̃i)

]
+ O(ε3), (B39)

which vanishes (to order ε2) as t̃ − t̃i � τ̃m1 (recall that in the
current scenario n = 1), with τ̃m1 defined in Eq. (B32).

b. Higher-order coupling between modes: Scenario 2

Exchanging the two integrals that are present in Eq. (B12)
after substituting Eq. (B11), we obtain

M(2)
nmk (t̃, t̃i ) = P̃ad

km(t̃, t̃i )
∫ t̃

t̃i

dt̃ ′′ C̃mk (t̃ ′′)P̃ad
mk (t̃, t̃ ′′)

×
∫ t̃

t̃ ′′
dt̃ ′ C̃nm(t̃ ′)P̃ad

mn(t̃ ′, t̃i ), (B40)

where we use P̃ad
km(t̃ ′′, t̃i ) = P̃ad

km(t̃, t̃i )P̃ad
mk (t̃, t̃ ′′). Since 1 =

k < m, the factor P̃ad
mk (t̃, t̃ ′′) decays exponentially as t̃ ′′ is

decreased from t̃ , so that the t̃ ′′ integral is dominated by
t̃ ′′ ≈ t̃ . Similar to scenario 1, we therefore approximate

P̃ad
mk (t̃, t̃ ′′) ≈ exp

[
− t̃ − t̃ ′′

ε2
��̃mk (t̃ )

]
, (B41)

C̃mk (t̃ ′′) ≈ C̃mk (t̃ ) + (t̃ ′′ − t̃ ) · ˙̃Cnm(t̃ ), (B42)

∫ t̃

t̃ ′′
dt̃ ′C̃nm(t̃ ′)P̃ad

mn(t̃ ′, t̃i )

≈ (t̃ − t̃ ′′) · C̃nm(t̃ ) + (t̃ − t̃ ′′)2

2
˙̃Cnm(t̃ ) + O(ε), (B43)

where at the last equality sign we use that for m ∈ eig(n)
we have P̃ad

mn(t̃ ′, t̃i ) = 1 + O(ε) [see Eq. (B29)]. Substituting
Eqs. (B41)–(B43) into Eq. (B40), the t̃ ′′ integral is then
evaluated using integration by parts to yield

M(2)
nmk (t̃, t̃i ) = −P̃ad

km(t̃, t̃i )ε
2 t̃ − t̃i
��̃mk (t̃ )

× [C̃mk (t̃ ) − (t̃ − t̃i ) · ˙̃Cmk (t̃ )]

×
[
C̃nm(t̃ ) − 1

2
(t̃ − t̃i ) · ˙̃Cnm(t̃ )

]

× exp

[
− t̃ − t̃i

ε2
��̃mk (t̃ )

]
+ O(ε3). (B44)

Comparing this result to Eq. (B27), we see that after an initial
transient time, i.e., for t̃ − t̃i � τ̃21 = maxm>1{τ̃m1} (recall that
in the current scenario k = 1), with τ̃m1 defined in Eq. (B32),
the contribution to the amplitude b̃n from Eq. (B44) is expo-
nentially smaller than the contribution from Eq. (B27); thus
the contribution from Eq. (B44) can be neglected as t̃ − t̃i �
τ̃21.

4. Final result for the approximate FP solution

Substituting the results Eqs. (B19), (B27), (B30), (B39),
and (B44) into Eq. (B10), we find that the b̃n are to exponen-
tially leading order given by

b̃1(t̃ ) ≈ b̃1(t̃i ) − ε3
∞∑

m=2

C̃1m(t̃i )

��̃m1(t̃i )
b̃m(t̃i ) + O(εk ), (B45)

b̃n(t̃ ) ≈ −P̃ad
1n (t̃, t̃i ) ε3 C̃n1(t̃ )

��̃n1(t̃ )
b̃1(t̃i) + O(εk ), (B46)
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where n > 1 in Eq. (B46); k = 6 for a one-dimensional
system, N = 1; and k = 5 for N � 2. These approximate
expressions are valid after an initial transient decay time

t̃ − t̃i � τ̃rel ≡ τ̃21 = max
m>1

{τ̃m1}, (B47)

with τ̃m1 defined in Eq. (B32). Substituting these results for
b̃n into Eq. (B4), the coefficients ãn of the eigenfunction
expansion of the solution of the FPE are finally given by

ã1(t̃ ) ≈ P̃ad
1 (t̃, t̃i )

[
ã1(t̃i )

− ε3
∞∑

m=2

C̃1m(t̃i )

��̃m1(t̃i )
ãm(t̃i ) + O(εk )

]
, (B48)

ãn(t̃ ) ≈ P̃ad
1 (t̃, t̃i )

[
−ε3 C̃n1(t̃ )

��̃n1(t̃ )
b̃1(t̃i ) + O(εk )

]
(B49)

= −ε3 C̃n1(t̃ )

��̃n1(t̃ )
ã1(t̃ ) + O(εk ), (B50)

where n > 1, and for a one-dimensional system, N = 1,
we have k = 6, while for N � 2 we have k = 5; to obtain
Eqs. (B48)–(B50) we furthermore use that ãn(t̃i ) = b̃n(t̃i ), and
at Eq. (B50) we use Eq. (B48). The expressions Eqs. (B48)
and (B49) hold after the initial transient decay time τ̃rel defined
in Eq. (B47), and neglect both terms of the order O(εk ), as
well as terms exponentially small as compared to the leading-
order contributions.

APPENDIX C: EXPLICIT RESULTS FOR
ONE-DIMENSIONAL SYSTEMS

In the present section, we consider our theory for a one-
dimensional system, N = 1.

1. Spectrum of the FPE

We now derive explicit expressions for the perturbative
spectrum of the FPE, following the strategy from Appendix
A 1. In particular we show that at order k the perturbative
contribution to the eigenfunction is given by

ρ̃ (k)
n (x̃, t̃ ) = Q̃(k)

n,s(x̃, t̃ ) sin
[
n
π

2
(x̃ + 1)

]
+ Q̃(k)

n,c(x̃, t̃ ) cos
[
n
π

2
(x̃ + 1)

]
, (C1)

where Q̃(k)
n,s(x̃, t̃ ) and Q̃(k)

n,c(x̃, t̃ ) are polynomials in x̃ of order
� k.

For N = 1, the Taylor expansion of the force, Eqs. (A1),
becomes

F̃app(x̃, t̃ ) = −
∞∑

k=1

εk−1k Ẽk (t̃ )x̃k−1, (C2)

with

Ẽk (t̃ ) ≡ − 1

k!
Lkβ

∂k−1F

∂xk−1

∣∣∣∣
(ϕ(t ),t )

+ δk,1 ˙̃ϕ(t̃ ), (C3)

where (x, t ) and (x̃, t̃ ) are related via Eq. (14). With this, the
equation for the nth eigenvalue/eigenfunction pair at order εk ,

Eq. (A8), becomes

∂2
x̃ ρ̃ (k)

n + λ̃(0)
n ρ̃ (k)

n = −
k∑

l=1

λ̃(l )
n ρ̃ (k−l )

n

−
k∑

l=1

l Ẽl∂x̃
(
x̃l−1ρ̃ (k−l )

n

)
, (C4)

where we use the convention that for k = 0 the sums on the
right-hand side are zero, and each ρ̃ (k)

n fulfills the boundary
conditions

ρ̃ (k)
n (x̃ = −1, t̃ ) = ρ̃ (k)

n (x̃ = 1, t̃ ) = 0 (C5)

[see Eq. (A9)]. The normalization condition at order k is given
by Eqs. (A10) and (A11), where we note that

ρ̃−1
SS (x̃, t̃ ) = exp

[ ∞∑
k=1

εkẼk (t̃ ) x̃k

]
. (C6)

For N = 1 the equation for the λ̃(k)
n , Eq. (A12), becomes

λ̃(k)
n = −

k−1∑
l=1

λ̃(l )
n

∫ 1

−1
dx̃ ρ̃ (0)

n ρ̃ (k−l )
n

−
k∑

l=1

l
∫

B̃
dx̃ ρ̃ (0)

n Ẽl∂x̃
(
x̃l−1ρ̃ (k−l )

n

)
. (C7)

We now show how Eqs. (C4), (C5), and (C7), can be solved
recursively with increasing k, and that at order k the solution
for ρ̃ (k)

n is of the form Eq. (C1).
At order k = 0, the right-hand side of Eq. (C4) vanishes

and we obtain

λ̃(0)
n =

(nπ

2

)2
, (C8)

ρ̃ (0)
n (x̃) = sin

[
n
π

2
(x̃ + 1)

]
, (C9)

which is simply the spectrum for free diffusion in a domain
x̃ ∈ [−1, 1] with absorbing boundary conditions. Note that
Eq. (C9) fulfills the normalization condition Eq. (A10).

Assuming the spectrum is known to order k − 1 and is
of the form Eq. (C1), we now derive expressions for λ̃(k)

n
and ρ̃ (k)

n . The correction at order k to the eigenvalue, λ̃(k)
n , is

obtained directly from Eq. (C7) by evaluating the right-hand
side. According to Eq. (C1) for n < k, the integrands on
the right-hand side of Eq. (C7) are sums over trigonometric
functions multiplied by powers of x̃; evaluating these integrals
in practice is thus straightforward. We now turn to calculating
ρ̃ (k)

n , which according to Eq. (C4) obeys an inhomogeneous
(undamped) harmonic oscillator equation of motion. The so-
lution thus has the general form

ρ̃ (k)
n (x̃) = ρ̃

(k)
n,hom(x̃) + ρ̃

(k)
n,inhom(x̃), (C10)

where

ρ̃
(k)
n,hom(x̃) = Ã(k)

n sin
[
n
π

2
(x̃ + 1)

]
+ B̃(k)

n cos
[
n
π

2
(x̃ + 1)

]
(C11)

is the homogeneous harmonic oscillator solution (the coeffi-
cients Ã(k)

n and B̃(k)
n will be determined below), and ρ̃

(k)
n,inhom
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is an inhomogeneous solution of Eq. (C4). To obtain an
inhomogeneous solution we note that according to Eq. (C1)
the right-hand side of Eq. (C4) is a sum over the trigonometric
functions sin and cos, multiplied by powers x̃l , l � k − 1. As
we show in Appendix C 2, an inhomogeneous solution ρ̃

(k)
n,inhom

to Eq. (C4) is then again given by a sum over trigonometric
functions sin and cos, multiplied by powers x̃l with l � k.
Thus, Eq. (C10) is again of the form Eq. (C4).

After an inhomogeneous solution at a given order k has
been calculated using the formulas from Appendix C 2, the
coefficient B̃(k)

n in Eq. (C10) is fixed by the boundary condi-
tions Eq. (C5). The remaining coefficient Ã(k)

n is determined
by the normalization condition Eq. (A11).

Using this algorithm, the spectrum can be calculated to
arbitrary order in εk . While according to Eq. (A15) λ̃(k)

n = 0
for k odd, for k � 5 the eigenvalues for even k follow as

λ̃(0)
n =

(nπ

2

)2
, λ̃(2)

n =
(

Ẽ1

2

)2

− Ẽ2, (C12)

λ̃(4)
n = 1

6(nπ )2

(
3E1E3 + 2E2

2 − 12E4
)
[(nπ )2 − 6]. (C13)

The corresponding eigenfunctions for l � 5 are of the form
Eq. (C4), with polynomials

Q̃(0)
n,s (x̃) = 1, Q̃(0)

n,c(x̃) = 0, (C14)

Q̃(1)
n,s (x̃) = − Ẽ1

2
x̃, Q̃(1)

n,c(x̃) = 0, (C15)

Q̃(2)
n,s (x̃) = x̃2

8

(
Ẽ2

1 − 4Ẽ2
)
, Q̃(2)

n,c(x̃) = 0, (C16)

Q̃(3)
n,s (x̃) = x̃

48(nπ )2

{−Ẽ3
1 (nπ x̃)2 + 12Ẽ1Ẽ2[(nπ x̃)2 + 4] − 24Ẽ3[(nπ x̃)2 + 6]

}
, (C17)

Q̃(3)
n,c(x̃) = − 1

2nπ
(x̃2 − 1)(Ẽ1Ẽ2 − 3Ẽ3), (C18)

Q̃(4)
n,s (x̃) = 1

384(nπ )4

{
Ẽ4

1 (nπ x̃)4 − 24Ẽ2
1 Ẽ2(nπ x̃)2[(nπ x̃)2 + 8] + 96Ẽ3Ẽ1[(nπ x̃)4 + 2(nπ )2(6x̃2 − 1) + 24]

+ 16Ẽ2
2 [3(nπ x̃)4 + 8(nπ )2(3x̃2 − 1) + 96] + 192Ẽ4[−(nπ x̃)4 + 4(nπ )2(−3x̃2 + 1) − 48]

}
(C19)

Q̃(4)
n,c(x̃) = 1

12nπ
x̃(x̃2 − 1)

(
3Ẽ2

1 Ẽ2 − 15Ẽ1Ẽ3 − 4Ẽ2
2 + 24Ẽ4

)
, (C20)

Q̃(5)
n,s (x̃) = x̃

3840(nπ )4

{−Ẽ5
1 (nπ x̃)4 + 40Ẽ3

1 Ẽ2(nπ x̃)2[(nπ x̃)2 + 12] − 80Ẽ1Ẽ2
2 [3(nπ x̃)4 + 8(nπ )2(6x̃2 − 1) + 96]

+ 240Ẽ2
1 Ẽ3[−(nπ x̃)4 + 2(nπ )2(−9x̃2 + 2) − 48] + 960Ẽ1Ẽ4(nπ )2[(nπ )2x̃4 + 20x̃2 − 4]

+ 960Ẽ2Ẽ3[(nπ x̃)4 + 18(nπ x̃)2 − 72] + 1920Ẽ5[−(nπ x̃)4 − 20(nπ x̃)2 + 120]
}
, (C21)

Q̃(5)
n,c(x̃) = 1

96(nπ )3
(x̃2 − 1)

{−6Ẽ3
1 Ẽ2(nπ x̃)2 + 40Ẽ1Ẽ2

2 (nπ x̃)2 + 42Ẽ2
1 Ẽ3(nπ x̃)2

− 48Ẽ1Ẽ4[(nπ )2(3x̃2 + 1) − 12] − 24Ẽ2Ẽ3[3(nπ )2(2x̃2 + 1) − 36] + 240Ẽ5[(nπ )2(x̃2 + 1) − 12]
}
, (C22)

where we suppress the time dependence via the Ẽl , which are
defined in Eq. (C3).

With Eqs. (29), (A15), (C1), (C3), and (C12)–(C22), we
have explicit expressions for the spectrum of the FP operator
Eq. (21) up to order ε6 (eigenvalues) and ε5 (eigenfunctions)
for the case of a one-dimensional system, N = 1.

2. Inhomogeneous solution for the harmonic oscillator

In the present section we explain how to obtain an inho-
mogeneous solution to Eq. (C4). Since Eq. (C4) is linear,
we can consider the inhomogeneous solution for each term
on the right-hand side separately, and subsequently add them.
According to Eqs. (C1) and (C9), for each term on the right-
hand side of Eq. (C4) we have to solve an equation of either

of the two forms

∂2
x̃ ρ̃n,inhom +

(nπ

2

)2
ρ̃n,inhom = T x̃l sin

[
n
π

2
(x̃ + 1)

]
, (C23)

∂2
x̃ ρ̃n,inhom +

(nπ

2

)2
ρ̃n,inhom = T x̃l cos

[
n
π

2
(x̃ + 1)

]
, (C24)

with T ∈ R, l ∈ {0, 1, 2, ..} and n ∈ {1, 2, . . .}. Direct substi-
tution shows that while a solution to Eq. (C23) is given by

ρ̃n,inhom(x̃) = T
l+1∑
m=1

l!

m!

(nπ x̃)m

(nπ )l+2

× sin
[
n
π

2
(x̃ + 1) + π

2
(l − m)

]
(C25)
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an inhomogeneous solution to Eq. (C24) is given by

ρ̃n,inhom(x̃) = T
l+1∑
m=1

l!

m!

(nπ x̃)m

(nπ )l+2

× cos
[
n
π

2
(x̃ + 1) + π

2
(l − m)

]
. (C26)

Note that the shifts (l − m)π/2 with l − m ∈ Z in Eqs. (C25)
and (C26) simply alternate between cos and sin (with possible
sign changes), as follows directly from the trigonometric iden-
tities sin (θ ± π/2) = ± cos θ and cos (θ ± π/2) = ∓ sin θ .
Thus, each term in the solutions Eqs. (C25) and (C26) is
again of the form of the right-hand side of Eqs. (C23) and
(C24). In particular, if we start with a power x̃l in either
Eq. (C23) or Eq. (C24), the highest power in x̃ that appears
in the corresponding inhomogeneous solution Eq. (C25) is
l + 1. From this and Eq. (C9) it follows that the order of the
polynomials Q̃(k)

n,s(x̃) and Q̃(k)
n,c(x̃) is always less than or equal

to k.

3. Normalized probability density inside the tube to order ε5

In the present section we give the explicit expansion of the
normalized probability density Eqs. (39) as a power series in ε

up to order ε5. The power series is based on the un-normalized
density Eq. (36) and has the form Eq. (53), reprinted here for
convenience:

P̃ n,ϕ
ε (x̃, t̃ ) =

4∑
k=0

εk
{

Ñ (k)
s sin

[π

2
(x̃ + 1)

]

+Ñ (k)
c cos

[π

2
(x̃ + 1)

]}
+ O(ε6). (C27)

Substituting the perturbative FP spectrum calculated in
Appendix C 1 into the propagator Eq. (36), the infinite sums
that appear can be evaluated explicitly. Using the result to
evaluate the normalized probability density Eq. (39), an ex-
plicit perturbative expression for P̃ n,ϕ

ε of the form Eq. (C27)
is obtained. The resulting coefficients Ñ (k)

s and Ñ (k)
c for k � 5

are

Ñ (0)
s (x̃) = π

4
, Ñ (0)

c (x̃) = 0, (C28)

Ñ (1)
s (x̃) = −π

8
x̃Ẽ1, Ñ (1)

c (x̃) = 0, (C29)

Ñ (2)
s (x̃) = 1

32π

{
[π2(x̃2 − 1) + 8]Ẽ2

1 + [−4π2(x̃2 − 1) − 32]Ẽ2
}
, (C30)

Ñ (2)
c (x̃) = 0, (C31)

Ñ (3)
s (x̃) = x̃

192π

{
[π2(−x̃2 + 3) − 24]Ẽ3

1 + 12[π2(x̃2 − 1) + 12]Ẽ1Ẽ2 − 24(π2x̃2 + 6)Ẽ3 − 24 ˙̃E1
}
, (C32)

Ñ (3)
c (x̃) = 1

16
(x̃2 − 1)(−2Ẽ1Ẽ2 + 6Ẽ3 + ˙̃E1), (C33)

Ñ (4)
s (x̃) = 1

1536π3
{[π4(x̃4 − 6x̃2 + 5) + 48π2(x̃2 − 1)]Ẽ4

1 + 24[−π4(x̃2 − 1)2 − 8π2(3x̃2 − 1)]Ẽ2
1 Ẽ2 + 96[π4(x̃4 − 1)

+ 4π2(3x̃2 + 4) − 48]Ẽ1Ẽ3 + 16[3π4(x̃2 − 1)2 + 8π2(9x̃2 − 1) − 192]Ẽ2
2 + 192[π4(−x̃4 + 1)

− 4π2(3x̃2 + 5) + 96)]Ẽ4 + 96[π2(x̃2 − 3) + 32]Ẽ1
˙̃E1 + 64[π2(−3x̃2 + 7) − 72] ˙̃E2}, (C34)

Ñ (4)
c (x̃) = x̃

96
(−x̃2 + 1)

[− 6Ẽ2
1 Ẽ2 + 30Ẽ1Ẽ3 + 8Ẽ2

2 − 48Ẽ4 + 3Ẽ1
˙̃E1 − 4 ˙̃E2

]
, (C35)

Ñ (5)
s (x̃) = 1

15360π3
x̃
{
Ẽ5

1 π2[−π2x̃4 + x̃210(π2 − 8) − 25π2 + 240] + 40Ẽ3
1 Ẽ2[(π x̃)4 − 4(π x̃)2(π2 − 11)

+ 3π4 − 36π2 + 96] + 240Ẽ2
1 Ẽ3[−(π x̃)4 + (π x̃)2(π2 − 26) + 2π4 − 26π2 + 48]

+ 960Ẽ1Ẽ4[(π x̃)4 + 20(π x̃)2 − π4 + 20π2 − 144] + 80Ẽ1Ẽ2
2 π2[−3π2x̃4 + 6x̃2(π2 − 16) − 3π2 + 32]

− 240Ẽ2
1

˙̃E1[(π x̃)2 − 7π2 + 72] + 320Ẽ1
˙̃E2[(π x̃)2 − π2 + 96]

+ 320 ˙̃E1Ẽ2[(π x̃)2 + 3π2 + 48] + 960Ẽ2Ẽ3[(π x̃)4 + (π x̃)2(−π2 + 26) − 6π2 − 24]

− 5760 ˙̃E3(π2 + 2) + 1920Ẽ5[−(π x̃)4 − 20(π x̃)2 + 120]
}
, (C36)

Ñ (5)
c (x̃) = 1

384π2
(x̃2 − 1)

{− 6Ẽ3
1 Ẽ2[(π x̃)2 − π2 + 8] + 6Ẽ2

1 Ẽ3[7(π x̃)2 − 3π2 + 24]

− 48Ẽ1Ẽ4[3(π x̃)2 + π2 − 12] + 8Ẽ1Ẽ2
2 [5(π x̃)2 − 3π2 + 24] + 3Ẽ2

1
˙̃E1[(π x̃)2 − π2 + 8] − 8Ẽ1

˙̃E2[(π x̃)2 + 12]

− 12 ˙̃E1Ẽ2[(π x̃)2 − π2 + 16] + 144Ẽ2Ẽ3[−(π x̃)2 + 2] + 12 ˙̃E3[(π x̃)2 + π2 + 12] + 240Ẽ5[(π x̃)2 + π2 − 12]
}
,

(C37)
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FIG. 5. Effect of the initial distribution P̃i inside the tube on the exit rate. The exit rate α̃ϕ
ε , defined in Eq. (41), is shown as a function of

time t̃ , for tube radius (a) ε = 0.1, (b) ε = 0.5, and (c) ε = 0.7. From all rates the free-diffusion exit rate is subtracted and the result is divided
by the free-diffusion exit rate, as defined in Eq. (57). All data shown are obtained from numerical simulations of the FPE, Eq. (19), from which
the exit rate is calculated using Eq. (41). Colored solid lines are replots of the corresponding curves in Figs. 3(d)–3(f), and denote exit rates
obtained using the instantaneous steady state as initial condition for the simulations, as explained in Appendix C 5. Colored dashed lines show
exit rates obtained using a delta peak at the tube center as initial condition for the simulations. Vertical dashed lines denote the initial relaxation
time τ̃rel given in Eq. (C38).

where the Ẽl ≡ Ẽl (t̃ ) are defined in Eq. (C3) and a dot denotes
a derivative with respect to t̃ .

4. Effect of initial distribution inside the tube on exit rate

As described in Appendix C 5, in the numerical examples
in the main text we eliminate transient relaxation effects at the
initial time t̃i by using the instantaneous FP steady state at t̃i
as initial distribution P̃i.

To illustrate the effect of the initial distribution P̃i on the
finite-radius exit rate α̃ϕ

ε we here numerically consider the
initial condition P̃i(x̃) = δ(x̃), which corresponds to a particle
starting out at time t̃i at the center of the tube.

In Fig. 5 we compare numerical exit rates resulting from
this delta-peak initial condition (dashed colored lines) to
numerical exit rate corresponding to the instantaneous steady-
state initial condition (solid colored lines). As in Figs. 3(d)–
3(f), we shift and rescale exit rates according to Eq. (57).
Using the perturbative results from Appendix C1, the initial
relaxation time τ̃rel, defined in Eq. (B47), is given as power
series in ε as

τ̃rel = 3ε2

4π2
+ O(ε5). (C38)

This perturbative expression for τ̃rel is plotted in Fig. 5 as
vertical dashed lines. Figure 5(a) shows data for tube radius
ε = 0.1. While the data corresponding to the steady-state
initial condition (colored solid line) are practically constant
on the time scale depicted, the exit rate corresponding to
the delta-peak initial condition (colored dashed line) shows
relaxation behavior; the curve starts at ε2�α̃ϕ

ε /α̃free(0) = −1,
which according to Eq. (57) corresponds to a vanishing exit
rate α̃ϕ

ε (0) = 0, consistent with the intuition that a particle
starting in the center of a finite-radius ball needs a finite time
to diffuse out of the ball. This exit rate then relaxes to the
steady-state exit rate on a time scale well approximated by
Eq. (C38); for times larger than t̃ ≈ 2τ̃rel all knowledge of
the initial condition has decayed and the two exit rates are
indistinguishable. The data shown for the larger tube radii
ε = 0.5 and 0.7 in Figs. 5(b) and 5(c) show the exact same

behavior. As expected from the leading-order scaling τ̃rel ∼
ε2, the relaxation time increases with tube radius ε.

5. Numerical algorithm for the one-dimensional FPE

To simulate the dimensionless FPE, Eqs. (19) and (21), we
discretize space by introducing the grid

x̃i ≡ −1 + i�x̃ ≡ −1 + i
2

N + 1
, i ∈ {0, . . . , N + 1},

(C39)
and discretize time using a time step �t̃ :

t̃ j ≡ j�t̃, j ∈
{⌊

t̃i
�t̃

⌋
,

⌊
t̃i
�t̃

⌋
+ 1, . . . ,

⌊
t̃ f

�t̃

⌋}
, (C40)

where � � means we round down to the closest integer. In-
troducing the discretized probability P̃ j

ε,i ≡ P̃ ϕ
ε (x̃i, t̃ j ), where

i = 1, . . . , N , we discretize the FPE, Eq. (19), as

ε2 P̃ j+1
ε,i − P̃ j

ε,i

�t̃
= P̃ j

ε,i+1 − 2P̃ j
ε,i + P̃ j

ε,i−1

�x̃2

− ε
F̃ j

app,i+1P̃ j
ε,i+1 − F̃ j

app,i−1P̃ j
ε,i−1

2�x̃
, (C41)

where i ∈ {1, . . . , N}, F̃ j
app,i ≡ F̃app(x̃i, t̃ j ), and in accordance

with the absorbing boundary conditions we define P̃ j
ε,0 =

P̃ j
ε,N+1 = 0 for all j. To obtain an explicit formula for the

distribution at time ( j + 1)�t̃ in terms of the distribution at
time j�t̃ , Eq. (C41) is then solved for P̃ j+1

ε,i (forward Euler
integration scheme).

All numerical results in this paper are obtained using N =
100, �t̃ = 10−7.

To eliminate boundary effects due to the transient decay of
the initial condition, we preequilibrate the system for every
ε. Starting from a distribution P̃i(x̃) = sin(π (x̃ + 1)/2), we
simulate the FPE, Eq. (C41), for a short time of the order of
τrel, while holding the parameters for position and velocity
of the path ϕ̃ constant at the initial values ϕ̃(t̃i ) and ˙̃ϕ(t̃i ).
At the end of this preequilibration, the system is in the
instantaneous steady-state decay corresponding to ϕ̃(t̃i ) and
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˙̃ϕ(t̃i ). This instantaneous steady state is then normalized and
used as initial condition for the simulation (in which ϕ̃ and ˙̃ϕ

then vary with time). A brief discussion on the dependence of
the exit rate on the initial condition is given in Appendix C4.
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