
PHYSICAL REVIEW RESEARCH 2, 023399 (2020)

Glassiness and lack of equipartition in random lasers: The common roots of ergodicity
breaking in disordered and nonlinear systems
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We present here a unifying perspective for the lack of equipartition in nonlinear ordered systems and
the low-temperature phase-space fragmentation in disordered systems. We demonstrate that they are just
two manifestation of the same underlying phenomenon: ergodicity breaking. Inspired by recent experiments
suggesting that lasing in optically active disordered media is related to an ergodicity-breaking transition, we
studied numerically a statistical mechanics model for the nonlinearly coupled light modes in a disordered
medium under external pumping. Their collective behavior appears to be akin to that displayed around the
ergodicity-breaking transition in glasses, as we show measuring the glass order parameter of the replica-
symmetry-breaking theory. Most remarkably, we also find that at the same critical point a breakdown of energy
equipartition among light modes occurs, the typical signature of ergodicity breaking in nonlinear systems as
the celebrated Fermi-Pasta-Ulam model. The crucial ingredient of our system that allows us to find equipartition
breakdown together with replica symmetry breaking is that the amplitudes of light modes are locally unbounded,
i.e., they are only subject to a global constraint. The physics of random lasers appears thus as a unique test-bed
to develop under a unifying perspective the study of ergodicity breaking in statistical disordered systems and
nonlinear ordered ones.
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The study of ergodicity-breaking transitions is among the
most challenging open problems in statistical mechanics.
Ergodicity breaking is typical of a wide variety of models,
spanning from the physics of viscous liquids to the prob-
lem of phase transitions in inference problems. The system-
atic study of ergodicity breaking in statistical systems with
quenched disorder started with the seminal work of Parisi in
1979 [1], where he put forward his proposal of an “infinite
number of order parameters” for the low-temperature phase
of spin glasses. Since then, the framework to describe the
low-temperature phase of spin glasses and glasses became a
paradigmatic one: several strong evidences, gathered across
the years, showed that the “many-states scenario” [2] is the
correct one to understand the properties of a wide class of
complex systems. This notwithstanding, the exact breaking of
the symmetry between replicas, which is the formal way to
represent ergodicity breaking in the presence of quenched dis-
order [2], is proven only for infinite-dimensional systems. The
latter are models where the interaction network between the
microscopic degrees of freedom has an infinite-dimensional
topology, i.e., any degree of freedom is connected to any other.

*luca.leuzzi@cnr.it

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Therefore, in order to finally establish the relevance of
exact results on the glass transition, it worth it to address the
study of physical systems truly characterized by an infinite-
dimensional interaction network among their degrees of free-
dom. This is indeed the motivation to study the nonlinear
interactions of electromagnetic field waves inside an optically
active random medium: the complex amplitudes of a normal-
mode expansion of these waves form an infinite-dimensional
interaction network where the scenario depicted by the mean-
field theory of spin glasses should be robust. Furthermore, as
we are going to show, in these systems ergodicity breaking
can be detected in both ways it is historically known to take
place: not only as the fragmentation of phase space tracked by
nontrivial values of the Parisi’s order parameter, but also as
the lack of equipartition between the fundamental degrees of
freedom. This unprecedented evidence is the most remarkable
finding of the present study on random lasers: it is at the same
time a consequence of the dilution of nonlinear couplings,
which are reduced in number from O(N4) to O(N3) for the
effect of a selection rule characteristic of random lasers—but
what is relevant is dilution per se—and a consequence of the
fact that the complex amplitudes of light modes are not locally
bounded, unlike Ising, XY, or Heisenberg spins.

The breaking of ergodicity in the form of lack of equipar-
tition was observed for the first time in the famous Fermi-
Pasta-Ulam (FPU) numerical experiment [3], done at Los
Alamos Laboratories in 1954 using one of the first computers
worldwide, MANIAC I. The FPU “experiment” consisted of
the numerical study of the relaxation to equilibrium for a
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chain of nonlinear oscillators with initial energy put only
on a few modes—equipartition was never observed up to
the maximum computer time available (at that time). The
results were buried at Los Alamos Laboratories until when, in
1965, they were made public by Stanley Ulam. Immediately
after that, the famous paper of Zabusky and Kruskal [4] on
solitons came out, highlighting the deep connection between
the evolution of far-from-equilibrium initial conditions in the
FPU model and solitary wave solutions of the Korteweg–de
Vries equation. Since then, the investigation of ergodicity-
breaking localized solution in nonlinear systems became a
very important research topic on its own [3–10], unfortunately
without any interplay with the study of the ergodicity breaking
“à la Parisi” in disordered systems.

The aim of the present work is to move the first step
towards the filling of this gap. We present a system where
ergodicity breaking in disordered system phase transitions
and the lack of equipartition typical of nonlinear systems
are manifest and independently measurable as concomitant
phenomena.

In order to fully appreciate the large scope of our results,
let us then take a step backward and provide a more specific
introduction to random lasers in the context of nonlinear
optics. Several diverse complex compounds of optically active
random scattering media display lasing under external power
pumping above a certain threshold. In their generality, they
are called random lasers and are currently investigated in a
large number of settings because of their peculiar properties
relevant for applications to biosensing, medical diagnostics,
on-chip spectroscopy, and optical imaging. They are easy
to make, chip and robust, can be very small in size, down
to the micron scale, and exhibit unique features such as
low degree of spatial coherence, lack of directionality, and
biocompatibility [11–21].

Recent experiments on random lasers provided evidence
of particularly nontrivial correlations between the so-called
shot-to-shot fluctuations of the emission spectrum [22–28].
The latter are compatible with an organization of mode con-
figurations in clusters of states, similar to that occurring for
the multitude of thermodynamic states composing the glassy
phase in glass formers [2]. Such a correspondence has been
theoretically explained proving the equivalence between the
distribution of the intensity fluctuation overlaps (IFO) and
the distribution of the overlap between states, the so-called
Parisi overlap, the order parameter of the glass transition [29].
The analytic proof has been derived, though, assuming very
narrow-band spectra, such that all modes can be considered at
the same frequency [30–32]. This is not the case, however, for
many realistic multimode lasers, both ordered and random.
There, the four-wave nonlinear mixing between electromag-
netic field modes is controlled by a deterministic selection rule
depending on mode frequencies, and interactions are possible
only for the quadruplets of modes whose frequencies satisfy
the condition ∣∣ωi1 − ωi2 + ωi3 − ωi4

∣∣ < γ , (1)

with γ being the typical linewidth of a mode. The importance
of such selection rules in multimode random laser has been
recently experimentally demonstrated in Ref. [33]. Hereafter
we call an interaction network built on the mode-locking

selection rule in Eq. (1) a mode-locked graph. Study of the
repercussions of such a selection rule on nonlinear models
is, therefore, a necessary step to understand the fundamen-
tal mechanisms at the ground level of the fascinating phe-
nomenon of lasing in random media.

As a first step of this work, we reproduce in numerical
simulations a narrowing of the emission spectrum across the
lasing threshold found in experiments, see Ref. [34] and
Fig. 1. We furthermore demonstrate that the narrowing of
the spectrum takes place concomitantly with an ergodicity-
breaking transition, the glass transition being known to occur
in random lasers [22,29,31,32]. We put in evidence two salient
features of the glassy phase of light: (1) the breaking of
an equipartition between the fundamental degrees of free-
dom of the system (Fig. 1); (2) the rise of nontrivial glassy
correlations among different emission events, landmark of
the phase-space shrinking typical of an ergodicity-breaking
transition. The discovery that the breaking of equipartition
in our model is just another facet of this ergodicity breaking
not only provides a strong connection between the physics of
nonlinear and of disordered systems but it is important also
on its own as, from our analysis, it acquires the status of a
new tool to detect glassy phases. We will explain below how
breaking of equipartition is revealed by a spectral analysis,
which is technically much more simple to perform than the
study of the distribution of the state overlap, i.e., the order
parameter for many-state disordered systems.

For the sake of clarity we emphasize that the P(q) distri-
bution that we find is not the full replica symmetry-breaking
one, describing, e.g., the prototypical spin-glass Sherrington-
Kirkpatrick model. There the probability distribution of the
overlap P(q) has a nontrivial shape with a continuous q
support in the thermodynamic limit N → ∞. Here the P(q)
is expected to be bimodal in the thermodynamic limit, though
we will see that at finite sizes it appears to be a smooth
function of q due to strong finite-size effects.

One last point is important to discuss in the introduction:
the lack of equipartition has never been observed so far in
disordered glassy systems. The reader might, in fact, be quite
suspicious that after 40 years of the discovery of replica sym-
metry breaking such a fundamental phenomenon was never
observed. The crucial point relies on the kind of variables and
on the kind of network used in our model. Here we consider
a model with continuous and locally unbounded variables—
only one global constraint keeps the energy bounded—and
the structure of the interaction network is dense but not
complete, therefore inhomogeneous. A specific combination
of ingredients that for diverse reasons has never been studied
in detail before. Let us briefly explain why. In the statistical
physics framework complete graphs with continuous vari-
ables, pertaining to the set of p-spin models [35,36], are
usually considered as analytically solvable approximations to
models with discrete Ising spins. It is the completeness of the
graph, i.e., the fact that in the presence of p-body interactions
all the independent sets of p variables of degrees of freedom
are considered, and hence its homogeneity, which makes
an exact solution available [2,35,36]. While always consid-
ered for analytic computations, models on complete graphs
are vice versa usually not studied in numerical simulations,
because of their high computational cost. On the contrary,
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(a) (b)

(c)

FIG. 1. (a) Emission spectrum of ZnO nanoparticles in a rhodamine 640 dye solution. From bottom to top: increasing injected optical
power P . The emission spectrum of rhodamine shown here is a reproduction of the original Fig. 9 appearing in Ref. [34]. (b) Intensity
spectrum Iλ = 〈A2

λ〉 as a function of the wavelength λ averaged over many instances of the quenched randomness, numerical simulations with
N = 64 degrees of freedom. The wavelength λ = 2π/k is expressed here in arbitrary units (a.u.). Notice the narrowing of the spectrum at larger
values of the pumping rate P . (c) Intensity spectrum Iλ as a function of the wavelength λ for a single instance of the quenched randomness,
numerical simulations with N = 64 degrees of freedom. Color code of the curves: P increases from bright (yellow) to dark (purple). Notice
the crossover from a smooth, almost equipartitioned spectrum at low P to a disordered pattern of isolated peaks at high P .

numerical simulations are the main investigation tool for
finite-dimensional interaction networks. But in the case of a
finite-dimensional topology, continuous and unbounded vari-
ables were never studied due to the problem of the power con-
densation catastrophe [37,38]. Models studied extensively on
finite-dimensional topologies are the XY model or Heisenberg
spins, where, due to the fixed modulus of local variables, is not
possible by construction to observe breaking of equipartition.
Hence, also from this respect, our study is completely original.

In conclusion, the dense yet noncomplete interaction net-
work studied in the present work, i.e., the mode-locked graph,
has all the ingredients to see some new physics: the structure
of the graph is not completely homogeneous and the local
variables can change their magnitude, a lucky combination
which allowed us to probe the nontrivial local fluctuations

which give rise to the so-far-unobserved breaking of equipar-
tition at the glass transition. Most remarkably, the structure of
the interaction network studied here is not a build-on-purpose
one but is the one produced by the matching condition
among mode frequencies in an optical system with nonlin-
ear polarization in a random medium under external energy
pumping [39].

I. MODEL AND OBSERVABLES

The disordered model studied here is the mode-locked
four-phasor model, characterized by a deterministic selection
rule on the interacting quadruplets of modes which emerges
naturally from the study of mode dynamics in the stationary
regime [30–32,40,41]. The dynamic variables of the system
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are the complex slow amplitudes ak (t ) = Ak (t ) eiφk (t ) of the
electromagnetic field expansion in normal modes:

E(r, t ) =
N∑

k=1

ak (t )eiωkt Ek (r) + c.c.

Being Ak = |ak| ∈ R+ and φk = arg ak ∈ [0, 2π ], the dynam-
ics of the stationary regime can be shown to be a stochastic
potential dynamics whose Hamiltonian reads [31,42]

H[a] = −
FMC∑
i1<i2

gi1i2 āi1 ai2

+
FMC∑

i1<i2<i3<i4

J�ı āi1 ai2 ai3 āi4 + c.c.

= −
FMC∑
i1<i2

gi1i2 Ai1 Ai2 cos
(
φi1 − φi2

)
(2)

−
FMC∑

i1<i2<i3<i4

J�ı Ai1 Ai2 Ai3 Ai4 cos
(
φi1 − φi2 + φi3 − φi4

)
.

�ı ≡ i1, i2, i3, i4 (3)

An important ingredient of the model is then the imple-
mentation of gain saturation, formally rephrased into a global
constraint on the intensity [30,41]:

εN =
N∑

k=1

A2
k . (4)

The diagonal part of the gii effective linear coupling is the
net gain profile, which plays a role mainly below the lasing
threshold. The off-diagonal terms can interpreted as effec-
tive interactions between radiant modes [43,44], though only
modes of very similar frequency can display a coupling. They
are all zero when the frequencies are very distinct, so that
the frequency-matching condition of the linear term is never
satisfied unless different modes have overlapping frequency.
While this is generally true for standard high-quality-factor
multimode mode-locked lasers [45], in random media a sig-
nificant frequency overlap between modes can occur and
off-diagonal linear contributions are actually important in the
fluorescence regime.

To express the interactions in the slow-amplitude mode
basis actually used in the dynamics is actually a complicated
problem; the nature and behavior of modes in random media
is still the subject of active research [19]. In some cases the
solution can be found using some self-consistent procedures,
starting from the solution obtained without the nonlinear
coupling [46–49]. In particular, when the nonlinear term is
entirely neglected, a possible (though not unique) solution
is the one that diagonalizes the linear interaction. When the
lasing threshold is overcome, however, the nonlinear term
becomes nonperturbatively relevant, and the diagonalization
of the linear term does not correspond to a slow amplitude
basis anymore, in the most general case of lasing in random
media.

Our theory works for any basis, as long as it is well
defined and complete, and it focuses on the onset to the lasing

phase and on the properties of the modes in this regime.
For simplicity, according to this focus we make the working
choice of a constant gain profile gii = g, ∀ i, in the whole
wavelength band of the random laser and zero off-diagonal
g contributions. Together with the global constraint Eq. (4),
this implies the following form for the Hamiltonian:

H[a] = − gεN −
FMC∑

i1<i2<i3<i4

J�ıAi1 Ai2 Ai3 Ai4

× cos
(
φi1 − φi2 + φi3 − φi4

)
. (5)

The sum termed FMC is generated by choosing the nonlin-
ear interactions according to a selection rule which depends
on mode frequencies, the so-called frequency-matching con-
dition (FMC) [38]:∣∣ωi2 − ωi1 + ωi3 − ωi4

∣∣ � γ . (6)

Here γ is the typical linewidth, and we explicitly wrote the
permutation that can satisfy the constraint in the ordered
sum over i1 < i2 < i3 < i4. The FMC constraint introduces
in the topology of the interaction network inhomogeneities
such that standard fully connected mean-field approximations
used to solve the thermodynamics of disordered systems [2]
cannot be applied. Let us consider, for instance, the simple
case of a linear dispersion relation with equispaced angular
frequencies, ω j = ω0 + j δ, with δ 
 γ and i = 1, . . . , N .
Equation (6) very simply reads as the constraint

|i1 − i2 + i3 − i4| = 0 (7)

on the summation indices in Eq. (5), diluting by an order N the
number of interactions from the fully connected case, N (N −
1)(N − 2)(N − 3)/24 [50]. We call the resulting interaction
network the mode-locked graph.

The values of the coefficients J�ı={i1,i2,i3,i4} in Eq. (5) are
linked to the electromagnetic normal modes and the nonlinear
optical susceptibility as

Ji1,i2,i3,i4 ∝
∫

dr
x,y,z∑

�ν
E (ν1 )

i1
(r)E (ν2 )

i3
(r)E (ν3 )

i3
(r)E (ν4 )

i4
(r)

×χ
(3)
(�ν)

(
r
∣∣ωi1 , ωi2 , ωi3 , ωi4

)
. (8)

In comparison to the slow-amplitude dynamics these cou-
plings are even slower, so that they can be taken as quenched.
The spatial distribution of the normal modes E(r) and the
susceptibility of χ (3)(r) are not exactly known in realistic
random lasers; nevertheless, they are expected to be largely
inhomogeneous. Here we then consider the interaction coef-
ficients Ji1,i2,i3,i4 to be Gaussian distributed random variables,
as the statistical behavior of the system would not depend on
the specific form for large N .

Despite the fact that energy is continuously injected
and dissipated within a random laser, according to
Refs. [30,31,41,42] one can assume an effective equilibrium
distribution for the amplitudes:

P(a1, . . . , ak ) = e−βH[a] δ

(
εN −

N∑
k=1

A2
k

)
, (9)

where β is some effective inverse temperature (related to the
rate of spontaneous emission of photons), and ε measures the
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optical power per mode available to the system. Rescaling
Ak → Ak/

√
ε in Eq. (9), the new variables are constrained on

the same hypersphere at the cost of a rescaling of the effective
temperature as

β → βε2 = P2, (10)

where P is the so-called pumping rate parameter. In these
rescaled variables the Boltzmann weight reads

ρ[{a}] = 1

Z
exp{−P2H[a]} ,

making explicit the role of pumping as an effective heat bath
for the stationary regimes of the lasing medium.1

II. NUMERICAL ALGORITHM

We have studied systems with N complex variables ak =
|Ak|eiφk interacting with the Hamiltonian in Eq. (5).

A. Exchange Monte Carlo

The sampling of the probability distribution in Eq. (9)
was done by means of a parallel tempering Monte Carlo
algorithm (PT) [51]. In the PT algorithm one runs K simu-
lations with local Metropolis dynamics for identical replicas
of the same system, i.e., with the same quenched disorder
J�ı. Then exchanges of configurations between heat baths at
nearby temperature are proposed, provided that eventually
in the thermalized systems for each one of the K copies
the configurations are sampled according to the equilibrium
Gibbs distribution e−βiE .

We have run K independent simulations at temperatures
Ti = β−1

i , from T0 = Tmin to TNPT = Tmax. At each of the 64
steps of the local Metropolis algorithm an exchange of config-
urations among simulations running at neighboring tempera-
tures is proposed. That is, if the Metropolis algorithm for ai

runs with βi and that of a j with β j , one makes the follow-
ing attempt: {(ai, βi ); (a j, β j )} ⇒ (a j, βi ); (ai, β j ), which is
accepted with probability pswap:

pswap = min[1, e−(βi−β j )(H[a j ]−β jH[ai])]. (11)

The replica exchange update is proposed sequentially for
all pairs of neighboring temperatures βi and βi+1. For all
simulations the NPT temperatures where taken with a linear
spacing in β, i.e., βi+1 = βi + β.

B. The Monte Carlo update under spherical constraint

In the local Metropolis algorithm the configuration of com-
plex “spins” (a1, . . . , aN ) is updated with the requirement of

1We have investigated how the system behaves by varying the
pumping rate P . According to Eqs. (9) and (10), in numerical
simulations it is identical to fix the constraint ε and change the
effective temperature T = β−1 or work at fixed temperature varying
the value of ε. We have done our simulations varying the temperature
T in order to leave a clear term of comparison with the literature
on glassy systems (see Methods for the numerical algorithm), but
we often discuss our results in terms of pumping rate P . The reader
simply needs to always remember that P ∼ 1/

√
T .

keeping
∑

k |ak|2 = const. In order to fulfill such a constraint
and the detailed balance, each update is realized choosing at
random two spins ai = Aieiφi and a j = Ajeiφ j and proposing
an update to randomly chosen values of a′

i and a′
j such that

|ai|2 + |a j |2 = |a′
i|2 + |a′

j |2 = C2 . (12)

This is simply achieved by extracting three random numbers
φ′

i , φ′
j , and θ with uniform probability in the interval [0, 2π ]

and proposing the four simultaneous updates φi → φ′
i , φ j →

φ′
j , Ai → A′

i = C cos(θ ), and Aj → A′
j = C sin(θ ). We have

simulated systems at four different sizes: N = 32, 48, 64, 102.
For the parallel tempering we used NPT = 32 temperatures for
all sizes.

C. Parallel computation on GPU

The update of the variables Ai must be done sequentially,
since the interaction network is dense and there is no way
to partition the variables in subsets which can be updated
independently in parallel. We have, instead, implemented
parallelization on GPU graphic cards in two ways: (i) the
update energy shift and (ii) the PT replicas dynamics between
configuration exchanges.

In order to accept or reject the update of two spins ai and
a j , one has to compute the energy update on N (i, j)

4 = O(N2)
quadruplets, i.e.,

E =
N (i, j)

4∑
κ=1

Eκ . (13)

The calculation of each Eκ is realized in parallel on a distinct
kernel on GPU.

Moreover, the execution of the K evolutions at different
temperatures of the parallel tempering is quite naturally im-
plemented in parallel on the GPU. We have run simulations on
two type of graphic cards: GTX 680 and Tesla K20, achieving
an overall speedup with respect to the sequential code on
CPU, up to a factor of 8.

III. BREAKING OF EQUIPARTITION

Let us first compare the dependence on the pumping rate P
of the emission spectrum measured in experiments [panel (a)
of Fig. 1, data taken from [52]] with the emission spectrum in
our numerical simulations averaged over the random coupling
distribution [panel (b)]; the increase of P is accompanied by
the same kind of narrowing. We stress that the symmetry of
the spectral distribution around the central wavelength is due
to the fact that the gain is taken as constant in this case, cf.
Eq. (5), whereas in reality a material-dependent, nonconstant
gain curve g(λ) is present.

The equipartition breaking obtained by raising P is then
even clearer if we consider the behavior for a single instance
of disorder rather than its average over many realizations,
see panel (c) of Fig. 1. From a smooth profile at low P a
pattern of random sharp peaks emerges in the spectrum at high
P . Let us point out that the spectrum shown in panel (c) of
Fig. 1 represents an average over a large time window (see
Appendix), in agreement with the experimental nature of the
emission spectrum, which is a time-integrated signal.
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(a) (b)

(d1) (d2) (c)

FIG. 2. (a) Effective number of degrees of freedom neff (disorder average) as a function of the inverse (squared) pumping rate P−2 = T ,
corresponding to the temperature in the numerical algorithm. neff ≈ 1 signals equipartition, neff < 1 lack of equipartition. (b) The Binder
parameter B for the probability distribution of neff, measured as a function of P−2. (c) Bimodality parameter b for P(neff ) measured as a
function of P−2. (d1, d2) Spectra obtained from different instances of the disorder are shown for the equipartitioned phase, (Pc/P )2 ≈ 2, in
(d1), and the nonequipartitioned phase, (Pc/P )2 ≈ 0.5, in (d2).

From the literature on nonlinear systems [5,7], we know
that the degree of equipartition in the spectrum can be mea-
sured by the so-called spectral entropy:

Ssp = −
N∑

i=1

Îk log(Îk ), (14)

Îk =
〈
A2

k

〉
(∑N

k=1

〈
A2

k

〉) , (15)

where Îk is the normalized thermal average of the intensity
for given wave number k. From the spectral entropy one then
defines the effective number of degrees of freedom [5,7]:

neff = exp(Ssp)

N
, (16)

where neff = 1 for perfect equipartition and neff = 1/N when
the total energy is concentrated in a single mode [5,7]. For
our system the behavior of its average, neff, as a function of
the pumping rate P is reported in Fig. 2(a) (data are plotted as
a function of P−2 = T ). At low pumping rate we find neff ≈ 1,
which signals a good degree of equipartition for all the sizes

N studied. On the contrary, by increasing P we find that neff

rapidly decreases and the decrease depends on N . We identify
as the pumping value that at which neff starts decreasing below
1 with a size-dependent lasing threshold Pc(N ) = √

Tc(N ).
The figure clearly shows that the larger the N , the steeper the
neff decrease.

A stronger indication that we are dealing with a first-order
transition with respect to neff comes from the study of the
Binder B and the bimodality b, parameters of the distribution
P(neff ), displayed in Figs. 2(b) and 2(c). The Binder param-
eter, which is simply defined as the ratio between the fourth
and second moment of the distribution P(neff ),

B = 1

2

(
3 − (neff )4

[(neff )2]2

)
, (17)

with neff = neff − neff as a measure of the deviation from
Gaussianity. The order parameter of a first-order transition is
typically characterized by a Gaussian distribution, which is
centered around two different values, depending on whether
its is probed well below or well above the transition tem-
perature (if the parameter control is temperature). In the
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coexistence region where the two phases have comparable free
energies, the distribution of the order parameter is bimodal.
For this reason the Binder parameter as a function of the
temperature also has a characteristic behavior, pointed out first
by Binder [53]; it is a nonmonotonic reversed bell behavior
with a maximal deviation from Gaussianity in the coexistence
region, where the distribution is bimodal. Indeed, in order to
be completely sure that the deviation from Gaussianity is due
to bimodality and not to other reasons, we also measured the
bimodality parameter b, defined as

b = γ 2 + 1

κ + 3(n−1)2

(n−2)(n−3)

, (18)

where n is the number of data composing the histogram of the
probability distribution, κ is the curtosis of the distribution,
i.e., the same ratio of fourth- and second-order momentum
appearing in the definition of the Binder parameter—see
Eq. (17)—and γ is the skewness, defined as

γ = (neff )3

[(neff )2]3/2
. (19)

Indeed, what we find is precisely what Binder presents as the
phenomenology of a first-order transition: the value Pc(N )
at which B is mostly far from a Gaussian corresponds to
the peak of the bimodality indicator b, as well as to the
breaking point of neff. Eventually, in Fig. 2(d) we compare
the spectral profiles obtained for pumping rates either well
below or well above the lasing threshold. The evidence that
neff behaves as the order parameter is very important for the
purpose of the whole discussion. The main point of presenting
data here on equipartition breaking is to compare them with
the standard way to detect ergodicity breaking in disordered
systems, i.e., studying the Parisi’s order parameter. As we
are going to show, the glass transition that we detect for our
system is a first-order one with respect to its order parameter.
It is therefore very important that also the “order parameter”
for equipartition breaking behaves as the parameter of a
first-order transition; this puts on a solid basis the whole
scenario we are proposing, namely, that we are looking at
the same underlying phenomenon from different perspectives.
The goal of next section is to show that the distribution of the
equilibrium overlap between replicas confirms this picture.

IV. GLASS TRANSITION

The so-called random first-order transition (RFOT)
[54–56] is a mixed-order ergodicity-breaking transition char-
acterized by a specific heat anomaly and a discontinuity in the
order parameter. The latter is identified as the probability dis-
tribution of the overlap q between equilibrium configurations
at a given temperature [2]. In structural glasses, across the
glass transition the distribution P(q) passes from a unimodal
distribution at high temperatures, where there is a unique
state, to a bimodal one with a secondary peak (actually two
symmetric peaks) at low temperatures because of states frag-
mentation into nonequivalent clusters [2]. This is the typical
behavior when phase space splits in disjoint ergodic com-
ponents: configurations inside the same ergodic component

have typical overlap q1, the overlap between configurations in
disjoint ergodic components being q0 < q1.

Let us stress that this kind of ergodicity breaking is
not the so-called “spin-glass” transition of the Sherrington-
Kirkpatrick model [57], where the probability distribution
of the overlap P(q) is expected to take a nontrivial shape,
different from a bimodal one, even for N → ∞. In the RFOT
case, due to finite-size effects, P(q) appears continuous but it
tends to a bimodal distribution in the thermodynamic limit, as
is expected for the glass transition in the p-spin model with
p > 2. The difference is the phase transition is well accounted
for by the specific heat behavior. Cv displays a peak, divergent
with N , in our simulations, whereas in the properly defined
spin glass no specific heat singularity is expected to occur at
the spin-glass transition.

We show now that the four-phasor random laser model
displays these RFOT features at the critical pumping power.

Let us start from the specific heat anomaly. In panels (a)
and (b) of Fig. 3 the specific heat CV curves for different sizes
of the system are shown, where CV per phasor is

CV

N
= 〈E2〉 − 〈E〉2

NT 2
.

The 〈 〉 and represent, respectively, thermal average and
average over quenched disorder. In order to have a term
of comparison, in Fig. 3 we also show the results for the
model (called here random diluted model) that has the same
number of modes, the same distribution of coupling values,
and with the same total number of interactions, yet whose
set of interacting modes are not chosen according to Eq. (7)
but, rather, uniformly randomly selected from the set of all
quadruplets (see Methods for details). At all sizes N , CV /N
has a characteristic nonmonotonic behavior, with the position
of the peak depending on N . We identify this point as a
finite-size “critical temperature” Tc(N ) = 1/P2

c .
The good collapse of the curves at different N , shown in

the inset of Figs. 3(a) and 3(b), demonstrates critical scaling,
a typical feature of second-order phase transitions. The width
of the CV scaling region for the model with random dilu-
tion is τ ∼ N−1/2, where τ = T/Tc − 1: the scaling exponent
1/ν = 1/2 is the same predicted by the simplest mean-field
theory for a second-order phase transition and is also in
agreement with the reference mean-field model of the RFOT
[54]. On the contrary, the scaling region for our four-phasor
mode-locked model follows the behavior τ ∼ N−3/2, with an
exponent 1/ν = 3/2, not compatible with a mean-field theory
of second-order transition. This unexpected exponent 3/2 is
probably due to the correlations in the interaction network in-
duced by the frequency-matching condition, Eq. (7). Though
it might be a preasymptotic effect due to too small finite sizes
of the simulated systems, with the present data we cannot rule
out the possibility that it is a behavior persistent even in the
thermodynamic limit.

In order to detect the breaking of ergodicity, we then
studied the overlap in the numerical simulations, where it
can be measured as the similarity between two mode con-
figurations evolving at equilibrium at the same temperature
and with the same realization of random couplings: two
replicas [2]. Labeling with the Greek indices α and γ two
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(a) (b)

(d) (c)

FIG. 3. (a, b) Specific heat CV (T ) = 〈E 2〉 − 〈E〉2/T 2 as a function of T ; different curves represent different sizes of the system. (a) A
four-phasor model on the mode-locked graph. (Inset) Specific heat as a function of τN3/2, where τ = T/Tc(N ) − 1, curve collapse in the
scaling region. The four sizes are N = 32, 48, 64, 102. (b) Four-phasor model on the randomly diluted graph. (Inset) Specific heat as a
function of τN1/2, curve collapse in the scaling region. The four sizes are N = 32, 48, 64, 96. (c) Random dilution. Normal modes overlap
probability distribution for system size N = 64 at temperatures T/Tc(N ) = 1.71, 1.15, 0.98, 0.7. (d) Mode-locked graph. Normal modes
overlap probability distribution for N = 64 at temperatures T/Tc = 1.71, 1.15, 0.97, 0.64.

replicas, we have initially measured (cf. Methods) the phasor
overlap qαγ :

qαγ = 1

N

N∑
k=1

āα
k aγ

k = 1

N

N∑
k=1

Aα
k Aγ

k cos
(
φα

k − φ
γ

k

)
. (20)

The Greek indices in Eq. (20) denote different replicas, i.e.,
independent configurations at equilibrium at the same tem-
perature T .

The Parisi’s overlap is characterized by a low-temperature
nontrivial distribution in the presence of a glass phase [2]. In
panels (c) and (d) of Fig. 3 the phasor overlap distribution
P(q) is shown, respectively, for the randomly diluted four-
phasor model [panel (c)] and the mode-locked model [panel
(d)] at different values of P . In both cases, in the low-P
ergodic phase, it turns out to be a symmetric Gaussian. Then,
for P > Pc, in the case of random bond dilution one finds
secondary peaks at a finite distance from the origin, signaling
a glassy broken-ergodicity phase. In the mode-locked graph,
actually, this effect is not very pronounced, and shoulders are
displayed at the simulated sizes and powers, rather than proper
side peaks. As for the specific heat, finite-size effects turn out

to be stronger in the mode-locking graph than in the randomly
bond-diluted one.

We further considered another observable—the quadru-
plets overlap probability distribution P (Q) (see Methods).
The quadruplet overlap Qαβ between the energy stored in the
same set of four coupled modes,

E�i = āi1 ai2 ai3 āi4 + c.c.

= Ai1 Ai2 Ai3 Ai4 cos
(
φi2 − φi1 + φi3 − φi4

)
, (21)

at equilibrium in state α and in state γ , reads

Qαγ = 1

N4

N4∑
κ=1

Eα
κ Eγ

κ , (22)

where κ runs over the ordered list {�ı} of all N4 nonzero
four-body couplings. While the phasor overlap is computed
as the average over N correlated random variables, i.e., the
local phasor overlaps āα

k aγ

k , the quadruplet overlap Qαγ
μ is the

average of N4 = O(N3) variables. We hence expect it to be
less plagued by finite-size effects. This is, indeed, the case, as
shown in Fig. 4. While at low pumping rate P the quadruplets
overlap has a very peaked distribution at Q � 0, for P ≈ Pc
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(a) (b)

FIG. 4. (a) Plaquette overlap distribution P (Q) for N = 64 and N4 = 214. (Inset) Multimodality parameter b measured for P (Q), values
above the threshold b∗ = 5/9 (full black line) indicate a bimodal distribution. (b) Intensity fluctuation overlap (IFO) probability distribution
P(C) for system size N = 64 (Np = 214), four different values of the pumping rates: (Pc/P )2 = 1.71, 1.15, 0.97, 0.64. (Inset) Binder parameter
B measured for P(C) as a function of P−2 = T ; the behavior is typical of first-order transitions, with the transition at the minimum of B.

we find a clear signature of a secondary peak at Q > 0. In
the inset of Fig. 4(a) we see the corresponding multimodality
parameter b.

The definition of b is the same given in Eq. (18) above,
where skewness γ and curtosis κ are now defined as follows:

κ = 〈(q)4〉
[〈(q)2〉]2

,

(23)

γ = 〈(q)3〉
[〈(q)2〉]3/2

,

with q = q − 〈q〉. We find that the region where the param-
eter b signals a bimodal distribution of the overlap is precisely
the interval of pumping rates around Pc. For the study of the
plaquette overlap Q distribution, we could not use the Binder
parameter as a good indicator because, although clearly bi-
modal at the transition, the distribution is not Gaussian far
from the transition.

We have presented the numerical evidence that in a statisti-
cal mechanics model for random lasers there is a RFOT glass
transition concomitant with the breaking of equipartition of
energy among the modes. One question now is to which extent
this picture can be assessed even in experiments. The available
technology for the measurements of light mode phases [58,59]
applies only to high-power directional impulses: unfortu-
nately, this is not the operating regime of standard random
lasers [17,60]. Therefore we cannot rely on observables which
require the measurement of phases. The phasor and quadruplet
overlaps defined in Eqs. (20) and (22) depend on phases, so
they are not quantities that can be measured in current exper-
iments. A further overlap Cαβ between intensity fluctuations
k ∝ Ik − 〈Ik〉 can then be introduced:

Cαβ = 1

N

N∑
k=1

α
k 

β

k

α
k ≡ Iα

k − 〈
Iα

k

〉
2
√

2ε
, (24)

where Ik = A2
k . At the mean-field narrow-band level, the

intensity fluctuation overlap (IFO) Cαβ is proved to be in
a one-to-one correspondence with the standard overlap, i.e.,
Cαγ ∝ q2

αγ ∀ α, γ [29]. The advantage of Cαβ with respect to
qαβ is that it can be measured in real random lasers [22–28].
In panel (b) of Fig. 4, the distribution P (C) is shown for
N = 64 at four different values of the pumping rate P , two
above and two below the critical Pc, as determined from
the caloric curve (Fig. 2). At first sight there is no clear
evidence of secondary peaks at high pumping rates for this
system size, although non-Gaussian tails appear in the vicinity
of the transition. It is the study of the Binder parameter
B dependence on P which reveals how P (C) brings the
signature of a first-order transition: data are shown in the
inset of panel (b) of Fig. 4. The behavior of B as a function
of P (plotted as B vs P−2 = T to have a clearer term of
comparison with the literature) is the one characteristic of
first-order transitions [53]. This behavior of the IFO order
parameter is, therefore, also consistent with the RFOT sce-
nario and with the study of the breaking of equipartition in
the spectrum: in all the three cases the ergodicity-breaking
parameter behaves as the order parameter of a first-order
transition.

V. DISCUSSION

By means of Monte Carlo numerical simulations we
have analyzed a statistical mechanical model of the non-
linear interactions of light in a random medium under ex-
ternal optical pumping. We have shown that the model
reproduces the narrowing of the emission spectrum char-
acterizing the onset of lasing in experiments, see Fig. 1,
and how it signals an ergodicity-breaking transition. In-
deed, the onset of the random lasing regime from an in-
coherent regime of fluorescence displays the properties of
a glassy phase transition, characterized by a diverging spe-
cific heat (typical of continuous transitions) and a discon-
tinuous order parameter, the overlap, a feature of first-order
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transitions. This is termed random first-order transition in the
literature [55].

Further on, thanks to the quite general properties of the
model analyzed, we were able to show unprecedented evi-
dence of a deep connection between lack of equipartition—
typical of ergodicity breaking in ordered systems with non-
linear interactions [3,5,9]—and the breaking of ergodicity as
described within the paradigm of replica symmetry breaking
in disordered systems [2].

The mode-locked four-phasor model is the first example
of a system where ergodicity breaking manifests itself at
the same time as a breaking of the symmetries between
replicas and as a lack of equipartition. We stress that the
possibility to reveal this phenomenon is due to the following
two salient features of the model: the O(N ) dilution of the
nonlinear couplings with respect to the corresponding mean-
field model of the p-spin class, induced by the frequency-
matching condition, and the local unboundedness of the light
mode amplitudes. While the rule for the dilution of cou-
plings is specific of random lasers, it is dilution itself which
allowed us to see equipartition breaking. The model of the
random laser presented here is thus, in our opinion, only a
specific instance of a broader class of systems characterized
by the concomitance of equipartition and replica symmetry
breaking: we expect a similar phenomenon to take place
for all p-spin models on inhomogeneous networks and with
locally unbounded variables. This important result suggests
a possible way to overcome the intrinsic difficulty usually
encountered in the measure of q, which is not a single-
experiment observable. The standard protocol is that one
needs to compare the results of several experiments done on
the same sample or of several numerical simulations with the
same realization of quenched disorder to obtain a measure
P(q). Using the jargon of disordered systems, one needs
more replicas of the same system. As we have shown, the
occurrence of a nontrivial P(q) is simultaneous with the
loss of spectral equipartition, and one can thus simply take
advantage of the latter to detect the ergodicity-breaking glass
transition.

In conclusion, as weird as it may sound, the results pre-
sented in this work reinforce the notion that light in random
media really looks like a glassy system and offers, among all
physical systems, a good benchmark to test the existence and
the hidden nature of a glass transition and its connection to
nonlinearity.

ACKNOWLEDGMENTS

The authors thank D. Ancora, G. Benettin, L. Biferale,
A. Crisanti, G. Parisi, A. Ponno, and A. Vulpiani for use-
ful discussions. The research leading to these results has
received funding from the Italian Ministry of Education,
University and Research under the PRIN2015 program, Grant
Code No. 2015K7KK8L-005, and the European Research
Council (ERC) under the European Union’s Horizon 2020
Research and Innovation Program, Project LoTGlasSy, Grant
Agreement No. 694925. G.G. acknowledges the financial
support of the Simons Foundation (Grant No. 454949, Giorgio
Parisi).

TABLE I. Details for the simulations for different system sizes
N . The number of quadruplets involved in the Hamiltonian, N4, is
always a power of 2.

N N4 Tmin Tmax NPT Nsweep Nsample

32 211 0.2 2.0 32 220 100
48 213 0.3 2.0 32 220 100
64 214 0.5 1.4 32 220 100
102 216 0.7 1.2 32 221 100

APPENDIX

1. How to build the mode-locked graph

The first step of the numerical study is the generation of
the mode-locked graph with disordered couplings. Our goal
is to study what happens beyond the narrow-band mean-field
approximation of [29,31,42,61], in particular, when the non-
linear interaction is that of Eq. (5). Operatively, it is easier to
describe the structure of the mode-locked interaction network
as a bipartite graph where interaction nodes Jμ, labeled by
Greek letters, are connected to variable nodes Ak , labeled
with Latin letters. Since we have a four-body interaction, each
interaction node is always attached to four variable nodes and
is defined by the ordered list of their indices, Jμ(i, j, k, l ). The
order is relevant, because from the point of view of the energy
stored in the interaction [see Eq. (5)] there are nonequivalent
permutations. The steps to generate the mode-locked graph
are as follows:

(1) A virtual complete graph with
(N

4

)
interaction nodes is

generated.
(2) For each interaction node the three nonequiva-

lent index permutations in Eq. (5) should be consid-
ered: Pμ(i1, i2, i3, i4), Pμ(i2, i1, i3, i4), and Pμ(i1, i2, i4, i3),
even though for the index order i1 < i2 < i3 < i4 only
Pμ(i2, i1, i3, i4) can be satisfied at most. Each time that the
mode frequencies (or indices) satisfy condition (6), the corre-
sponding interaction of the virtual graph is added to the real
graph.

(3) The procedure at point 2 is repeated until a preassigned
number of interactions in the complete graph is reached. For
computational reasons this number is the largest power of 2
below the total number of possible couplings satisfying (6).

For large N , the above procedure tends to cut O(N ) out
of all interacting quadruplets [50]. Operatively, for a system
with N complex variables we have drawn a bipartite graph
with a number of interactions scaling as O(N3) and equal to
the power of 2, soon smaller than the number of all possible
interactions fulfilling the FMC constraint. The number of
interaction nodes N4 corresponding to each N is listed in
Table I.

Concerning the structure of the topology of the interaction
network, it is important to stress that the dimensionality of the
disordered optical medium in real space is scarcely important
for the thermodynamics of the problem: the interaction among
modes remains in any case highly nonlocal in the basis of
normal modes. The only quantity which depends on the real-
space dimensionality is the spatial overlap between the normal
modes, the information about which is stored in the disordered
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coefficients J�ı of the Hamiltonian in Eq. (5) as [31,61]

Ji1i2i3i4 = ı

2
ωi1ωi2ωi3ωi4

∫
V

dr
x,y,z∑

�ν
χ

(3)
�ν

(
ωi1 , ωi2 , ωi3 , ωi4 ; r

)
× E ν1

i1
(r)E ν2

i2
(r)E ν3

i3
(r)E ν4

i4
(r), (A1)

where χ
(3)
�ν is the nonlinear susceptibility of the system. We do

not consider contributions from the first nonlinear term χ (2)

in the polarization expansion because of the relatively limited
bandwidth of the emission spectra in random lasers and the
consequent lack of second harmonic generation, but that term
can be easily inserted, leading to no qualitative difference in
the results. Furthermore, we do not explicitly consider linear
polarization contributions, which would read

H2 = −
N∑

k=1

akākgk , (A2)

gk = g(ωk ) being the net gain profile (gain taken away loses
due to the open cavity) that can be expressed as a function
of χ (1)(ω, r). In our model, though, where gain saturation
is expressed by the global constraint on the overall intensity
distributed in the system,

N∑
k=1

akāk = εN , (A3)

and considering for simplicity a constant net gain profile gk �
g, this contribution amounts to a constant H2 = −g, with no
role in the dynamics.

The random laser couplings as expressed in Eq. (A1) are,
in general, disordered because modes display different spatial
shape and extension [18,62]. The constituents of the integrals
in Eq. (A1) are very difficult to calculate from first principles.
The only specific form of the nonlinear susceptibility has been
computed by Lamb [39,63] for few-modes ordered lasers, and
no analog study for random lasers has been performed so
far, to our knowledge. Integrals like Eq. (A1) in a random
medium can be regarded as a sum over many random vari-
ables. Different couplings involving a given mode might, in
general, be correlated [64]. Since, however, we are interested
in the critical behavior, thus in the large size limit of our
simulated systems and since correlations decay with the size
of the system, we adopt as working hypothesis a Gaussian
distribution for each J�ı:

P(J�ı ) =
√

N2

2π
exp

{
−N2J2

�ı
2

}
. (A4)

The scaling of variance with N , 〈J2〉 ∼ N−2, guarantees en-
ergy extensivity. There are very many couplings, but each one

is vanishingly small. Macroscopic phenomena such as lasing
occur because the system undergoes a transition to a collective
behavior. Even in the presence of randomness, cooperativity
is the leading mechanism. We further stress that, from the
perspective of probing RFOT, considering correlated J’s leads
to a qualitatively analog phase diagram, as it is well known in
spin-glass systems such us, e.g., the random orthogonal model
[65,66].

If we look at interactions in the space of normal modes
the system is infinite dimensional: any degree of freedom
participates to an infinite [O(N2)] number of interactions in
the thermodynamic limit N → ∞. That is why we expect
the mean-field glass transition scenario drawn in [29,31] to
be quite robust for the mode-locked p phasor, even if the
narrow-band hypothesis [30] is removed. Last but not least,
the nonlocality of interactions between light modes also guar-
antees that phenomena like energy localization, a pathology
of sparse networks [37,38], are avoided.

2. Replicas in numerical simulations

Replicas are independent equilibrium configurations sam-
pled with the same quenched disorder. This definition cor-
responds to the protocol used in numerical simulation. One
“replica” of the system is represented by the swarm of NPT

configurations used for a given instance of the parallel temper-
ing Monte Carlo dynamics. Different instances of the PT dy-
namics characterized by the same set of quenched couplings J�ı
and the same interaction network between modes are different
replicas.

For N = 32, N = 48, and N = 64, for each disorder in-
stance we simulated four replicas, which gave us the avail-
ability of six independent values of qαβ : q12, q13, q14, q23, q24,
q34. For N = 102 we simulated two replicas for each instance
of the disorder. To accumulate statistics for P(q), we measured
values of qαβ comparing replicas at the same iteration of the
PT dynamics, each of 640 iterations. Since the distribution
P(q) is not self-averaging [2], for each size of the system
we have sampled the equilibrium measure for Nsample ≈ 100
instances of the disorder.

It is useful to clarify also how we measured in prac-
tice all thermal averages indicated with angular brackets,
〈O[A]〉. Once that the system reaches equilibrium at a given
temperature/power, at a time in Monte Carlo sweep units of
Nterm < Nsweep/4, thermal averages were measured as time av-
erages along the dynamics, along the second half of each run:

〈O[A]〉 = 2

Nsweep

Nsweep∑
i=Nsweep/2

O[Ai]. (A5)

[1] G. Parisi, Infinite Number of Order Parameters for Spin-
Glasses, Phys. Rev. Lett. 43, 1754 (1979).

[2] M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory and
Beyond (World Scientific, Singapore, 1987).

[3] E. Fermi, J. Pasta, and S. Ulam, Studies of nonlinear problems
I., Los Alamos report LA-1940 (1955).

[4] N. J. Zabusky and M. Kruskal, Interactions of “Solitons” in a
Collisionless Plasma and the Recurrence of Initial States, Phys.
Rev. Lett. 15, 240 (1965).

[5] R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, and A. Vulpiani,
Equipartition threshold in nonlinear large Hamiltonian systems:
The Fermi-Pasta-Ulam model, Phys. Rev. A 31, 1039 (1985).

023399-11

https://doi.org/10.1103/PhysRevLett.43.1754
https://doi.org/10.1103/PhysRevLett.15.240
https://doi.org/10.1103/PhysRevA.31.1039


GRADENIGO, ANTENUCCI, AND LEUZZI PHYSICAL REVIEW RESEARCH 2, 023399 (2020)

[6] R. Livi, M. Pettini, S. Ruffo, and A. Vulpiani, Chaotic behavior
in nonlinear Hamiltonian systems and equilibrium statistical
mechanics, J. Stat. Phys. 48, 539 (1987).

[7] T. Cretegny, T. Dauxois, S. Ruffo, and A. Torcini, Localiza-
tion and equipartition of energy in the β-FPU chain: Chaotic
breathers, Physica D 121, 109 (1998).

[8] R. Khomeriki, S. Lepri, and S. Ruffo, Nonlinear supratransmis-
sion and bistability in the Fermi-Pasta-Ulam model, Phys. Rev.
E 70, 066626 (2004).

[9] Focus Issue: The “Fermi-Pasta-Ulam” Problem—The First 50
Years, Chaos: An Interdisciplinary Journal of Nonlinear Science
Vol. 50, edited by G. Gallavotti (Springer, New York, 2005).

[10] G. Benettin, H. Christodoulidi, and A. Ponno, The Fermi–
Pasta–Ulam problem and its underlying integrable dynamics,
J. Stat. Phys. 152, 195 (2013).

[11] H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, Mode
repulsion and mode coupling in random lasers, Phys. Rev. B 67,
161101(R) (2003).

[12] L. Florescu and S. John, Photon Statistics and Coherence in
Light Emission from a Random Laser, Phys. Rev. Lett. 93,
013602 (2004).

[13] M. Anni, S. Lattante, T. Stomeo, R. Cingolani, G. Gigli, G. Bar-
barella, and L. Favaretto, Modes interaction and light transport
in bidimensional organic random lasers in the weak scattering
limit, Phys. Rev. B 70, 195216 (2004).

[14] H. Cao, Review on the latest developments in random lasers
with coherent feedback, J. Phys. A: Math. Gen. 38, 10497
(2005).

[15] S. Lepri, S. Cavalieri, G.-L. Oppo, and D. S. Wiersma, Sta-
tistical regimes of random laser fluctuations, Phys. Rev. A 75,
063820 (2007).

[16] K. L. van der Molen, A. P. Mosk, and A. Lagendijk, Quantita-
tive analysis of several random lasers, Opt. Commun. 278, 110
(2006).

[17] D. S. Wiersma, The physics and applications of random lasers,
Nat. Phys. 4, 359 (2008).

[18] J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn,
and H. Kalt, Co-existence of strongly and weakly localized
random laser modes, Nat. Photonics 3, 279 (2009).

[19] J. Andreasen et al., Modes of random lasers, Adv. Opt.
Photonics 3, 88 (2011).

[20] M. Leonetti and C. Lopez, Active subnanometer spectral
control of a random laser, Appl. Phys. Lett. 102, 071105
(2013).

[21] N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, Adaptive
pumping for spectral control of random lasers, Nat. Phys. 10,
426 (2014).

[22] N. Ghofraniha, I. Viola, F. Di Maria, G. Barbarella, G. Gigli,
L. Leuzzi, and C. Conti, Experimental evidence of replica
symmetry breaking in random lasers, Nat. Commun. 6, 6058
(2014).

[23] A. S. L. Gomes, B. C. Lima, P. I. R. Pincheira, A. L. Moura,
M. Gagne, E. P. Raposo, C. B. deAraujo, and R. Kashyap,
Glassy behavior in a one-dimensional continuous-wave erbium-
doped random fiber laser, Phys. Rev. A 94, 011801(R) (2016).

[24] P. I. R. Pincheira, A. F. Silva, S. I. Fewo, S. J. M. Carreño, A.
L. Moura, E. P. Raposo, A. S. L. Gomes, and C. B. de Araújo,
Observation of photonic paramagnetic to spin-glass transition in
a specially designed TiO2 particle-based dye-colloidal random
laser, Opt. Lett. 41, 3459 (2016).

[25] S. Basak, A. Blanco, and C. Lopez, Large fluctuations at the
lasing threshold of solid- and liquid-state dye lasers, Sci. Rep.
6, 32134 (2016).

[26] F. Tommasi, E. Ignesti, S. Lepri, and S. Cavalieri, Robustness
of replica symmetry breaking phenomenology in random laser,
Sci. Rep. 6, 37113 (2016).

[27] C. Lopez, The true value of disorder, Adv. Opt. Mater. 6,
1800439 (2018).

[28] F. Tommasi, L. Fini, E. Ignesti, S. Lepri, F. Martelli, and
S. Cavalieri, Statistical outliers in random laser emission, Phys.
Rev. A 98, 053816 (2018).

[29] F. Antenucci, A. Crisanti, and L. Leuzzi, The glassy random
laser: Replica symmetry breaking in the intensity fluctuations
of emission spectra, Sci. Rep. 5, 16792 (2015).

[30] A. Gordon and B. Fischer, Phase Transition Theory of Many-
Mode Ordering and Pulse Formation in Lasers, Phys. Rev. Lett.
89, 103901 (2002).

[31] F. Antenucci, C. Conti, A. Crisanti, and L. Leuzzi, General
Phase Diagram of Multimodal Ordered and Disordered Lasers
in Closed and Open Cavities, Phys. Rev. Lett. 114, 043901
(2015).

[32] F. Antenucci, A. Crisanti, and L. Leuzzi, Complex spherical
2+4 spin glass: A model for nonlinear optics in random media,
Phys. Rev. A 91, 053816 (2015).

[33] F. Antenucci, G. Lerario, B. S. Fernandez, M. De Giorgi,
D. Ballarini, D. Sanvitto, and L. Leuzzi, Self-starting nonlinear
mode locking in random lasers, arXiv:1904.00493.

[34] H. Cao, Lasing in random media, Waves Random and Complex
Media 13, R1 (2003).

[35] T. R. Kirkpatrick and D. Thirumalai, p-spin interaction spin-
glass models: Connections with the structural glass problem,
Phys. Rev. B 36, 5388 (1987).

[36] A. Crisanti and H. Sommers, Thouless-Anderson-Palmer ap-
proach to the spherical p-spin spin glass model, J. Phys. I
(France) 5, 805 (1995).

[37] F. Antenucci, M. Ibáñez Berganza, and L. Leuzzi, Statistical
physical theory of mode-locking laser generation with a fre-
quency comb, Phys. Rev. A 91, 043811 (2015).

[38] F. Antenucci, M. Ibáñez Berganza, and L. Leuzzi, Statistical
physics of nonlinear wave interaction, Phys. Rev. B 92, 014204
(2015).

[39] M. Sargent III, M. O’Scully, and W. E. Lamb, Laser Physics
(Addison Wesley Publishing Company, Reading, MA, 1978).

[40] F. Antenucci, A. Crisanti, M. Ibañez Berganza, A. Marruzzo,
and L. Leuzzi, Statistical mechanics models for multimode
lasers and random lasers, Philos. Mag. 96, 704 (2016).

[41] F. Antenucci, Statistical Physics of Wave Interactions (Springer,
New York, 2016).

[42] L. Angelani, C. Conti, G. Ruocco, and F. Zamponi, Glassy
Behavior of Light, Phys. Rev. Lett. 96, 065702 (2006).

[43] G. Hackenbroich, C. Viviescas, and F. Haake, Quantum statis-
tics of overlapping modes in open resonators, Phys. Rev. A 68,
063805 (2003).

[44] C. Viviescas and G. Hackenbroich, Field quantization for open
optical cavities, Phys. Rev. A 67, 013805 (2003).

[45] H. A. Haus, Mode-locking of lasers, IEEE J. Quantum Electron.
6, 1173 (2000).

[46] H. E. Tureci, A. D. Stone, and B. Collier, Self-consistent
multimode lasing theory for complex or random lasing media,
Phys. Rev. A 74, 043822 (2006).

023399-12

https://doi.org/10.1007/BF01019687
https://doi.org/10.1016/S0167-2789(98)00107-9
https://doi.org/10.1103/PhysRevE.70.066626
https://doi.org/10.1007/s10955-013-0760-6
https://doi.org/10.1103/PhysRevB.67.161101
https://doi.org/10.1103/PhysRevLett.93.013602
https://doi.org/10.1103/PhysRevB.70.195216
https://doi.org/10.1088/0305-4470/38/49/004
https://doi.org/10.1103/PhysRevA.75.063820
https://doi.org/10.1016/j.optcom.2007.05.047
https://doi.org/10.1038/nphys971
https://doi.org/10.1038/nphoton.2009.67
https://doi.org/10.1364/AOP.3.000088
https://doi.org/10.1063/1.4792759
https://doi.org/10.1038/nphys2939
https://doi.org/10.1038/ncomms7058
https://doi.org/10.1103/PhysRevA.94.011801
https://doi.org/10.1364/OL.41.003459
https://doi.org/10.1038/srep32134
https://doi.org/10.1038/srep37113
https://doi.org/10.1002/adom.201800439
https://doi.org/10.1103/PhysRevA.98.053816
https://doi.org/10.1038/srep16792
https://doi.org/10.1103/PhysRevLett.89.103901
https://doi.org/10.1103/PhysRevLett.114.043901
https://doi.org/10.1103/PhysRevA.91.053816
http://arxiv.org/abs/arXiv:1904.00493
https://doi.org/10.1088/0959-7174/13/3/201
https://doi.org/10.1103/PhysRevB.36.5388
https://doi.org/10.1051/jp1:1995164
https://doi.org/10.1103/PhysRevA.91.043811
https://doi.org/10.1103/PhysRevB.92.014204
https://doi.org/10.1080/14786435.2016.1145359
https://doi.org/10.1103/PhysRevLett.96.065702
https://doi.org/10.1103/PhysRevA.68.063805
https://doi.org/10.1103/PhysRevA.67.013805
https://doi.org/10.1109/2944.902165
https://doi.org/10.1103/PhysRevA.74.043822


GLASSINESS AND LACK OF EQUIPARTITION IN … PHYSICAL REVIEW RESEARCH 2, 023399 (2020)

[47] H. E. Tureci, L. Ge, S. Rotter, and A. D. Stone, Strong
interactions in multimode random lasers, Science 320, 643
(2008).

[48] H. E. Türeci, A. D. Stone, L. Ge, S. Rotter, and R. J.
Tandy, Ab initio self-consistent laser theory and random lasers,
Nonlinearity 22, C1 (2009).

[49] S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K.
G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson,
and S. Rotter, Scalable numerical approach for the steady-
state ab initio laser theory, Phys. Rev. A 90, 023816
(2014).

[50] A. Marruzzo, P. Tyagi, F. Antenucci, A. Pagnani, and
L. Leuzzi, Improved pseudolikelihood regularization and dec-
imation methods on non-linearly interacting systems with con-
tinuous variables, SciPost Phys. 5, 002 (2018).

[51] K. Hukushima and K. Nemoto, Exchange Monte Carlo method
and application to spin glass simulations, J. Phys. Soc. Jpn. 65,
1604 (1996).

[52] H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu,
and R. P. H. Chang, Ultraviolet lasing in resonators formed by
scattering in semiconductor polycrystalline films, Appl. Phys.
Lett. 73, 3656 (1998).

[53] K. Binder and D. P. Landau, Finite-size scaling at
first-order phase transitions, Phys. Rev. B 30, 1477
(1984).

[54] B. Derrida, Random-energy model: An exactly solvable model
of disordered systems, Phys. Rev. B 24, 2613 (1981).

[55] T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Scaling
concepts for the dynamics of viscous liquids near an ideal
glassy state, Phys. Rev. A 40, 1045 (1989).

[56] Structural Glasses and Supercooled Liquids: Theory, Ex-
periment, and Applications, edited by P. G. Wolynes and
V. Lubchenko (John Wiley and Sons, New York, 2012).

[57] D. Sherrington and S. Kirkpatrick, Solvable Model of a Spin-
Glass, Phys. Rev. Lett. 35, 1792 (1975).

[58] K. W. DeLong, D. N. Fittinghoff, R. Trebino, B. Kohler, and
K. Wilson, Pulse retrieval in frequency-resolved optical gating
based on the method of generalized projections, Opt. Lett. 19,
2152 (1994).

[59] C. Iaconis and I. A. Walmsley, Spectral phase interferometry for
direct electric-field reconstruction of ultrashort optical pulses,
Opt. Lett. 23, 792 (1998).

[60] M. Leonetti, C. Conti, and C. Lopez, Dynamics of phase-
locking random lasers, Phys. Rev. A 88, 043834 (2013).

[61] C. Conti and L. Leuzzi, Complexity of waves in nonlinear
disordered media, Phys. Rev. B 83, 134204 (2011).

[62] C. Conti and A. Fratalocchi, Dynamic light diffusion, Ander-
son localization and lasing in disordered inverted opals: 3D
ab-initio Maxwell-Bloch computation, Nat. Phys. 4, 794
(2008).

[63] W. E. Lamb, Theory of an optical maser, Phys. Rev. 134, A1429
(1964).

[64] O. Zaitsev and L. Deych, Recent developments in the theory of
multimode random lasers, J. Opt. 12, 024001 (2010).

[65] E. Marinari, G. Parisi, and F. Ritort, Replica field theory for
deterministic models: I. Binary sequences with low autocorre-
lation, J. Phys. A: Math. Gen. 27, 7615 (1994).

[66] G. Parisi and M. Potters, Mean-field equations for spin models
with orthogonal interaction matrices, J. Phys. A: Math. Gen. 28,
5267 (1995).

023399-13

https://doi.org/10.1126/science.1155311
https://doi.org/10.1088/0951-7715/22/1/C01
https://doi.org/10.1103/PhysRevA.90.023816
https://doi.org/10.21468/SciPostPhys.5.1.002
https://doi.org/10.1143/JPSJ.65.1604
https://doi.org/10.1063/1.122853
https://doi.org/10.1103/PhysRevB.30.1477
https://doi.org/10.1103/PhysRevB.24.2613
https://doi.org/10.1103/PhysRevA.40.1045
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1364/OL.19.002152
https://doi.org/10.1364/OL.23.000792
https://doi.org/10.1103/PhysRevA.88.043834
https://doi.org/10.1103/PhysRevB.83.134204
https://doi.org/10.1038/nphys1035
https://doi.org/10.1103/PhysRev.134.A1429
https://doi.org/10.1088/2040-8978/12/2/024001
https://doi.org/10.1088/0305-4470/27/23/010
https://doi.org/10.1088/0305-4470/28/18/016

