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We present a phenomenological Green’s function to characterize the superconducting and pseudogap phases
of the cuprates based on a microscopic theory of doped Mott insulators. In this framework, the “Fermi-arc” and
“kink” phenomena observed by angle-resolved photoemission spectroscopy experiments in the pseudogap phase
can be systematically explained as a function of doping, which are further connected to the two-gap feature
in the superconducting phase with dichotomy between the nodal and antinodal physics. We demonstrate that a
phase-string-induced fractionalization plays the key role in giving rise to such a peculiar Green’s function with
a unique two-component structure.
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I. INTRODUCTION

The discovery of high-Tc cuprate superconductors [1] has
generated tremendous interests in the past three decades not
only because of the high transition temperature of uncon-
ventional superconductivity, but also on account of numerous
fascinating phenomena and intertwined orders [2–6]. The rich
experimental observations may have generically indicated the
failure of the standard Landau Fermi-liquid theory [7,8], as
one of the greatest triumphs of the condensed matter theory in
the 20th century.

The angle-resolved photoemission spectroscopy (ARPES)
[3,9–11] has been one of the most powerful tools in the
experimental investigation of the high-Tc cuprate materials
with essential two dimensionality (2D). A striking distinc-
tion of the high-Tc cuprate from a Landau Fermi-liquid
theory description is the ARPES observation of a “Fermi
surface” consisting of four disconnected portions known as
the Fermi arcs [12–14] in the pseudogap phase, in con-
trast to a conventional full Fermi-surface contour which can
only terminate at the Brillouin zone boundary. Upon en-
tering the superconducting phase, the Fermi arc is further
gapped by a d-wave symmetry gap, but outside the Fermi
arc, a new quasiparticlelike peak emerges, which is corre-
lated with a “pseudogap” in the antinodal regime exhibiting
the “peak-dip-hump” structure in energy distribution curves
(EDCs) [15–21]. Such a two-gap structure [22–25] in the
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superconducting phase, with the dichotomy between the nodal
and antinodal quasiparticle excitations, is further supple-
mented by another “kink” dispersion along the nodal direction
which persists up to the pseudogap phase [26–33]. A more
detailed account of the ARPES data used in this work will be
further elaborated later in the Introduction.

The significance of the ARPES measurement is that it
directly probes into the behavior of the quasiparticlelike ex-
citation that is the basic building block of a Fermi-liquid
state or Bardeen-Cooper-Schrieffer (BCS) superconducting
state. Thus, any anomalies shown in the ARPES may indicate
whether or how a conventional Fermi liquid or BCS state
breaks down [13,34]. In the case of the cuprate, as mentioned
above, the ARPES data have clearly demonstrated a very rich
phenomenon with an incomplete Landau and Bogoliubov-
type quasiparticle at least in the underdoped and optimal dop-
ing regimes. The essential question is whether such a complex
phenomenon can be still understood within a modified Fermi-
liquid framework or a completely new phenomenology will
be needed to sensibly provide a consistent picture, which must
be also in accordance with a huge number of other constraints
imposed by the experiments as well as theoretical studies.

For instance, with reducing doping, the cuprate materials
will eventually recover an insulating phase in which spins
become antiferromagnetically long-range ordered (AFLRO).
In particular, at half-filling, the system is a Mott insulator
[2,35], based on which a single hole may be created by pho-
toemission, as has been studied by the ARPES in Sr2CuO2Cl2

and Ca2CuO2Cl2 [36–42]. These experiments have shown that
the four Fermi arcs in the pseudogap phase of finite doping
have shrunk into four Fermi points at (±π/2,±π/2) in the
Brillouin zone. The Fermi point positions are in agreement
with the exact diagonalization (ED) calculations based on the
simplified models for doped Mott insulators like the t-J model
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[43–45], which has been also studied by analytic methods
[46–48] like the self-consistent Born approximation [49–53].
Recently, a combined ED and density-matrix renormalization
group (DMRG) study has further shown that aside from the
quasiparticle spectral weight peaked at (±π/2,±π/2) in a
finite-size system [54], the single hole is accompanied by a
persistent spin current hidden in the spin antiferromagnetic
background, which can be characterized by a novel angular
momentum for the t-J system under an open boundary with
the discrete C4 rotational symmetry. In other words, in the
dilute hole limit, the charge carrier in the doped Mott insu-
lator is not a Landau-type quasiparticle and the substantial
broadening of the spectral function around (±π/2,±π/2)
observed [36–40,55,56] in the cuprate may be simply due
to such momentum-carrying spin currents generated by the
motion of the hole in the background. As a matter of fact, a
one-hole ground-state wave function with incorporating such
a spin-current pattern has been recently calculated by varia-
tional Monte Carlo (VMC) method [57], which reproduces the
quasiparticle spectral weight, momentum distribution, as well
as the novel angular momenta and corresponding ground-state
degeneracy, in excellent agreement with the ED and DMRG
results of finite sizes up to 8 × 8 [54], while further shows the
vanishing quasiparticle spectral weight in the thermodynamic
limit.

At a finite doping, along the line of thinking based on the
doped Mott insulator or doped antiferromagnet [2,4,35,58],
a superconducting (SC) ground state with a pseudogap “nor-
mal state” is expected to emerge after the AFLRO is doped
away. Various possible SC ground states have been proposed
within the same framework described by the t-J and Hubbard
models. Among them, the most influential one is the original
proposal of the Gutzwiller-projected BCS ground state, i.e.,
the so-called “plain vanilla” resonating-valence-bond (RVB)
state [35,59] and their mean-field description [60–62]. The
quasiparticle excitation in such an RVB state can be generally
described by a spin-charge separation with emergent gauge
field in terms of the slave-boson scheme and a tremendous
investigation has been conducted [4], in which the corre-
sponding single-particle Green’s function has been studied
[63,64]. A phenomenological one has been also constructed
[65] in comparison with the ARPES experiments, which may
have some close connection with the slave-boson scheme as
pointed out in Ref. [64].

Alternatively, a new superconducting and pseudogap
ground state of the t-J model has been recently proposed
[58,66], which is distinct from the “plain vanilla” RVB state
[35] by having a two-component structure that can be continu-
ously connected to the AFLRO state at half-filling. In the zero-
doping limit, such a ground state can be naturally reduced
to that of the Heisenberg Hamiltonian, |RVB〉, which well
describes [67] the background AFLRO. The one-hole ground
state [57] is created by a twisted hole creation operator c̃ by
c̃|RVB〉, which reproduces the spectral weight of the doped
hole, spin currents, and novel quantum numbers, in excellent
comparison with the above-mentioned ED and DMRG results
[54]. Two of such holes can further form a strong pairing state∑

i, j gi j c̃i↑c̃i↓|RVB〉 as shown [68] in a two-leg ladder with a
spin gap, which also well reproduces the DMRG result [69].
At finite doping, these doped holes finally form a BCS-type

pairing state [58,66]

|�G〉 ∝ exp

⎛
⎝∑

i, j

gi j c̃i↑c̃ j↓

⎞
⎠|RVB〉 (1)

in the pseudogap phase, which becomes the true Cooper
pairing or SC state, with∑

i, j

gi j c̃i↑c̃i↓ →
∑
i, j

g′
i j ĉi↑ĉi↓

once the phase coherence is realized in g′
i j (see below), where

the background AFLRO in |RVB〉 is also self-consistently
reduced to a short-range AF-ordered state [58,66].

The key to such a two-component RVB state is a peculiar
fractionalization of the bare hole creation operator given by

ĉiσ = c̃iσ ei�̂i , (2)

where the phase factor ei�̂i is a many-body operator acting
on the neutral spin background |RVB〉, which determines the
spin-current pattern induced by the hole’s motion. Here, c̃iσ ≡
ĉiσ e−i�̂i depicts a new composite entity with a bare hole bound
to a vortex of neutral spin currents as have been carefully
analyzed in the one-hole case [57]. The twisted hole created
by c̃iσ can generally propagate coherently on |RVB〉 but ĉiσ

will get strongly frustrated by ei�̂i [57]. Correspondingly, the
ground-state wave function at finite doping has essentially the
same form in the SC and pseudogap phases in terms of c̃, but
the two phases are distinguished as distinct ones according to
the phase (in)coherence of the phase factor 〈ei�̂i〉 
= 0 (or = 0)
[58,66].

Therefore, the “phase fractionalization” in Eqs. (1) and (2)
is in sharp contrast to the usual spin-charge fractionalization
in the slave-boson scheme for the “plain vanilla” RVB state
[4]. One expects a drastic distinction in the predictions of
the single-particle Green’s function by these two different
ground states. So, the ARPES experiment can provide a direct
probe into the nature of the ground state via the particular
fractionalization effect of the quasiparticle excitation.

In this paper, we shall explore the quasiparticle excitation
in the SC and pseudogap ground states outlined above un-
der the fractionalization of Eq. (2). Here, at the mean-field
level, the composite holes described by c̃iσ will propagate
coherently and occupy the Fermi pockets commensurate with
doping, which further experience a BCS-type pairing insta-
bility as shown in Eq. (1) [66]. Since the RVB background
characterized by the short-ranged AF state |RVB〉 at finite
doping is also gapped, the only possible gapless excitation
in the present SC and pseudogap states will be the quasi-
particle excitation emerging within the gap as a collective
mode based on the fractionalization expression in Eq. (2).
Based on a random phase approximation (RPA) like scheme in
the fractionalized mean-field state, we construct a single-hole
propagator phenomenologically. The central characteristic of
this Green’s function is a minimal two-component structure
composed of the fractionalization component determined by
Eq. (2) and a conventional quasiparticle propagator as a bound
state of Eq. (2).

In the pseudogap phase without the phase coherence in ei�̂i ,
a single hole would generally behave incoherently according
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to Eq. (2). However, we find an emergence of partial large
Fermi-surface pieces (i.e., Fermi arcs) in the spectral function
at frequency ω = 0, along which a “sharp” quasiparticle peak
is still present. Each Fermi arc coincides roughly with the
inner portion of the large bare Fermi surface that is intercepted
by the Fermi pockets of the fractional fermions of c̃ at low
doping. Physically, it means that the bare hole is forbidden to
decay into the more coherent fermion c̃ because of the Pauli
exclusion principle inside the Fermi pocket of the latter that
are centered at the momenta (±π/2,±π/2). In other words,
the ending points of the Fermi arcs correspond to the starting
points of the electron fractionalization in terms of Eq. (2).
We also find that with the increase of doping, the pairing
gap of the c̃ fermions is also enhanced such that the large
bare-band Fermi surface near ω � 0 gets less truncated by the
high-energy hole pockets in the overdoping.

As a unique prediction, along the diagonal direction be-
tween (0,0) and (±π/2,±π/2), one finds a “kink” feature in
the quasiparticle dispersion moving away from the Fermi arcs
at the termination point of the quasiparticle beyond the circles
of the Fermi pockets. In particular, the theory predicts the mo-
mentum and energy scales of the kink position as a function
of doping dependence, together with the “Fermi” velocities on
the two sides of the dispersion, which are in remarkable agree-
ment with the experiment measurement (see below). Such a
feature remains unchanged in the SC phase as the d-wave
SC gap vanishes along the diagonal direction. However, the
Fermi arc will get gapped by the d-wave gap as the SC phase
coherence is realized by 〈ei�̂i〉 
= 0 [58,66]. Outside the Fermi
arc, a new Bogoliubov quasiparticle mode will also emerge
along the large Fermi surface in the antinodal regime, which
is correlated with the energy of the fractionalized fermion
c̃ to result in a peak-dip-hump EDC [15–21]. Thus, a new
“kink” or two-gap structure is exhibited in the SC phase along
the large Fermi surface with a dichotomy between the nodal
and antinodal regimes, where their doping-dependent two-gap
scales and the quasiparticle spectral weights show distinct
behaviors, which are also in excellent agreement with the
ARPES experiment.

Here, to systematically compare the theoretical spectral
function with the experiment, we will use the ARPES data
taken from a prototypical high-temperature superconduct-
ing cuprate Bi2Sr2CaCu2O8+x (Bi-2212) at different doping
levels continuously acquired by in situ ozone and vacuum
annealing on the same sample [32,70]. After removing the
uncontrollable influence of cleaving surface, the results are
highly comparable and precise enough to do the quantitative
analysis. The systematic in situ ARPES measurements show
a strong dichotomy between nodal and antinodal regions no
matter in quasiparticle excitation energy gap or quasipar-
ticle spectral weight, and their doping dependence, which
are self-consistently explained without fitting parameters by
the present theory. For superconducting energy gap, the gap
around node (within Fermi arc) follows with d-wave gap
symmetry and its slope matches well with the forming energy
scale of Cooper pairs determined by the Nernst effect or dia-
magnetism measurements [71–75], while the gap at antinode
gradually diverges from d-wave gap symmetry due to the
participation of pseudogap and increases linearly with dop-
ing decreasing. That indicates the preforming Cooper pairs

contributing to the pseudogap. For quasiparticle spectral
weight, it is almost constant and cuts down a little for ex-
tremely underdoped ones at the nodal regime while monotoni-
cally decreases as doping level decreasing at antinodal regime.
These behaviors suggest different physics are dominated in
nodal and antinodal regions. For nodal direction especially,
the band dispersion shows a “kink” at roughly 70 meV [27].
The interesting observation is that the band velocity before
and after this kink evolves such differently with doping [33].
The lower-energy dispersion before the kink has constant
velocity independent with doping, and unconventionally the
higher-energy dispersion after the kink has a dramatically
increasing velocity as doping decreases, even surpasses its
corresponding bare band velocity for the underdoped ones.
These counterintuitive observations show the hint of elec-
tronic fractionalization in the cuprate as indicated by the
theoretical description given in this work.

The rest of this paper is organized as follows. In Sec. II,
we highlight some basic background of the t-J model and
its nontrivial sign structure which is called the phase-string
effect [76–79]. Then, we briefly outline the phase-string-
induced fractionalization upon hole doping and the resulting
two-component RVB state, which has been obtained in the
previous approach [58,66]. In Sec. III, based on this peculiar
fractionalization and mean-field theory, we can construct a
single-hole propagator by an RPA-like procedure. Such a
single-particle Green’s function can be regarded as a general
phenomenological propagator of a single hole in the SC and
pseudogap phases of a doped Mott insulator. Then, in Sec. IV,
we show that in the (lower) pseudogap phase (without the SC
phase coherence), the spectral function exhibits a “Fermi-arc”
phenomenon as well as the “kink” in the dispersion along
the diagonal direction in the Brillouin zone. In particular,
we show that the doping dependence of the whole features
is systematically in agreement with the ARPES experiments
[32,70]. Furthermore, we show that another “kink” or two-gap
structure appears along the Fermi surface in the SC state,
which replaces the Fermi-arc phenomenon in the pseudogap
phase. The overall doping dependencies of the two gaps,
the corresponding quasiparticle spectral weights in the nodal
and antinodal regimes, respectively, as well as other spectral
features, also agree with the ARPES measurements [32,70]
very consistently. Finally, Sec. V is devoted to summary and
discussion.

II. BACKGROUND: THE MICROSCOPIC THEORY BASED
ON THE t-J MODEL

A. t-J model and the phase-string effect

The t-J Hamiltonian Ht-J = Ht + HJ , with

Ht = −t
∑

〈i, j〉,σ
c†

iσ c jσ + H.c.,

HJ = J
∑
〈i, j〉

(
Si · S j − 1

4
nin j

)
(3)

is defined on a 2D square lattice with the Hilbert space
restricted by no-double-occupancy constraint

ni � 1, (4)

023398-3



ZHANG, LI, MA, ZHONG, DING, AND WENG PHYSICAL REVIEW RESEARCH 2, 023398 (2020)

*

FIG. 1. Phase-string-induced fractionalization of the electrons in the t-J model. Left panel: The fractionalization of a doped hole. Right
panel: The corresponding phase diagram in which the fractionalized particles are characterized by the mean-field state in Eq. (6) [58,66]. An
exotic “Fermi arc” (the inset) in the pseudogap phase and the single-particle features in the superconducting state will be the main focus of this
work. Details in the left panel: A fractionalized hole is composed of a charged holon (red circle), a spinon (green arrow), and a nonlocal phase
shift (blue wavy line) with internal degree of freedom shown by the dashed circle with arrows; which are described by the Feynman diagram
in the bottom: the single-electron Green’s function G as a convolution of the fractionalized propagator D and the phase factor f . Right: The
fractionalized subsystems experience ODLROs to gain “partial” rigidity, where UPP and LPP denote the upper and lower pseudogap phases
[66], respectively, where the short-range RVB pairing is present, whereas the holons are further condensed in LPP. The true superconducting
(SC) phase coherence will be realized in LPP below Tc. AFLRO denotes the antiferromagnetic long-range-order phase at half-filling, which
may extend over a tiny but finite range of doping concentration beyond the mean-field theory (dashed line), and the spin-spin correlation length
is reduced with the increase of doping and eventually terminates at δ∗, leading to a strange metal high-temperature behavior and a Fermi-liquid
(FL) instability at low temperatures at δ > δ∗.

where the electron number operator ni =∑σ c†
iσ ciσ and Si is

the corresponding SU(2) spin operator.
The t-J model can be regarded as the Hubbard model

in the large-U limit. The Fermi statistical sign structure is
essential in determining the Landau Fermi-liquid state in
the Hubbard model with sufficiently weak onsite repulsive
potential U . But, in the large-U limit, the fermion signs will
get substantially suppressed near the half-filling due to the
no-double-occupancy constraint [cf. Eq. (4)]. In particular,
the fermion signs will be totally diminished at half-filling
and replaced by a much sparser sign structure away from
the half-filling, which is known as the phase string [76–81].
A continuous evolution from the fermion sign structure to
the phase-string sign structure with opening up the Mott gap
has been also rigorously formulated for an arbitrary U of the
Hubbard model [82].

The no-double-occupancy constraint (4) and the resulting
phase-string sign structure in the t-J model imply that the
model cannot be treated perturbatively in the electron repre-
sentation of Eq. (3). In fact, the phase-string sign structure can
be mapped onto the mutual-semion statistics [58,78] between
the doped holes and the spins in the background, which can
be accounted by a many-body nonlocal (generalized) Berry
phase associated with each hole path [79]. The conventional
slave-particle scheme [4] introduced to handle the constraint
(4) should be thus generalized to properly accommodate the
phase-string sign structure, which is to be outlined below as a
new fractionalization scheme [58] to describe such a strongly
correlated system.

B. Fractionalization

Due to the aforementioned phase-string sign structure, a
proper fractionalization of a bare hole created by the electron
c-operator is given by [58]

ĉiσ = h†
i a†

iσ̄ ei�̂i , (5)

where h†
i denotes a bosonic holon creation operator, and a†

iσ̄
the creation of a fermionic backflow spinon with the spin
σ̄ ≡ −σ associated with the doped hole, which in general is
distributed in the spin background around the hole (cf. the
left panel of Fig. 1). Equation (5) describes a bare hole as
a composite object with internal structure, especially the the
“phase fractionalization” of ei�̂i due to the phase-string sign
structure [58].

Corresponding to such a peculiar fractionalization, which
is schematically illustrated in the left panel of Fig. 1, a
new “mean-field” ground state has been obtained [58,66] as
follows (cf. the right panel of Fig. 1):

|�〉 = P̂ (|�h〉 ⊗ |�a〉 ⊗ |RVB〉) (6)

in which the holons are Bose condensed in |�h〉 and the a
spinons are in a BCS-type pairing state |�a〉, in addition to the
bosonic RVB state |RVB〉. Different from the one-component
spinon in the conventional slave-particle scheme [4], the
ground state (6) has a two-component spinon structure, which
is essentially required by the phase-string sign structure [58].
Note that P̂ denotes a projection operator to ensure the fol-
lowing constraints among different fractionalized species: The
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holon and backflow a spinon satisfy the constraint
∑

σ na
iσ =

nh
i with na

iσ = a†
iσ aiσ and nh

i = h†
i hi. Furthermore, at each hole

site, the spin Sa
i carried by the a spinon and the spin Sb

i by the b
spinon must compensate each other, i.e., Sa

i + Sb
i = 0 [58,66].

The key characterization of Eq. (5) is the phase factor ei�̂i ,
which is defined by

�̂i ≡ 1

2

(
�s

i − �0
i

)
,

�s
i =

∑
l 
=i

θi(l )
(
nb

l↑ − nb
l↓
)
,

�0
i =

∑
l 
=i

θi(l ), (7)

where nb
lσ = b†

lσ blσ and θi(l ) ≡ ±Im ln(zi − zl ) [with zi (zl )
as the 2D complex coordinate of the site i (the site l)]. Here,
nb

lσ will act on a spin background described by the Schwinger
bosons, created by b†

lσ , which form a half-filling RVB state
denoted by |RVB〉 [58]. �s

i in Eq. (7) then represents the
vortices (antivortices) attached to the b spinons, which should
be mostly compensated with each other due to the RVB
pairing of the b spinons in |RVB〉, except for an unpaired
spinon associated with hole (illustrated in the left upper panel
of Fig. 1), after its RVB partner is removed at the hole site
by a†

iσ̄ .
Such a ground state in the single-hole limit has been

recently shown to agree with the DMRG results very well
by VMC method [57], where the phase-string factor ei�̂i

reproduces the persisting circling spin current around the hole
by its spin partner with the correct total angular momentum
Lz = ±1 as illustrated in the left panel of Fig. 1.

At finite doping, with capturing the singular sign structure
of the t-J model via the many-body phase factor in Eq. (7),
the fractionalized particles of the holon and a spinon, together
with the b spinon in the spin background, will all behave much
more smoothly to be well described by a mean-field theory.
As a matter of fact, three subsystems are all in off-diagonal
long-range-order (ODLRO) states in the lower pseudogap
phase (LPP) and superconducting (SC) phase. Based on the
mean-field calculation in Ref. [66], a general phase diagram
including the antiferromagnetic long-range order (AFLRO)
state (at half-filling), SC phase, LPP, upper pseudogap phase
(UPP), strange metal, and a possible low-temperature Fermi
liquid (in the overdoped regime), characterized by the hidden
ODLROs mentioned above with transition temperatures Tc,
Tv , and T0, etc., has been determined, which is summarized
in the right panel of Fig. 1.

It is noted that even though the ground-state equation (6)
has the same hidden ODLROs (the holon condensation 〈h†

i 〉 
=
0 and 
0

i j ∝ 
a
i j 
= 0 [58,66]) in both the LPP and SC phases,

the SC phase is distinguished from the LPP in Fig. 1 by having
an additional true ODLRO, i.e., the d-wave superconducting
order parameter [66]:


SC
i j = 
0

i j

〈
e

i
2 (�s

i +�s
j )
〉

(8)

with 〈e i
2 (�s

i +�s
j )〉 
= 0 (which also decides the d-wave symme-

try of the pairing [66]). The superconducting phase transition
at Tc [83] is thus determined [84] by the disassociation of

vortex-antivortex binding as driven by the thermal b-spinon
excitations in |RVB〉.

The main goal of this work will be to examine the unique
predictions of the phase-string-induced electron fractionaliza-
tion in Eqs. (5) and (6) that can be probed by the ARPES
experiment in the LPP and SC phases. For this purpose,
we shall use the same parameters in determining the phase
diagram in Fig. 1 as given in Ref. [66] and further outline the
underlying mean-field equations for the ground state (6) in
Appendix A for the sake of being self-contained. More details
can be found in Refs. [58,66].

III. SINGLE-PARTICLE GREEN’S FUNCTION

A. Electron fractionalization and the single-hole
propagator at the mean-field level

The fractionalization of the doped hole in Eq. (5) and the
ground state in Eq. (6) constitute the essential microscopic de-
scription for the superconducting and lower pseudogap phases
[58,66]. Such a fractionalized ground state is composed of
three hidden ODLROs in both the LPP and SC phases, i.e.,
the holons are always Bose condensed, the a spinons are in
BCS-type pairing, and the b spinons form short-range bosonic
RVB pairing. In view of the holon condensation in the LPP
and SC states, one may further introduce

c̃iσ ≡ h†
i a†

iσ̄ (9)

to denote a twisted hole as a combination of the holon and
backflow spinon such that the fractionalization in Eq. (5) is
reexpressed as in Eq. (2) and the ground state is rewritten
compactly as in Eq. (1)..

Such a twisted hole, created by c̃iσ , will propagate coher-
ently in the LPP and SC phases. Denoting its propagator as
D̂(i, j; τ ) between sites i and j and imaginary time τ . Its
leading term (mean-field) D̂0(i, j; τ ) is then given by

D̂0(i, j; τ ) = Dh
0D̂a

0(i, j; τ ), (10)

where the condensed holon propagator Dh
0 ∼ δ and D̂a

0 depicts
the propagator of the a spinons, which are in the s-wave BCS-
type state with a 2 × 2 Nambu-Gor’kov propagator given
by [66]

D̂a
0(k, ω) =

(
Ga

↑↑(k, ω) F a(k, ω)

F a(k, ω) −Ga
↓↓(−k,−ω)

)
. (11)

Here, Ga(k, ω)/F a(k, ω) are the normal and anomalous com-
ponents of the standard BCS-type Green’s function:

Ga
↑↑(k, ω) = u2

k

ω − εa
k1

+ v2
k

ω + εa
k1

= Ga
↓↓(k, ω),

F a(k, ω) = ukvk

(
1

ω − εa
k1

− 1

ω + εa
k1

)
(12)

with the coefficients determined by the mean-field theory [66]
[cf. Eq. (A2) in Appendix A]

u2
k = 1

2

(
1 + ξ a

k1

εa
k1

)
,

v2
k = 1

2

(
1 − ξ a

k1

εa
k1

)
, (13)
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where ξ a
k1 = −2t̃a

√
cos2(kxa0) + cos2(kya0) + λa, t̃a = ta +

γχa is the energy spectrum for the a-spinon gas before
pairing, and εa

k1 = √(ξ a
k1)2 + (
a

k )2 is the Bogoliubov energy
spectrum with a gap 
a

k = 2γ
a
√

cos2(kxa0) + cos2(kya0),
which shows a k dependence in the presence of the π flux
in Ha (Appendix A) even though the pairing order parameter

a is s wavelike [66].

Then, according to Eq. (2), the single-hole Green’s func-
tion can be expressed by

[Ĝ(i, j; τ )]11 = [D̂0(i, j; τ )]11〈ei[�̂i (τ )−�̂ j (0)]〉
= [D̂0(i, j; τ )]11 f (i, j; τ ), (14)

[Ĝ(i, j; τ )]12 = [D̂0(i, j; τ )]12〈ei[�̂i (τ )+�̂ j (0)]〉
� [D̂0(i, j; τ )]12〈e2i�̂ j (0)〉 f (i, j; τ ), (15)

where

f (i, j; τ ) ≡ 〈ei[�̂i (τ )−�̂ j (0)]〉. (16)

Note that in the anomalous term [Ĝ]12, 〈e2i[�̂ j (0)]〉 
= 0 in the
SC state and vanishes in the LPP. It is consistent with the
phase coherence of the phase factor ei�̂i controlling the SC
order parameter in Eq. (8).

It is interesting to examine the phase structure of ei�̂i which
renormalizes the single-particle propagator via f (i, j; τ ) in
Eq. (16). One may rewrite Eq. (16) in terms of Eq. (7) as
follows:

f (i, j; τ ) =
〈
exp

{
− i

2

[
�s

i (τ ) − �s
j (0)
]}〉

× exp

{
i

2

(
�0

i − �0
j

)}
, (17)

by which one may further express

exp

{
i

2

(
�0

i − �0
j

)}

= exp

{
i

2

(
�0

i − �0
i1 + �0

i1 − �0
i2 + · · · + �0

in − �0
j

)}
= exp

{
i
(
φ0

ii1 + φ0
i1i2 + · · · + φ0

in j

)}
×
∏
i→ j

exp

{
i

2
[θis (is+1) − θis+1 (is)]

}
, (18)

in which one inserts a sequences of the nearest-neighboring
links connecting i and j: i1, i2,..., in. By noting∏

i→ j

exp

{
i

2
[θis (is+1) − θis+1 (is)]

}
= (e±i π

2
)i− j

(19)

with using θis (is+1) − θis+1 (is) = ±π , one finally arrives at

f (i, j; τ ) = eik0·(ri−r j ) f0(i, j; τ ) (20)

with

f0(i, j; τ ) ≡
〈
exp

{
− i

2

[
�s

i (τ ) − �s
j (0)
]}〉

(21)

and

k0 ≡
(
±π

2
,±π

2

)
. (22)

Note that in obtaining Eq. (20), there is an additional phase
factor exp {i∑i→ j φ

0
isis+1

}, which should be combined with D̂0
a

to make it gauge invariant [noting that the a spinon sees φ0
isis+1

in the Hamiltonian Ha, Eq. (A2)]. By taking a special gauge
of the π flux, exp {i∑i→ j φ

0
isis+1

} = (−1)iy− jy or (−1)ix− jx ,
which can be simply absorbed into the oscillating phase
factor eik0·(ri−r j ) to connect the four finite momenta given in
Eq. (22).

Finally, the single-hole propagator may be approximately
reduced to the form

Ĝ(k, ω) �
∑

q

f0(q)D̂0(k − k0 − q, ω − q0) (23)

with q = (q, q0). In particular, in the weak phase fluctuation
case, like in the SC phase, f0(q) is sharply peaked at q = 0,
where the spectral function corresponding to Eq. (23) will
exhibit four Fermi pockets as shown in Fig. 2(a). Note that
the leading phase factor of k0 in Eq. (20) will shift the Fermi
pockets of the a spinon centered at momentum (0,0) and
(±π, 0) or (0, ±π ) (depending on the gauge choice of φ0

isis+1
)

[66] to four a-spinon Fermi pockets (each with a Luttinger
volume of δ/4) centered at the momenta k0 given in Eq. (22).
Figure 2(b) further indicates a gap opened up in each of the
Fermi pockets as the a spinons are in the s-wave BCS pairing
[66] (cf. Appendix A).

Therefore, an injected hole created by ARPES will in
general be fractionalized according to the scheme of Eq. (5).
To the leading order of approximation, the single-particle
propagator is described in Eq. (23) by four s-wave gapped
Fermi pockets locating at k0 along the magnetic Brillouin
zone boundary. There is no trace of a large Fermi surface of
the electrons at this level. However, in the following, we shall
go beyond the mean-field level to show that the twisted hole
propagator D̂ will have a Landau quasiparticle or Bogoliubov
quasiparticle excitation emerging within the gap as an RPA-
like correction, which will then substitute D̂0 in Eq. (23) to
get the full single-particle Green’s function in the LPP and SC
phases.

B. Quasiparticle as an emergent mode

Note that in the ground state (6) or (1), there is no trace
of the electrons, which are all fractionalized according to
Eqs. (5) or (2). Hence, if a gapless quasiparicle excitation
exists, it must be considered as an emergent “collective” mode
as a bound state of the fractionalized particles. Physically,
the residual interaction in the t-J model beyond the mean-
field theory should provide the intrinsic binding force to
realize such a “collective” excitation, if it exits. In the earlier
slave-boson fractionalization scheme, such a quasiparticle as a
bound state has been studied by adding an attractive potential
artificially [64].

Alternatively, an equation-of-motion approach has been
proposed in the phase string formulation of the t-J model, in
which a quasiparticle as a stable entity over a finite-time scale,
before its decay into fractional particles in a long time, can
be described beyond the mean-field theory without adding an
artificial attractive potential. Namely, if a bare hole is created
in the ground state (6) by ĉiσ , it will evolve with the time as
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FIG. 2. The spectral function of the single-hole propagator at the mean-field level as given in Eq. (23), in which the hole is totally
fractionalized according to Eq. (5). (a) Four Fermi pockets are centered at k0 = (±π/2,±π/2). (b) An s-wave pairing for the a spinons
leads to a gap opening for each Fermi pocket at finite doping (cf. Appendix A). Inset: the momentum scan is shown in the Brillouin zone with
� = (0, 0) and Y = (π, π ). Note that the phase fluctuation is neglected here by taking f0(q) sharply peaked at q = 0 in Eq. (23).

follows [58,66]:

−i∂t ĉiσ |�G〉 = [Ht-J , ĉiσ ]|�G〉

=
⎡
⎣teff

∑
j=NN (i)

ĉ jσ + μciσ − J
∑

j=NN (i)


SC
i j σ ĉ†

jσ̄

⎤
⎦|�G〉

+ scattering term + decay term, (24)

which shows that the bare hole will first coherently propagate
in a (Bogoliubov) single-particle fashion with the SC order
parameter 
SC

i j before its decay into fractionalized particles. In
fact, previously this propagation of the hole has been treated
as a renormalized mean-field solution based on the t-J model
as follows.

Here, without considering the scattering and decay pro-
cesses, the bare-hole does follow a renormalized band-
structure quasiparticle behavior in Eq. (24), which is de-
scribed by Ĝ0 in a form of the standard Nambu-Gor’kov
Green’s function of a d-wave BCS pairing state as [66]

Ĝ0(k, ω) =
(

G0
↑↑(k, ω) F c

0 (k, ω)

F c
0 (k, ω) −G0

↓↓(−k,−ω)

)
, (25)

where

G0
σσ (k, ω) = u2

k

ω − Ek
+ v2

k

ω + Ek
σ =↑,↓,

F0(k, ω) = ukvk

(
1

ω − Ek
− 1

ω + Ek

)
(26)

with the parameters given by

u2
k = 1

2

(
1 + ε0

k

Ek

)
v2

k = 1

2

(
1 − ε0

k

Ek

), Ek =
√(

ε0
k

)2 + [
SC(k)2]. (27)

Here, the d-wave gap function takes the simplest form [66]


SC(k) = Jeff

a[cos(kxa0) − cos(kya0)], (28)

where cos(kxa0) − cos(kya0) is the d-wave factor for the
nearest-neighbor pairing. In particular, in the band dispersion

ε0
k = − 2teff [cos(kxa0) + cos(kya0)]

− 4t ′ cos(kxa0) cos(kya0) + μ, (29)

the second-nearest hopping t ′ = −0.3teff has been added to
the t-J model in order to compare with the ARPES experi-
ment.

Note that the scattering term in Eq. (24) is given by [58,66]

scattering term =
∑

j=NN (i)

[
t
(
c jσ σSbz

i + c j−σ Sb−σ
i

)

− J

2

(
ciσ σSbz

j + ci−σ Sb−σ
j

)]|�G〉 (30)

which shall be omitted for simplicity since it involves the
scattering between the quasiparticle and the background spin
AF excitations in terms of the b spinons which are all gapped
[58,66]. Its contribution to the higher-energy quasiparticle
excitation can be further considered in a future study [its
contribution to the SC pairing has been already incorporated
into the coherent term in Eq. (24)].

However, the decay term [58] in Eq. (24) indicates that
the doped hole will be eventually fractionalized, due to the
strong scattering of the doped hole with the background under
the no-double-occupancy constraint that cannot be properly
described by conventional self-energy of a bare hole (elec-
tron) interacting with a bosonic mode. Instead, its leading
term is represented by fractionalizing into c̃ jσ , c̃†

jσ̄ , and

ei�̂i of the form (the detailed derivations are summarized in
Appendix C) [58,66]

decay term ∝
⎛
⎝ ∑

j=NN (i)

c̃ jσ ei�̂i +
∑

j=NN (i)

c̃†
jσ ei�̂i + · · ·

⎞
⎠|�G〉

(31)
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FIG. 3. The schematic Feynman diagram of an “RPA”-like pro-
cedure for the twisted-hole Green’s function D given in Eq. (32),
and the resulting compact form in Eq. (33) characterizes the frac-
tionalization by a two-component structure composed of the leading
fractionalized propagator D0 and the recombined bare-hole propaga-
tor G0 modulated by the phase-string phase factor f with a vertex
coupling constant λ.

which will then evolve independently according to the mean-
field Hamiltonians in Appendix A. Here, the overall amplitude
of the decay term in Eq. (31) can be estimated |λ| ∼ δJ
[58,66]. As an inverse process of this decay, the twisted hole
c̃ and the phase factor ei�̂ can also be recombined into a
quasiparticle as given in Eq. (2) with the same amplitude
∼λ. In the following, we shall incorporate such a reemerging
quasiparticle component into the bare (mean-field) propagator
of c̃, perturbatively, in terms of the small coupling strength λ.

C. Single-hole Green’s function: Two-component structure

In Sec. III A, we have discussed that the quasiparticle is
totally fractionalized to a twisted hole c̃ according to Eq. (2),
which is described by the propagator D̂0 in Eq. (10) at the
mean-field level. Then, in Sec. III B, we have shown that the
quasiparticle may still recover its partial coherent motion over
some finite scales of length and time according to Eq. (24)
beyond the mean-field fractionalization. It implies that the
twisted hole may also “decay” back into a quasiparticle, i.e.,
c̃iσ → ĉiσ e−i�̂i as a higher-order process beyond the mean-
field approximation.

Now, we treat the mean field D̂0 as the leading term and
consider the RPA-like correction to the propagator of the c̃
beyond D̂0. At an RPA level involving the decay and recom-
bination process [cf. Eq. (31)] as a perturbation expansion in
terms of λ, the full propagator of the twisted quasiparticle, il-
lustrated by the Feynman diagram in Fig. 3, may be expressed
by the following Dyson equation:

D̂(i, j; τ ) = D̂0(i, j; τ ) +
∫∫

dτ ′dτ ′′∑
j′, j′′

× D̂0(i, j′; τ ′)|λ|2G̃0( j′, j′′; τ ′′ − τ ′)

× D̂0( j′′, j; τ − τ ′′) + · · · (32)

or in the momentum-frequency space

D̂(k, ω) = D̂0(k, ω) + D̂0(k, ω)|λ|2G̃0(k, ω)D̂0(k, ω) + · · ·

= 1

D̂−1
0 (k, ω) − |λ|2G̃0(k, ω)

, (33)

where the momentum dependence of the coupling strength λ

has been omitted for simplicity.

Here in Eq. (33), G̃0(k, ω) is the Fourier transformation of
the following convolution of the propagators of the quasipar-
ticle Ĝ0 in Eq. (25) and the phase factor e−i�̂i , e.g.,

[G̃0(i, j; τ )]11 = G0
↑↑(i, j; τ ) f ∗(i, j; τ ), (34)

[G̃0(i, j; τ )]12 � F c
0 (i, j; τ )〈e2i�̂ j (0)〉 f ∗(i, j; τ ). (35)

By noting 〈e2i�̂ j (0)〉 
= 0 in the SC state and = 0 in the LPP,
one may further rewrite

[G̃0(k, ω)]11(2) =
∑

q

f0(q)[Ĝ0(k + k0 + q, ω + q0)]11(2)

(36)
by using Eq. (20), with Ĝ0(k, ω) given in Eq. (25) in which
the anomalous term F c

0 renormalized by 〈e2i�̂ j (0)〉.
Then, with the twisted hole propagator D̂ obtained in

Eq. (33) to replace D̂0 in Eq. (23), the full single-particle
Green’s function is now given by

Ĝ(k, ω) =
∑

q

f0(q)[D̂(k − k0 − q, ω − q0)]. (37)

Based on Eq. (37), the spectral function A(k, ω) can be
determined, which is directly connected to the ARPES mea-
surement as to be discussed in the next section.

Finally, one may further simplify the full single-hole prop-
agator to the following compact form:

Ĝ(k, ω) = 1

D̂−1
0 (k, ω) − |λ|2Ĝ0(k, ω)

(38)

by noting that in the SC phase, due to the phase coherence of
〈ei�̂i〉 
= 0, the leading f0(q) may be taken as a δ function with
q peaked at q = 0, such that

G̃0(k, ω) � F0Ĝ0(k + k0, ω), (39)

where F0 =∑q f0(q) and D̂0(k, ω) = F−1
0 D̂−1

0 (k − k0, ω).
In the LPP, if one assumes that the characteristic scale of
f0(i, j; τ ) is still much larger than the bare-hole propagator
Ĝ0 as the decay is weak, the similar expression still holds.
With the increase of the fluctuation in f0, to the leading
order, one may modify the high-energy component D̂0 in
Eq. (38) by

D̂0(k, ω) ≡
∑

q

f0(q)D̂0(k − k0 − q, ω − q0). (40)

Therefore, Eq. (38) is explicitly composed of two com-
ponents. One is the fractionalized Green’s function D̂0(k, ω)
given in Eq. (40), which essentially describes four Fermi
pockets centered at k0 that are gapped by an s-wave pairing
gap in the LPP and SC phase and modulated by the phase
fluctuation via f0. The other is the bare quasiparticle Ĝ0 with
a large Fermi surface, which is incorporated in Eq. (38) in an
RPA fashion. The interplay between these two components
will determine the general structure of the spectral function
A(k, ω) as to be shown in the next section. Thus, the ARPES
experiment can provide a direct probe into the composite
structure of strongly correlated electrons which lies in the
basic mathematical description of a doped Mott insulator
system.
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FIG. 4. A systematic evolution of the Fermi arcs at various doping concentrations in the LPP. The Fermi arcs will gradually evolve into a
full Fermi surface in the overdoped regime, while they collapse and jump to four points at (±π/2,±π/2) in the half-filling limit (see the text).

IV. SPECTRAL FUNCTION: EXPERIMENTAL
CONSEQUENCES

One may determine the quasiparticle spectral function by

A(k, ω) = − 1

π
Im([Ĝ(k, ω + i0+)]11). (41)

Here, the Green’s function Ĝ has a two-component structure
in Eq. (38), with the fractionalization component D̂0 ∼ D̂0

and the quasiparticle component Ĝ0. We have seen that D̂0

describes four Fermi pockets with an s-wave pairing as illus-
trated in Figs. 2(a) and 2(b). By contrast, Ĝ0 describes the Bo-
goliubov quasiparticle of the d-wave pairing 
SC with a large
Fermi surface determined by the band structure satisfying the
Luttinger volume of the total electrons. In the following, we
first examine the basic features of A(k, ω) in the LPP.

A. Emergent Fermi arc due to fractionalization in the LPP

In the LPP, the SC order parameter 
SC = 0 such that a
full large Fermi surface is expected to recover in Im(Ĝ0) at
ω = 0. A(k, ω) at ω = 0 can be directly calculated at different
doping concentrations as presented in Fig. 4, where a “Fermi-
arc” structure naturally appears in the underdoped LPP.

Here, the segments of the Fermi surface, i.e., the Fermi
arcs, in Fig. 4 at ω � 0 are protected by the s-wave gapped
Fermi pockets of the fractionalized D̂0 whose spectral func-
tion is gapped. In Fig. 5(a), a two-component structure in
A(k, ω) has been shown by projecting onto the k space,
where the Fermi pockets from D̂0 at ω ∼ 50 meV are much
broadened as composed to Fig. 2 for D̂0 by introducing
a phenomenological f0 discussed in Appendix B. (But the
broadening essentially has no affect on the Fermi arcs at

ω = 0, which is within the gap.) Here, the momentum is
scanned along the bare large Fermi surface in the first quarter
of the Brillouin zone at δ = 0.1 [cf. the inset of Fig. 5(b)].
Energetically there is always an s-wave pairing gap opening
up in the Fermi pocket of D̂0 in the upper branch of the
spectral function, while a gapless lower branch emerges along
the large Fermi surface of Ĝ0 in the LPP [cf. Fig. 5(c) for the
relative strengths in a three-dimensional (3D) plot].

In Fig. 6, the Fermi pocket and the large bare Fermi surface
of D̂0 are presented at three typical dopings in the one quarter
of the first Brillouin zone. It illustrates that the large Fermi
surface gets truncated by the Fermi pocket to result in the
Fermi arc at small doping [cf. Figs. 6(a) and 6(b)] with the
arc termination point marked by kink II in Fig. 6(b). On
the other hand, in an overdoped case where the BCS-type
pairing 
a is sufficiently large (cf. Appendix A), the Fermi
arc can well extend outside the Fermi pocket as indicated in
Fig. 6(c) at δ = 0.24. Note that the minimal energy at a finite

a (yellow dotted circle) becomes increasingly larger than the
Fermi pocket at 
a = 0 (indigo dotted circle) as shown in
Fig. 6(c), while they approximately coincide at smaller doping
[not shown in Figs. 6(a) and 6(b)].

Physically, to leading order of approximation, a quasipar-
ticle should generally decay into an a spinon according to
Eq. (5) as described by D̂0. However, the Fermi pockets of the
a spinon in the ground state (6) will protect the quasiparticle
from decaying inside the pockets due to the Pauli exclusion
principle. In other words, the missing portions of the large
Fermi surface in the ARPES experiment observed in the
pseudogap phase of the cuprate can be naturally explained by
the electron fractionalization outside the Fermi-arc segments,
while the Fermi arc itself may be regarded as the emergent
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FIG. 5. Two-component structure of the full spectral function A(k, ω) in the LPP is shown in (a): the k-space projection indicates both
Fermi arcs and Fermi pockets, which are at ω = 0 and ω = 50 meV, respectively. The ω dependence of the spectral function around one
Fermi pocket is shown in (b), where the higher-ω branch corresponds to the contribution mainly from D̂0, while the lower branch at ω ∼ 0
is from Ĝ0. Here, k scans along the bare large Fermi surface denoted by the green dashed curve in the inset, specified by an angle θ . (c) A
three-dimensional illustration of A(k, ω) in (b) to indicate the corresponding relative magnitudes of the two-component structure.

quasiparticle protected at ω = 0, which is roughly within the
a-spinon pockets at low doping as shown in Fig. 6. With the
increase of doping, the enlarged 
a means that the gapped
a-spinon pocket is pushed further away from ω = 0 to weaken
the fractionalization effect of the quasiparticle to decay into
the a spinon.

In recent investigations of cuprates, several works indi-
cated that the “Fermi arc” might be a new state of matter
[85,86]. The authors applied Hubbard-Stratonovich transfor-
mation to Hubbard model and replaced the action of auxiliary
field by nonlinear sigma model. By rotating reference frame,
they get a SU(2) gauge theory in which the spin freedom is
described by a semiclasscial nonlinear sigma model and the
chargon is described by a renormalized free-fermion couple
to a Higgs field. The condensation of Higgs field indicates
there may be a topological order in this system. The authors
used the Green’s function of chargons and spinons to construct

the Green’s function of the excitation of quasiparticles and
give an explanation of Fermi arc and Lifshitz transition which
can match to the numerical results of dynamical cluster ap-
proximation (DCA) and determinant quantum Monte Carlo
(DQMC). Nevertheless, for Hubbard model with large U ,
the strong fluctuation of spin system will lead to no dou-
ble occupied the charge may not be described by the sim-
ple renormalized free-fermion couple to a condensed Higgs
field.

B. Nodal-direction kink due to fractionalization

As shown by Fig. 6(b), the quasiparticle excitation can still
maintain its coherence within the Fermi pocket (or an a pocket
as it is formed by the a spinons). This is not only true along
the large Fermi surface (Fermi arc), but also valid along a
nodal direction that connects, say, � = (0, 0) and Y = (π, π )

FIG. 6. Fermi arc as represented by a sharp peak in A(k, ω = 0) (bright yellow) in the LPP. Here, the coherent quasiparticle emerges in Ĝ,
which coincides with the large Fermi surface of Ĝ0 but gets truncated roughly by the minimal energy contour [yellow dotted circle centered at
k0 = (π/2, π/2)] of the a spinon at smaller doping (the inner dotted indigo circle at δ = 0.24 marks the corresponding Fermi pocket position,
which becomes indistinguishable from the s-wave gap position at low doping). Such an ending point of the Fermi arc is marked by “kink II”
in (b). Along the diagonal direction, there are other points intercepting the a pocket, one is marked by “kink I” [violet bullet in (b)] toward the
inside of the electron Fermi sea, while the other [green bullet in (b)] represents a high-energy ending point of the quasiparticle. The a pocket
provides a “protection” of the Fermi arc at low doping by the Pauli exclusion principle (see the text), whose effect is gradually diminished with
the increase of 
a in the overdoping.
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FIG. 7. (a) A typical “kink” in the dispersion of the quasiparticle peak in A(k, ω) along the nodal direction (kx = ky) [cf. the inset of (b)].
Its systematic evolution versus doping concentration is shown in (b). (c) 
kkink measuring the distance between the “kink I” and the Fermi
point along the nodal direction [cf. Fig. 6(b)]: theory (red) vs experiment [33] (blue) as a function of doping δ. (d) The Fermi velocities vhigh

and vlow of high-energy (blue dot) and low-energy (red dot) modes [as marked in (a)] vs doping. Inset: the experimental data [33]. (e) Ekink vs
doping. Inset: the experiment [33].

in Fig. 6. Note that along this direction, the spectral function
remains essentially the same for both LPP and SC phases as
the d-wave SC gap vanishes.

The spectral function indicates a dispersion of the quasipar-
ticle excitation with a velocity vlow along the nodal direction
inside the a pocket, and then a “kink” with much reduced
spectral weight and larger velocity vhigh outside the a pocket
[marked by kink I in Fig. 6(b)], as shown in Fig. 7(a). A
systematic evolution of the kink energy Ekink with doping
concentration is shown in Fig. 7(b).

Some more detailed features with the experimental com-
parisons are given in Figs. 7(c)–7(e):

(1) According to the definition in Fig. 6(b), 
kkink mea-
sures the distance between the Fermi arc and the kink I along
the nodal direction. It increases monotonically with doping
[red curve in Fig. 7(c)] in an excellent agreement with the
ARPES data [33] (blue curve).

(2) The Fermi velocities vlow and vhigh of the low- and
high-energy modes as functions of doping are shown in the
main panel of Fig. 7(d), while the experimental ARPES
data [33] are presented in the inset for comparison. Similar
behavior has been also previously observed in the ARPES
experiment of Ref. [30].

(3) A systematic doping dependence of Ekink is shown in
the main panel of Fig. 7(e), while the experimental data [33]
are plotted in the inset.

One finds a very consistent and overall quantitative agree-
ment between the theory and experiment. We emphasize that
no fitting has been made since the calculation of the spectral
function is based on the previous mean-field solution [66].
One may interpret the excellent agreement as due to the fact
that the main features are all determined by the Fermi packet
size of the a spinon, which is solely determined by doping
concentration δ.

In the limit of δ → 0, the Fermi pockets will shrink into
four momenta at k0 = (±π/2,±π/2). A variational Monte
Carlo calculation of the ground-state wave function based
on the same fractionalization given in Eqs. (5) and (6) has
shown that the quasiparticle excitation only exists at k0 with
a vanishing quasiparticle spectral weight Zk0 by a finite-size
scaling, while the rest of the momentum distribution is indeed
contributed by the fractionalized particle c̃iσ = ĉiσ e−i�̂i =
h†

i a†
iσ̄ in the single-hole ground state, which are in excellent

agreement with the numerical DMRG results.
Prediction: A hidden high-energy mode. Apart from the

high-energy fractionalized mode contributing to the “kink”
phenomenon around the kink I along the nodal direction,
another “kink” point is also predicted at the a pocket closer
to the Y point along the �-Y line, which is marked by the
green dot in Fig. 6(b). Such an additional high-energy mode
is shown in Fig. 8 (indicated by a short yellow arrow) for
various doping concentrations, which is increasingly strong
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FIG. 8. A systematic evolution of the spectral function along the nodal direction (kx = ky) with the whole range of momenta. Apart from
the kink-I phenomenon indicated in Fig. 7, an additional hidden high-energy mode is shown as marked by yellow arrows. As illustrated in
Fig. 6(b), such a mode corresponds to the fractionalization on the other side of the a pocket along the nodal direction.

with reducing doping, and remains to be observed experi-
mentally by ARPES as a unique prediction of the present
fractionalization theory. In fact, in the same underdoped
regime there have been already the observation of the so-
called “shadow bands” [87–91] in ARPES investigations of
cuprates along (0, 0) − (π, π ) direction. These experiments
show that, first, the “shadow bands” are quite incoherent with
very broad dispersion, and the intensity is much lower than the
“main band” [“kink” dispersion (see Fig. 7), including both
lower- and higher-energy modes]. Second, the “main band”
and “shadow band” are symmetric in momentum space, with
similar dispersion and Fermi velocity. These two characters
of “shadow bands” are quiet similar with the hidden high-
energy mode we have predicted in this work (see Fig. 8). The
physical connection between the observed “shadow bands”
and the hidden high-energy mode we have predicted is a very
interesting issue for further explanation.

C. Superconducting phase: A two-gap and new “kink” structure

The SC phase is characterized by a simple d-wave order
parameter 
SC 
= 0 given in Eq. (28), which will enter the full
Green’s function Ĝ in Eq. (14) through the bare hole Green’s
function Ĝ0 in Eq. (25).

One can read off the low-energy sharp peak in the spectral
function A(k, ω) with k scanning across the bare large Fermi
surface at each scanning angle shown in the inset of Fig. 5.
In contrast to a novel Fermi arc feature at ω = 0 in the LPP,
a gap feature will thus emerge in the SC phase associated
with the Bogoliubov quasiparticle. By substituting Eq. (28)
obtained by the mean-field theory, the resulting gap structure
is presented in Fig. 9 at different doping concentrations.
Instead of a single d-wave gap appearing in Ĝ0, such a gap
structure as measured by A(k, ω) along the Fermi surface is
found to generally break into two-gap structure with a new
kink feature marked by an arrow in each panel of Fig. 9.

In the following, we examine in detail how such a Bo-
goliubov quasiparticle emerges inside and outside the gap
and pocket of the a spinon spectrum in Figs. 5 and 6(b). As
indicated by the arrow in Fig. 9, the “kink” (the ending point
of the low-lying nodal excitation) coincides with the ending
position of the Fermi arc in the LPP, which at smaller doping
is marked by kink II in Fig. 6. Hence, the a pockets in the

momentum space still play an essential role for the observable
kink effect on the Bogoliubov quasiparticle spectrum.

The two-gap structure in Fig. 9 is characterized by 
0 and

AN in front of the d-wave factor 0.5| cos(kxa0) − cos(kya0)|,
which are determined by extrapolating to the Brillouin zone
boundary. Such a kink or two-gap structure in the Bogoliubov
quasiparticle spectrum separates the large Fermi surface into
two parts, the nodal and antinodal regimes, as schematically
summarized in Fig. 10(a). The systematic doping dependen-
cies of 
AN and 
0 (which are labeled in each panel of the
Fig. 9) are shown in Fig. 10(b), which are in overall agreement
with the experiment. Note that the distinction between 
0

and 
AN decreases monotonically with the increase of doping
concentration, which eventually disappears together with the
“kink” feature in the overdoped regime [cf. also Fig. 9].

The corresponding peak weights in A(k, ω) are denoted
by ZN and ZAN, respectively, at two representative points
marked in Fig. 10(a) in the two-gap regimes. In Fig. 10(c),
the extracted values of the quasiparticle weight of the nodal
excitation ZN and the quasiparticle weight of the antinodal ex-
citation ZAN are presented, in comparison with the experimen-
tal data. ZN varies placidly with respect to the increasing of
doping concentration, while ZAN increases monotonically and
more drastically. Both are in quantitative agreement with the
experiment. Furthermore, a recent ARPES experiment reports
an abrupt sharpening of quasiparticle peak near the Lifshitz
transition point δ∗ [92]. We claim that this quasiparticle peak
sharpening strongly supports that there is a first-order phase
transition at δ∗ and it can be naturally understood in our
theory as in the pseudogap phase (δ < δ∗) that the spectral
function is composed of two components: quasiparticlelike
and an incoherent background due to fractionalization, and
it is reflected in the following discussions about energy dis-
tribution curves (EDCs, see Fig. 11). On the other hand, for
δ > δ∗, the quasiparticle spectrum is expected to fully recover
along the full Fermi surface with the diminishing pseudogap
component. This observation points out a very interesting
direction for further investigation.

Finally, corresponding to the spectral weight ZAN at a
momentum near the neighborhood of the momentum (π, 0)
in the antinodal regime [Fig. 10(a)], the energy distribution
curve (EDC) is shown in Fig. 11 at various dopings. A “peak-
dip-hump” structure is generally present in Fig. 11. Here,
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FIG. 9. Two-gap structure in the SC phase: a small d-wave gap is opened up along the Fermi arc (cf. the low-energy branch in Fig. 5),
which is determined by a low-lying sharp peak in A(k, ω) with k scanning perpendicular to the Fermi surface (cf. the inset of Fig. 5 at a given
θ ) and is plotted against 0.5[cos(kxa0) − cos(kya0)] with an extrapolation to 
0 at the Brillouin zone boundary. An arrow marked the ending
point of the Fermi arc, beyond which a new sharp mode emerges in A(k, ω) with a larger gap 
AN in the antinodal regime.

FIG. 10. (a) The two-gap structure of the spectral function in the SC phase with the k-scanning along the bare Fermi surface, in which the
nodal and antinodal regimes are characterized by the quasiparticle spectral weights ZN and ZAN, respectively. The dashed line indicates a bare
d-wave gap function. (b) The corresponding two gaps, 
0 and 
AN, versus the doping concentration, which eventually emerge and gradually
vanish in the overdoped regime. (c) ZN varies placidly with respect to the doping concentration, while the quasiparticle weight ZAN of antinodal
excitation increases monotonically as a function of δ. Both calculated quantities (red dots) are in qualitative agreement with the experiment
shown in the inset.
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FIG. 11. The energy distribution curves (EDCs) near the antinodal regime of (π, 0) [cf. Fig. 10(a)] in the SC phase (blue) and LPP (red
dashed) at δ = 0.06, 0.1, and 0.14. The quasiparticle weight ZAN is only present in the SC phase, giving rise to a “peak-dip-hump” feature,
whereas it diminishes in the LPP in contrast to a finite ZN coinciding with the Fermi arc in the nodal region. Note that the “hump” feature is
present in both the LPP and SC phases due to the fractionalized mode of the a-spinon excitation.

the “peak” is attributed to the Bogoliubov quasiparticle in
the antinodal regime, with its peak intensity ZAN monotoni-
cally dependent on the holon density or superfluid density as
indicated in Fig. 10(c). On the other hand, “hump” feature
should be solely attributed to the high-energy fractionalized
mode related to the gapped a-spinon excitation in D̂0, sim-
ilar to that in the LPP as indicated in Figs. 5 and 10(a),
where ZAN is absent, while the Fermi arc is characterized
by the spectral weight ZN which remains finite. The “hump”
structure is explicitly shown in the high-energy regimes of
Fig. 11, which is further broadened via f0 in D̂0 phenomeno-
logically (cf. Appendix B). We discuss about the features
about the “peak-dip-hump” structures for different doping
concentrations. We systematically calculate the area of “peak-
dip-hump” for various momenta and doping concentrations
with a sufficient high-energy cutoff (1.5 eV), and notice that
for different doping concentrations and momenta, areas are
similar ( ˜160 meV*Intensity, area of higher doping is a little
bit larger, but the difference is less than 10 meV*Intensity).
We notice that for low doping, although the maximum of
“hump” is relatively small, its tail is extremely long; for
large doping, although the maximum of “hump” is relatively
large, its tail decreases rapidly with respect to the increasing
energy, hence, the normalization condition is satisfied ap-
proximately. We have a physical interpretation about this fea-
ture of “peak-dip-hump” for different doping concentrations:
as aforementioned calculated, the Fermi velocity of higher-
energy mode decreases rapidly with respect to doping [see
Fig. 7(d)], the tail of “hump” should vary with doping because
we have k-space broadening (cf. Appendix B): for lower
doping, the tail of hump should be long because the Fermi
velocity is high, and the k-space broadening urges the hump
to involve more momenta’s contributions; for larger doping,
because of small Fermi velocity, the tail of hump should be
short.

V. SUMMARY

In this work, we have studied the spectral function based
on a single-particle Green’s function constructed in the phase-
string formulation of the t-J model. We have shown that the
basic characteristics of the phase-string-induced fractional-
ization can be directly exhibited in the spectral function and

probed by the ARPES experiment. For example, the Fermi
arc in the lower pseudogap phase may be understood as the
fractionalization of the quasiparticle excitation outside the arc,
while it remains coherent inside the arc. In the superconduct-
ing phase, a superconducting d-wave gap is opened up along
the Fermi arc. Such a conventional Bogoliubov quasiparticle
can further connect to an emergent sharp mode outside the
Fermi arc with a distinct (larger) gap extrapolated to the
antinodal region, leading to a two-gap structure. Similarly, a
“kink” in the quasiparticle spectrum along the nodal direction
has been also consistently found. In particular, a systematic
doping dependence of these novel features has been deter-
mined. The overall agreement between the theory and the
ARPES experiments is remarkable.

Such a phenomenological Green’s function is composed of
two components Ĝ0 and D̂0 in Eq. (38), to characterize the
dichotomy between a coherent quasiparticle and the fraction-
alization. Here, D̂0 describes the propagation of the fraction-
alized particles in the lower pseudogap and superconducting
phases, while Ĝ0 depicts the propagation of an injected hole
as a coherent quasiparticle in a renormalized mean-field de-
scription [62] before decaying into a fractionalized state or
after a recombination from the fractionalization. In contrast to
a large Fermi surface in Ĝ0 satisfying the Luttinger volume
of the total electrons, D̂0 � D̂0 is essentially characterized by
four small Fermi pockets of an area proportional to the doping
concentration δ as illustrated in Fig. 2.

Even though the electrons are fully fractionalized in the
ground state [Eq. (6)] of the lower pseudogap and supercon-
ducting phases [58,66], a quasiparticle as an excitation can
still emerge as a recombination of the fractionalized particles
within the gap of the fractionalized a spinon (cf. Fig. 5).
Aside from the s-wave-like gap of the a spinon, the Fermi
pocket of the a spinon further provides a peculiar protection
of the stability and coherence of the quasiparticle excitation.
This is because any decay of a quasiparticle into an a spinon
via Eq. (5) within the Fermi pocket area would violate the
Pauli exclusion principle. It thus leads to the Fermi arcs in the
lower pseudogap phase at low doping. The overall excellent
agreement with the experiment as a function of doping is
simply due to the fact that the size of the a pocket is solely
determined by δ, which is independent of the mean-field
approximation [66] in treating D̂0 in Eq. (10).
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Therefore, we have shown that the unique fractionaliza-
tion in the t-J model may provide a unified and consistent
description of the ARPES experimental results in the cuprate.
Or, in other words, an ARPES measurement may effectively
reveal the electron fractionalization in a doped Mott insulator.
A doped hole is fractionalized into a composite structure with
emergent internal degrees of freedom in Eq. (5). In contrast to
the full spin-charge separation in the one-dimensional case,
here the holon in 2D is generally accompanied by a spin
(specified by the a spinon) to form a composite with internal
degrees of freedom and a spatial size comparable to that of
an RVB pair in the background [58], which is always finite in
the pseudogap and superconducting phases [58,66] such that
the recombination into a quasiparticle occurs by a finite prob-
ability ∝|λ|2. By contrast, λ → 0 for a full separation of spin
and charge in the long-range antiferromagnetic order regime,
where the Fermi pockets collapse into four Fermi points at
k0 = (±π/2,±π/2) with a vanishing quasiparticle spectral
weight in the thermodynamic limit, which has been recently
shown [57] as the precursor of the Fermi-arc phenomenon in
the one-hole-doped limit of the ground state (6).
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APPENDIX A: EFFECTIVE HAMILTONIAN OF
THE MICROSCOPIC THEORY

The ground state in Eq. (6) is the direct product of |�h〉,
|�a〉, and |RVB〉 as the mean-field solutions of Hh, Ha, and
Hs, respectively, in the effective Hamiltonian

Heff = Hh + Ha + Hs, (A1)

Hh = −th
∑
〈i, j〉

h†
i h je

i(As
i j+eAe

i j ) + H.c. + λh

(∑
i

h†
i h j − δN

)
,

Ha = −ta
∑

〈i, j〉,σ
σa†

iσ a jσ e−iφ0
i j + H.c.

− γ
∑
〈i, j〉

(

̂a

i j

)†

̂a

i j + λa

(∑
i,σ

a†
iσ aiσ − δN

)
,

Hs = −Js

∑
〈i, j〉


̂s
i j + H.c. + λb

(∑
i,σ

b†
iσ biσ − N

)
, (A2)

which are deduced from the fractionalized representation
[58,66] of the t-J Hamiltonian.

In Hh, the holon carries the full electric charge +e coupling
to the external electromagnetic field Ae

i j as well as the internal

link variable

As
i j = 1

2

∑
l 
=i, j

[θi(l ) − θ j (l )]
(
nb

l↑ − nb
l↓
)

(A3)

originated from the phase-string effect. Since As
i j � 0 as the

background b spinons are short-range RVB paired, generally
one expects the holon condensation at low temperatures,
which defines the LPP and SC phases. The LPP corresponds
to the appearance of free vortices in As

i j without destroying
the Bose condensation. The a spinon in Ha is gauge neutral as
“protected” by the ODLRO: 
a = 〈
̂a

i j〉 
= 0, which has been
found to be s wave [66] to determine a BCS-type |�a〉, where


̂a
i j =

∑
σ

σa†
iσ a†

jσ̄ e−iφ0
i j (A4)

which is independent of the gauge choice of φ0
i j . Here, φ0

i j
describes the background π flux per plaquette:

φ0
i j = 1

2

∑
l 
=i, j

[θi(l ) − θ j (l )]. (A5)

The b-spinon state |RVB〉 = P|�b〉, with |�b〉 determined by
Hs, which is underpinned by the order parameter 
s = 〈
̂s

i j〉
where


̂s
i j =

∑
σ

e−iσAh
i j biσ b jσ̄ (A6)

with the link variable

Ah
i j = 1

2

∑
l 
=i, j

[θi(l ) − θ j (l )]nh
l . (A7)

Note that Ah
i j can be treated as a uniform flux in the LPP

and SC phases as the holons are condensed. But, 
s 
= 0 will
further extend to characterize a short-range RVB state known
as the upper pseudogap phase (UPP) up to T0 as shown in
Fig. 1.

The Lagrangian multipliers in Eq. (A2) are introduced to
enforce the constraints under the projection P [66]. Based on
the self-consistent calculations, the following parameters as a
function of doping concentrations in the ground state can be
numerically determined [66]:


s,
a, χa, λa, λb, γ

together with

Jeff = J (1 − δ)2 − 2γ δ2,

Js = Jeff

s/2. (A8)

The doping-dependent b-RVB order parameter 
s and s-wave
pairing order parameter 
a for a spinons, and the effective
coupling Jeff/J are shown in the main panel of Fig. 12 under
the choice of ta = 2J [66], which constitutes the basic param-
eters in the study of the single-particle spectral function.

APPENDIX B: PHASE FLUCTUATION IN D̂0:
A PHENOMENOLOGICAL DESCRIPTION OF f0

Note that, in general, the single-particle propagator in
Eq. (37) involves a phase correlation function f0 defined in
Eq. (21). Here, f0 describes the vortices (antivortices) attached
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FIG. 12. Two-component RVB order parameters, 
s for b
spinons and 
a for a spinons, as well as the effective superexchange
coupling Jeff/J based on the mean-field theory [66]. Inset: the lowest-
energy contours of the a spinons with s-wave pairing 
a, which are
characterized by four Fermi pockets located at k0 = (±π/2,±π/2)
in the fractionalized propagator [Eq. (23)].

to the background b spinons whose fluctuations will give rise
to the broadenings in both momentum and frequency of the
Green’s function according to its definition in Eq. (21). But,
we expect that the essential low-energy features of Eq. (38),
i.e., the Fermi arc in the LPP and two-gap structure in the SC
phase, should not be changed by the additional broadening
effect introduced by f0 because of the gapped nature of the
a spinons. In the following, we shall make some simple
assumptions on the form of f0.

Due to the short-range RVB pairing of the b spinons, the
majority of vortices and antivortices are tightly paired to
make the phase coherence in the SC phase, while a finite
density of free vortices appear in the LPP to render the SC
order parameter 
SC = 0, which is also expected to lead to
a spatial decay of the phase correlation function f0. One
may phenomenologically introduce an approximate form to
characterize the phase fluctuation by

f0(i, j; τ ) ⇒ e−|ri−r j |/beτ/a, (B1)

where τ is the imaginary time, a and b are spatial and temporal
correlation length, respectively. In the following calculation,
we shall choose a = 1.2 (meV)−1 and b = 4a0, but the main
ARPES features will not be sensitive to the choice of the
parameters made here, which are introduced mainly to smooth
the spectral function in Sec. IV. In particular, the phase factor
f0 will also generally contribute to the decay with the real
time (i.e., a should be complex) at higher energies. For the
convenience of analysis, one may incorporate such an effect in
calculating the convolution of D̂0 in Eq. (40) in the frequency
space by introducing a Lorentzian broadening:

η

ω2 + η2
, (B2)

where the width of the Lorentzian broadening is taken as
η = 30 meV throughout for simplicity. Such a broadening
originally comes from the convolution with the phase fluc-
tuations in Eq. (B1) after an analytic continuation to the real
time and real frequency axis, where the vortices (antivortices)
attached to the b spinons will get significantly excited with
an energy higher than the gap of a spinons (Refs. [58,66]).
We emphasize that such a phenomenological assumption does
not affect the main features near the Fermi energy, but mainly
on the broadness of the high-energy part of the EDC (cf.
Sec. IV C).

APPENDIX C: EQUATION-OF-MOTION METHOD OF
GREEN’S FUNCTION

With the no-double-occupancy constraint, the modified
antiunitary relations of electron operators are

{c†
iα, ciβ} = c†

iαciβ + (1 − ni )δα, ciαciβ = 0,
∑

α

c†
iαciα = ni.

(C1)

Then, consider the t-J model [cf. Eq. (3) in the main text],
utilizing the relation [AB,C] = A{B,C} − {A,C}B, we have

[Ht , ciσ ] = t
∑

j=NN (i)

(1 − ni )c jσ + t

×
∑

j=NN (i)

c jσ c†
iσ ciσ + t

∑
j=NN (i)

c jσ̄ c†
iσ̄ ciσ . (C2)

Then, because of the relations⎧⎪⎨
⎪⎩

ni = c†
i↑ci↑ + c†

i↓ci↓,

Sz
i = 1

2

(
c†

i↑ci↑ − c†
i↓ci↓

) �⇒

⎧⎪⎪⎨
⎪⎪⎩

c†
i↑ci↑ = 2Sz

i + ni

2
,

c†
i↓ci↓ = ni − 2Sz

i

2
,

(C3)

i.e., c†
iσ ciσ = (ni + 2σSz

i )/2, define Sσ
i = c†

iσ ciσ̄ , then

[Ht , ciσ ] = t
∑

j=NN (i)

(
1 − ni

2

)
c jσ + t

×
∑

j=NN (i)

(
c jσ σSz

i + c jσ̄ Sσ̄
i

)
. (C4)

Define nh
i = 1 − ni, then

[Ht , ciσ ] = 1

2
t
(
1 + nh

i

) ∑
j=NN (i)

c jσ + t

×
∑

j=NN (i)

(
c jσ σSz

i + c jσ̄ Sσ̄
i

)
, (C5)

HJ = J
∑
〈i, j〉

(
Si · S j − 1

4
nin j

)
, (C6)

[HJ , ciσ ] = J

4

∑
j=NN (i)

ciσ
(
1 − nh

j

)

− J

2

∑
j=NN (i)

(
ciσ σSz

j + ciσ̄ Sσ̄
j

)
. (C7)
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According to Eqs. (C4)–(C6), we can obtain the commutation
relations between Ht , HJ , and ciσ as

[Ht , ciσ ]= t

2

(
1 + nh

i

) ∑
j=NN (i)

c jσ

︸ ︷︷ ︸
4©

+t
∑

j=NN (i)

( 5©
c jσ σSz

i +
6©

c jσ̄ Sσ̄
i

)
,

(C8)

[HJ , ciσ ]= J

4
ciσ

∑
j=NN (i)

(
1− nh

j

)
︸ ︷︷ ︸

1©

−J

2

∑
j=NN (i)

( 2©
ciσ σSz

j +
3©

ciσ̄ Sσ̄
j

)
.

(C9)

According to Eqs. (C8) and (C9), we can obtain the linearized
equation of motion

[Ht-J , ciσ ]|ψ〉

=
⎛
⎝teff

∑
j=NN (i)

c jσ + μciσ

⎞
⎠)|ψ〉 − J

∑
j=NN (i)

�SC
i j σc†

jσ̄ |ψ〉

+ decay term + scattering term, (C10)

where teff = t

2
(1 + δ) + JK

4
, μ = J (1 − δ) − 2tK,

and K ≡
〈∑

σ

c†
iσ c jσ

〉
, �SC

i j ≡ 〈σciσ c jσ̄
〉
. (C11)

Proof. According to the spin-rotational symmetry and d-
wave symmetry of the superconducting pairing, we have
〈Sz

i 〉 = 〈Sσ
i 〉 = 0,

∑
j

�SC
i j = 0:

4©= t

2

(
1 + nh

i

) ∑
j=NN (i)

c jσ = t

2
(1 + δ)

∑
j=NN (i)

c jσ + tKciσ︸ ︷︷ ︸
absorb into μ

,

(C12)

1© = −J

4

K

2

∑
j=NN (i)

c jσ − J

4

∑
j=NN (i)

c†
jσ̄ �SC

i j σ + J (1 − δ)ciσ︸ ︷︷ ︸
absorb into μ

,

(C13)

2© = J

4

K

2

∑
j=NN (i)

c jσ − J

4

∑
j=NN (i)

c†
jσ̄ �SC

i j σ, (C14)

3© = J

2

K

2

∑
j=NN (i)

c jσ + J

2

∑
j=NN (i)

(−σ )c†
jσ̄ �SC

i j , (C15)

5© = −tKciσ︸ ︷︷ ︸
absorb into μ

, 6© = −2tKciσ︸ ︷︷ ︸
absorb into μ

, (C16)

∴ [Ht−J , ciσ ] =
⎛
⎝teff

∑
j=NN (i)

c jσ + μciσ

⎞
⎠|�〉

− J
∑

j=NN (i)

�SC
i j σc†

jσ̄ |�〉

+ scattering term + decay term, (C17)

where the scattering term and decay term are coming from
the spin-charge separation of electrons. Utilizing Si = Sa

i +
Sb

i , the scattering term can be expressed as

∴ Scattering term =
∑

j=NN (i)

[
t
(
c jσ σSbz

i + c jσ̄ Sbσ̄
i

)

− J

2

(
ciσ σSbz

j + ciσ̄ Sbσ̄
j

)]|�〉. (C18)

Then, calculate the decay term by considering the fraction-
alization. According to Eq. (C3), we can rewrite the spin
operator in terms of fractionalized particles:

Sza
i = 1

2

∑
α

αa†
iαaiα,

Sσa
i = (−1)ia†

iσ aiσ̄ . (C19)

Then, we can consider the aforementioned terms separately:

1© = −JH0

4
a†

iσ̄ (−σ )iei�̂i
∑

j=NN (i)

h†
j e

−iAs
i j . (C20)

If 〈h†
j〉 ≈ h∗

0, As
i j ≈ 0, ei�̂i ≈ 〈ei�̂i〉, then 1© ≈ −JH0

〈ei�̂i〉h∗
0a†

iσ̄ (−σ )i,

2© = −J

4

∑
j=NN (i)

h†
i (−σ )iei�̂i (−σ )〈(−σ )a†

iσ̄ a†
jσ 〉a jσ

− J

4

∑
j=NN (i)

h†
i (−σ )iei�̂i a†

jσ̄ 〈a†
iσ̄ a jσ̄ 〉. (C21)

Define the order parameters Ka
i j ≡ 〈∑

σ

a†
iσ a jσ 〉, �a

i j ≡
〈σa†

iσ a†
jσ̄ 〉, then 〈σaiσ a jσ̄ 〉 = −(�a

i j )
∗. Then, the above ex-

pression can be rewritten as

2© = −J

4

∑
j=NN (i)

h†
i (−σ ) jei�̂i�a

i ja jσ

+ J

4

∑
j=NN (i)

h†
i (−σ ) jσei�̂i a†

jσ̄

Ka
i j

2
. (C22)

If 〈h†
i 〉 = h†

0 (which corresponds to the holon condensation),
ei�̂i ≈ 〈ei�̂i〉, then we have

2© ≈ −J

4
h∗

0〈ei�̂i〉
∑

j=NN (i)

�a
i ja jσ (−σ ) j

+ J

8
h∗

0〈ei�̂i〉
∑

j=NN (i)

σKa
i ja

†
jσ̄ (−σ ) j, (C23)

3© = −J

2

∑
j=NN (i)

h†
i ei�̂i (−σ ) j�a

i ja jσ

+ J

4

∑
j=NN (i)

h†
i ei�̂i (−σ ) jσKa

i ja
†
jσ̄ . (C24)
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If 〈h†
i 〉 ≈ h∗

0 (which corresponds to the holon condensation),

〈ei�̂i〉 ≈ 〈ei�̂i〉, the above formula can be expressed as

3© ≈ −J

2
h∗

0〈ei�̂i〉
∑

j=NN (i)

�a
i ja jσ (−σ ) j

+ J

4
h∗

0〈ei�̂i〉
∑

j=NN (i)

σKa
i ja

†
jσ̄ (−σ ) j, (C25)

4© = t

2
H∗

0

∑
j=NN (i)

h†
i eiAs

i j a†
jσ̄ (−σ ) jei�̂ j

= tH∗
0

2
h∗

0〈ei�̂ j 〉
∑

j=NN (i)

a†
jσ̄ (−σ ) j, (C26)

5© = t

2

∑
j=NN (i)

h†
j (−σ )iei�̂ j �a

i jaiσ

+ t

4

∑
j=NN (i)

h†
j (−σ ) jei�̂ j a†

iσ̄ Ka
ji

(
Ka

ji = Ka∗
i j

)
. (C27)

If 〈h†
j〉 = h∗

0 (which corresponds to the holon condensation),

ei�̂ j ≈ 〈ei�̂ j 〉, we have

5© ≈ t

2
h∗

0〈ei�̂ j 〉
∑

j=NN (i)

�a
i jaiσ (−σ )i

+ t

4
h∗

0〈ei�̂ j 〉
∑

j=NN (i)

Ka∗
i j a†

iσ̄ (−σ ) j, (C28)

6© = t
∑

j=NN (i)

h†
j (−σ )iei�̂ j �a

i jaiσ

+ t

2

∑
j=NN (i)

h†
j (−σ ) jei�̂ j a†

iσ̄ Ka
ji. (C29)

If 〈h†
j〉 ≈ h∗

0 (which corresponds to the holon condensation),

ei�̂ j = 〈ei�̂ j 〉, then we have

6© = th∗
0〈ei�̂ j 〉

∑
j=NN (i)

�a
i jaiσ (−σ )i

+ th∗
0

2
〈ei�̂ j 〉

∑
j=NN (i)

Ka∗
i j a†

iσ̄ (−σ ) j, (C30)

∴ Decay term = 1© + 2© + 3© + 4© + 5© + 6©. (C31)

Here, the order parameter H0 ≡ 〈h†
i h je

iAs
i j 〉 → Uniform, and

the π flux leads to the following expressions:

Ka
i j =

〈∑
σ

a†
iσ a jσ

〉
,

�a
i j = 〈σa†

iσ a jσ̄ 〉 = 〈a†
i↑a†

j↓〉 = −〈a†
i↓a†

j↑〉. (C32)
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