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The full exploitation of non-Abelian symmetries in tensor network states (TNSs) derived from a given lattice
Hamiltonian is attractive in various aspects. From a theoretical perspective, it can offer deep insights into the
entanglement structure and quantum information content of strongly correlated quantum many-body states. From
a practical perspective, it allows one to push numerical efficiency by orders of magnitude. Physical expectation
values based on TNSs require the full contraction of a given tensor network, with the elementary ingredient
being a pairwise contraction. While well established for no or just Abelian symmetries, this can become quickly
extremely involved and cumbersome for general non-Abelian symmetries. As shown in this paper, however,
the elementary step of a pairwise contraction of tensors of arbitrary rank can be tackled in a transparent and
efficient manner by introducing so-called X-symbols. These deal with the pairwise contraction of the generalized
underlying Clebsch-Gordan tensors (CGTs). They can be computed deterministically once and for all, and hence
they can also be tabulated. Akin to 6 j-symbols, X-symbols are generally much smaller than their constituting
CGTs. In applications, they solely affect the tensors of reduced matrix elements and therefore, once tabulated,
allow one to completely sidestep the explicit usage of CGTs, and thus to greatly increase numerical efficiency.
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Tensor network states (TNSs) provide a powerful natural
framework for the numerical treatment of strongly corre-
lated quantum many-body physics on lattice Hamiltonians
[1–5]. Starting in one dimension (1D) with matrix product
states (MPSs), the numerical renormalization group (NRG)
[6–9] and the density-matrix renormalization group (DMRG)
[10–13] represent powerful, nonperturbative, and accurate
methods to deal with strongly correlated systems at arbitrary
temperature both statically and dynamically. An attractive
extension of the one-dimensional MPS structure was pro-
vided by the multiscale-entanglement renormalization ansatz
(MERA) [14,15], also with an eye on higher dimensions, even
if significantly more expensive numerically. The very flexi-
ble framework of TNSs for lattice Hamiltonians has already
also seen a wide range of applications in two dimensions
(2D) via projected entangled pair states (PEPS) [16–20] or
higher [21–23], including applications in quantum chemistry
[5,24,25]. By providing a natural algebraic structure to study
entanglement in strongly correlated systems, this also gen-
erated significant interest from a quantum information per-
spective [26–28] including symmetry protected topological
quantum phases [29–33]. While highly efficient in 1D, the nu-
merical cost for dealing with TNSs in 2D or higher, however,
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grows exorbitantly, even though at least still polynomially.
Therefore the exploitation of symmetries is extremely relevant
and important also on practical grounds [34–41]. In particular,
this applies for correlated systems in quasi-1D, i.e., for long
systems of narrow width, or for tree-tensor network (TTN)
states [24,42,43] in the presence of multiple (symmetric) fla-
vors in condensed-matter systems [44–49] or optical lattices
[50–53].

Symmetries on all indices in a tensor network (TN) state,
physical and bond indices alike, are well defined only in
1D or, more generally, in TTN states [24,42,43], i.e., tensor
network states without loops along virtual bonds that link
tensors. In the presence of loops, significant ambiguities arise.
Nevertheless, on practical grounds, one typically sees that
enforcing symmetries on all indices also in a general TNS
with loops shows clear gains in efficiency [54,55]. An intuitive
handwaving argument for this may be provided based on the
interpretation of bonds as actual auxiliary state spaces which
motivated PEPS to start with [16,18].

In the presence of non-Abelian symmetries [56–61], all
tensors can be decomposed into a tensor product structure
of reduced matrix element tensors (RMTs) and generalized
Clebsch-Gordan coefficient tensors (CGTs) [36,45] as a direct
generalization of the Wigner-Eckart theorem. This results
in two immediate consequences that can be used to greatly
improve numerical efficiency.

(i) By splitting of a CGT factor for each elementary, i.e.,
simple symmetry present, this allows one to (strongly) reduce
the effective dimensionality D → D∗ of a given index or
state space by switching from a state-based description to a
description based on entering the RMTs.
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(ii) The CGTs are purely related to the symmetry of a given
problem. Hence much of it can be dealt with once and for all
by tabulating the relevant information.

A general bottom-up framework for dealing with gen-
eral non-Abelian symmetries in TNSs was introduced in
Weichselbaum [45] based on a general transparent tensor
representation referred to as QSPACE (see Appendix B). The
approach taken there was based on the explicit utilization, i.e.,
generation and subsequent decomposition of CGTs. This is
in stark contrast to other approaches based on fusion trees, F
moves, etc., which are essentially built on 6 j-symbols [40,62].
That approach works well for the symmetry SU(2), where
6 j-symbols are readily available analytically. But it becomes
much more difficult for general non-Abelian symmetries such
as SU(N > 2), SO(N > 4), or Sp(2N > 2) where due to the
presence of outer multiplicity 6 j-symbols are not at all readily
available. In contrast, the QSPACE approach is bottom up,
as it solely relies on the bare structure of the Lie algebra
[45]. The irreducible representations (ireps), multiplet fusion
rules, and corresponding CGTs thus generated were already
all tabulated in [45]. However, contractions of CGTs were
not tabulated due to the presence of outer multiplicity (OM).
The prescription in [45] to deal with OM in the pairwise
contraction of tensors was to always recontract all CGTs
based on their particular instantiation in OM space. How-
ever, from a practical point of view, this led to significant
computational overhead for larger non-Abelian symmetries,
such as SU(N � 4). As will be shown in the present paper,
however, there also exists a transparent general way to deal
with the problem of OM in the pairwise contraction of CGTs
based on the introduction of so-called X-symbols (where “X”
is simply a reference to generalized tensor multiplication,
i.e., contraction). These can be computed once and for all,
and thus also be tabulated. X-symbols provide an alternative
approach to 6 j-symbols. Yet they are much more naturally
suited to tensor network algorithms, since they strictly deal
with the elementary operation of the contraction of a pair of
tensors (and hence a pair of CGTs) on an arbitrary subset of
shared indices.

Given the many reviews and detailed publications that
already exist on TNSs (e.g., see [4,5,9,45,63] and references
therein), an elementary understanding of tensor network states
is assumed in this paper. With this in mind, the paper is
organized as follows. Section I sets the stage with focus on
symmetries in TNSs, which strongly builds on Weichselbaum
[45]. Section II provides conventions and preliminaries re-
quired for the rest of the paper. Section III then introduces
X-symbols and discusses their relevance in TNSs, followed
by summary and outlook.

I. SYMMETRIES IN TENSOR NETWORK STATES

Tensor network states typically describe lattice Hamiltoni-
ans, with whom they share the same lattice structure. Whereas
the Hamiltonian may be longer ranged TNSs have nearest-
neighbor bonds only in order to minimize index loops. For
the same reason, physical sites may also be grouped into
supersites [55,64]. Each lattice site n is assigned a tensor An

that maps the attached (variationally determined) auxiliary

state spaces |ax〉 to the physical state space |ϕσ 〉n. In a pictorial
language, the indices of a tensor are drawn as lines, also
referred to as the legs of a tensor. All state spaces are indexed.
E.g., the index σ above spans the local state space of a single
physical site, whereas the index x = l, r, . . . spans specific
named bonds, such as left (l), right (r), etc. [e.g., see (1)].

A. Arrows on all legs

The physical state spaces are orthonormal from the very
outset, having n′ 〈ϕσ ′ |ϕσ 〉n = δσ ′

σ δn′
n. For generalized tree-

tensor networks [42] including matrix product states which,
by definition, contain no loops along any path of bond in-
dices, cutting any auxiliary bond separates the TNS into two
disconnected blocks. As a direct consequence, all auxiliary
or bond state spaces can be made orthonormal. If a given
TTN is an exact symmetry eigenstate globally, then all bond
indices can be fully symmetrized, i.e., assigned symmetry
labels without increasing the bond dimension [43]. In the case
of a TTN, these auxiliary bond state spaces can be translated
into well-defined orthonormal effective quantum-many-body
state spaces that represent entire blocks of the system. Each
such block only contains one open bond index, starting from
which it necessarily stretches all the way to the open or infinite
outer boundary of the physical system, and hence also of the
TTN considered.

For a TTN, many-body state spaces are typically generated
iteratively by adding one site after another to a block. This
way, by construction, any index or leg describes an orthonor-
mal many-body state space that either enters a tensor as part
of a tensor product space or leaves a tensor with the interpre-
tation of an combined effective state space. So while several
lines may enter a tensor there is always at most one line that
can leave a tensor. For finite TTN simulations then, auxiliary
indices all flow towards the orthogonality center (OC) [65];
this is the only tensor in an entire TTN that may have no
outgoing index. It combines the orthonormal state spaces of
various blocks into a normalized global wave function. If
the global state is a singlet, this singleton dimension may
be skipped, in which case the OC has no outgoing index. If
multiple global states are targeted, e.g., if the global symmetry
multiplet is not a scalar, then the OC also needs to carry along
an outgoing leg, namely, the index that resolves the global
state or multiplet.

In a pictorial description, this naturally suggests that each
index (leg or line) in a TN is given an arrow. Correspondingly,
in mathematical notation, an outgoing (incoming) index to
a tensor can be written as a lowered (raised) index, which
is equivalent to covariant (contravariant) index notation, re-
spectively. A contracted, i.e., summed over, index then neces-
sarily is outgoing from one tensor and ingoing into another,
consistent with Einstein summation convention that an index
is summed over if it appears twice, namely, as a raised and
lowered index.

By having adopted the convention that the physical state
space of site n is denoted by |ϕσ 〉n, i.e., with lowered indices,
this implies that the index (leg) in a tensor where it enters
must be a raised index. Thus combining, for example, the state
space of site n with an effective bond state space al (“left”),
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the fused state space ar (“right”) is given by

(1)

where the summation over double indices is implicit, hence
the bracket around the sum. TTNs guarantee that orthonormal
state spaces, and hence also symmetries, are well defined
throughout. This is crucially important for efficient algorithms
[4,12], since these orthogonal state spaces ensure an orthonor-
mal environment and hence optimal conditions [66] when
truncating bond dimensions to the most entangled and thus
most relevant quantum-many-body states constituting a given
global state. In this sense, orthogonality and hence arrows are
crucially important in any TTN.

For a general TNS in the presence of loops, however, it is
no longer possible to associate all indices with well-defined
strictly orthonormal state spaces in the unique strong sense
this can be achieved with TTN [43]. Instead, one can adopt the
much less rigorous PEPS-like interpretation that bonds host
actual auxiliary state spaces where one simply imposes by fiat
that these are orthonormal and adhering to the symmetries of
the overall Hamiltonian. When dynamically truncating, and
thus adapting auxiliary state spaces, it is no longer possible
then to have a perfectly orthonormal environment. Instead,
one needs to resort to optimal conditioning [66]. If one decides
to exploit global symmetries, in any case, this necessitates that
symmetries must be enforced at every step in a calculation.
Here, in particular, symmetries need to be enforced locally
with each tensor. As a consequence, all lines in a TNS need to
carry arrows. For TNSs with loops, such as a two-dimensional
PEPS, certain individual tensors necessarily also need to carry
multiple outgoing legs then. Independent of whether or not
global symmetries are enforced, however, when describing
specific algorithms in tensor networks, arrows on all legs, or
equivalently raised and lowered indices, generally represent
an important natural concept for the underlying tensor algebra.

B. General tensor decomposition

In the presence of (non-Abelian) symmetries, the tensor
coefficients A (without hat) of any tensor operator Â (with
hat) can be decomposed into a sum over tensor products
of reduced matrix elements ‖A‖ times generalized Clebsch-
Gordan coefficients C [36,45]:

A =
⊕

q

‖A‖q ⊗ Cq. (2)

The tensor A can have arbitrary rank r which is defined here
as the number of legs (indices) attached. The sum over q
indicates the sum over symmetry sectors. For each indepen-
dent elementary (i.e., simple) symmetry considered, another
CGT can be split off [45], collectively written as Cq above.
To be precise, in this paper, a CGT always refers to a specific
elementary (semi-) simple symmetry such as SU(N), Sp(2n),
or SO(n) (see also Appendix A), and can always also be
chosen real. Yet in the same way that an algorithm needs
to deal with RMTs and CGTs separately, also CGTs for
different symmetries can be dealt with completely separately
and in parallel. Hence, while for the sake of simplicity of the

argument only a single elementary non-Abelian symmetry is
considered, all arguments in this paper straightforwardly also
generalize to the presence of multiple symmetries.

The decomposition in Eq. (2) holds for general symme-
tries, non-Abelian and Abelian symmetries alike. For Abelian
symmetries, however, all multiplets contain only a single
state. Hence the tensorial structure of the CGTs reduces to
plain number, namely 1 (permissible from a symmetry point
of view), or 0 (not permissible). For non-Abelian symmetries,
on the other hand, one still also needs to systematically
account for outer multiplicity as explained in detail below.
The overall tensorial structure such as rank or directions of
incoming and outgoing indices, i.e., the arrow configuration,
is exactly inherited by all terms, RMTs as well as CGTs.
Therefore e.g., in Eq. (2) the RMT ‖A‖ and the CGT C have
the same label structure, in that both have subscript q which is
then summed over via the direct sum.

In order to avoid excessive proliferation of indices, for the
sake of readability, simplified shortcut notations are adopted
as explained in the following. In particular, this concerns
the at times somewhat loose distinction between raised or
lowered indices if the distinction is not explicitly important
in a specific context. In Eq. (2), for example, the combined
symmetry labels for all legs have simply been written as
subscript q, even though legs may have mixed raised and
lowered indices. The symmetry labels (simply also referred
to as “q labels”) for all r = l + l ′ legs of a given CGT of rank
r are given by the set

q ≡ (q1, ..., ql , q1′ , ..., ql ′ ) ≡ (q1, ...ql | q1′ , ..., ql ′ ). (3)

Here each qi (or qi′ ) is a tuple of multiplet labels of fixed
length that specifies the symmetry sector on a given leg i for
all symmetries considered. While the order of legs within the
group of incoming (or outgoing) legs is important, incoming
and outgoing indices can be arbitrarily interspersed. This
means that the position of raised indices relative to lowered in-
dices is irrelevant. Therefore, e.g., all incoming indices can be
listed first, as shown in Eq. (3). While the first decomposition
of q in Eq. (3) explicitly specifies raised and lowered indices,
the equivalent last decomposition splits the group of incoming
indices (l legs) via the bar “|” from the group of outgoing in-
dices (l ′ legs). It uses all lower indices, if relevant, otherwise.
This is useful, for example, when discussing standard rank-3
CGTs q ≡ (q1q2|q3) which fuse q1 and q2 into the combined
total q3, also referred to as CG3 in this paper. E.g., consider
(qq̄|0), which fuses multiplet(s) q with their dual(s) into the
scalar representation, simply denoted as 0. This has no more
raised or lowered indices whatsoever, which thus requires the
last notation in Eq. (3).

Depending on the context, the combined label q as a whole
as in Eq. (2) may also be written as a superscript, instead, with
no specific meaning of the location, unless explicitly stated
otherwise. Only when q appears paired up as a raised and
lowered index, e.g., CqDq, the legs q are considered traced
over with arrows reverted in D relative to C (see conjugate
tensors below). Decomposed q labels with the same CGT
always adhere to the interpretation of raised and lowered
indices. The CGTs corresponding to the CG3s above then, for
example, correspond to Cq ≡ Cq1q2

q3 or Cqq̄
0 . The same index

convention as in Eq. (3) also holds for the RMTs, i.e., using
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the notation n ≡ (n1 . . . nln1′ , . . . , nl ′ ) for the index into the
tensor of reduced matrix elements. Here ni indexes individual
symmetry multiplets in a given symmetry sector qi in the state
space decomposition of leg i as in |qn; qz〉i with qz the internal
states of a single multiplet in q [45]. By convention, in the
notation of q in Eq. (3) or also n, incoming indices are listed
first. Note, however, that this is reverse to the bra-ket notation,
e.g., as in Eq. (1), which places incoming states as kets, and
hence needs to be read right to left.

C. Outer multiplicity

In the presence of non-Abelian symmetries, tensors as in
Eq. (2) are typically faced with the problem of OM in their
CGTs. This means that for exactly the same symmetry labels
q multiple (mq > 1) orthogonal CGTs can arise [see Eq. (7)
later]. Hence the CGTs acquire an additional multiplicity
index μ = 1, . . . , mq, i.e., Cq → Cq,μ. If a given CGT has no
outer multiplicity, then mq = 1, which represents a singleton
dimension and thus may be safely skipped. If a given combi-
nation of symmetry labels is not permitted from a symmetry
point of view, then mq = 0. CGTs that are always free from
outer multiplicity are CGTs of rank r = 0 (scalars) or r = 2,
as these are just proportional to the identity matrix. Moreover,
for rank 3, CGTs that contain the defining irep or its dual at
least on one of their legs, i.e., primitive CGTs, are also always
OM free. Furthermore, CG3s (q1q2|q3) where q3 = q1 + q2

carries the maximum weight states of q1 and q2 combined [45]
are also OM free since the maximum weight state is unique.

While there is no OM in the well-known SU(2) at the level
of CG3s, OM routinely also occurs in SU(2) for CGTs of rank
r > 3 (see Appendix A). A simple example for the emergence
of OM in SU(2) for a rank-4 CGT is shown in (4a):

(4)

which represents the contraction of two multiplicity-free
CGTs C and C′ of rank 3 over the shared intermediate
multiplet qi = Si. However, typically there will exist multiple
choices for the intermediate spin multiplet Si. Therefore when
“zooming out,” i.e., contracting the intermediate index, the re-
sulting rank-4 tensor (brown circle) acquires outer multiplicity
μ = 1, . . . , mq. Here mq is the number of permitted intermedi-
ate Si for fixed open outer multiplets S(′)

1 and S(′)
2 . In the present

case, the presence of several permitted internal multiplets Si

directly translates into OM indexed by μ. Recoupling of the
internal (contracted) structure results in an orthogonal rotation
in OM space. For overall consistency, the OM index [green
line in (4a)] also carries an arrow. Since this comes “out” of a
given CGT decomposition for C ∗ C′, arbitrarily but fixed, the
index μ is chosen as an outgoing index in (4a) [and of C in
(4c)]. The above point of view can be used to systematically
determine the level of OM for arbitrary symmetries and CGTs,
as discussed later in Sec. II E.

The presence of OM introduces an additional vector space
for a given CGT, referred to as outer multiplicity space. The
CGTs in Eq. (2) then become a linear superposition in OM
space, described by the normalized coefficients wμμ′

:

A =
⊕

q

[‖A‖qμ ⊗ (
wμμ′

Cqμ′
)]

, (5)

using ‖wμ‖ = 1, with implicit regular summation over the
multiplicity indices μ and μ′ (Einstein summation conven-
tion), in contrast to the direct sum over symmetry sectors q.
Note, in particular, that the (block) summation over q adds to
the overall dimension of the tensor A, whereas the multiplicity
indices no longer do [OM leads to additional multiplets, which
must have already been allocated at the level of the RMTs
‖A‖q (e.g., see Fig. 2 in [45]). All OM related indices are
denoted in green color consistent with the graphical notation
as in Eq. (4). Effectively, the role of the coefficient matrix w

is such that it “ties” together [67] the otherwise plain tensor
product between RMTs ‖A‖q and CGTs Cq, as graphically
depicted in Eq. (4c).

For a given symmetry sector q in Eq. (5), ‖A‖qμ are the
reduced matrix elements that come with the CGT component
Cμ

q ≡ ∑
μ′ wμμ′

Cqμ′ . In other words, for different orthogonal
outer multiplicity components, there can be a completely
different set of reduced matrix elements. For this reason, the
matrix w in Eq. (5) can have at most as many rows (indexed by
μ) as there are columns (indexed by μ′ � mq). With all CGTs
real, the matrix w can always be chosen also real and such that
wwT = 1. Fewer rows than mq are allowed in w (the tensor
A then simply does not span the full OM space), such that
wT w 
= 1. However, if there had been more than mq rows, QR
or singular value (SV) decomposition [68] can be employed
to decompose w = zw̃. Contracting z onto the RMT ‖A‖qμ in
Eq. (5), w can be replaced by the orthogonal w̃ now with at
most mq rows.

The CGTs Cq can be computed once and for all and
then stored (tabulated) in a central, dynamically generated
database. For the storage of any tensor A then only a reference
to the CGTs is required in terms of metadata. Associating
w with Cq, i.e., explicitly using Cμ

q ≡ ∑
μ′ wμμ′

Cqμ′ and
storing this with ‖A‖qμ separately for each μ, this results in
a nonunique listing of symmetry sectors q in the listing of
nonzero blocks of A in Eq. (5). This was the procedure in [45].
However, instead, one can explicitly add an OM index μ onto
the RMT to the already existing indices n [67], and contract
w onto the RMT, instead, ‖A‖μ′

q ≡ ∑
μ ‖A‖qμwμμ′

. Then the
tensor A can be written as a unique listing over symmetry
sectors q (see Appendix B). While the matrix w may be elim-
inated this way, for practical purposes, it may be explicitly
kept with the tensor decomposition in Eq. (5) nevertheless.
For example, this then allows one to simply absorb operations
in OM space such as orthogonal transformations into w, while
the likely much larger CGTs and RMTs can remain unaltered.

II. CONVENTIONS AND PRELIMINARIES

A. Conjugate tensors

Conjugate (or daggered) tensors arise whenever comput-
ing expectation values 〈ψ |..|ψ〉 ∼ tr(A†.. A) or whenever ex-
pressing terms in a Hamiltonian that arise out of a scalar
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product, such as spin-spin interactions, Ŝi · Ŝ j ∼ S†
i · S j in

between some sites i and j. In general, the conjugate tensor
A† of any given tensor A can be defined by the following
prescription: take the complex conjugate of all of its matrix
elements, i.e., A∗ (relevant for RMTs only, since CGTs are
real), then revert all arrows, and take a mirror image of the
tensor when depicted graphically [45]. The latter is simply
the generalization of the transposition part in A†, e.g., when
an operator sandwiched in between bra-ket states acts to the
left (bra) rather than to the right (ket). In terms of index order
convention, taking a mirror image implies with respect to the
original tensor that if indices are read clockwise in A in a
pictorial description starting from some arbitrary but fixed leg,
they need to be read counter clockwise in A†. As pointed out
with Eq. (3), though, incoming and outgoing indices can be
dealt with separately.

Taking the mirror image, actually, is a rather common
graphical procedure in TNSs, even if one typically does not
further dwell on this. For example, when computing expecta-
tion values 〈ψ |...|ψ〉 for a given MPS, this involves the con-
traction of an A-tensor as in (1) with itself, as shown in (6a):

(6)

Here A† (empty square at the bottom) is the mirror image of A
(filled square at the top) with the arrows on all lines reverted,
while also taking complex conjugated matrix elements. The
mirror plane is indicated by the horizontal yellow marker line.
Similarly, the above procedure of conjugating tensors also
shows up systematically when dealing with fermionic PEPS
[19] where in a pictorial description 〈ψ |..|ψ〉, the bra state is
a full mirror image of the ket state.

Another example concerns the representation of an opera-
tor Ŝ that acts on a local state space of a site as depicted in
(6b), e.g., which may be inserted into the vertical line labeled
by σ in (6a). In general, the operator Ŝ ≡ {Ŝα} consists of a set
of operators indexed by α which are irreducible with respect
to the symmetries under consideration. This makes it an irre-
ducible operator (irop), which thus naturally acquires the third
index α [45]. Nonscalar irops are also non-Hermitian, exam-
ples being fermionic hopping, or spin raising and lowering
operators. Here (6c) summarizes what one means by taking
the Hermitian conjugate of an operator: matrix elements are
complex conjugated (S → S∗) and top and bottom index are
exchanged, resulting in tangled yet noncrossing lines. Here
also all arrows are reverted, and a mirror image is taken with
respect to the vertical yellow marker line which flips the irop
index α to the left. Untangling the lines by rotating the tensor
clockwise by 180◦ leaves the tensor unaltered, otherwise, and
also does not introduce any crossing of lines [19]. This leads
to the final S† in (6c) which looks much the same as (6b),
but now with reverted index α. This is required, e.g., when
constructing scalar products of operators as in Ŝ†

i · Ŝ j where
the dot product simply translates into a contracted directed
line indexed by α.

This paper also adopts the graphical convention that tensor
conjugation switches from a filled tensor (box, circle, etc.) to
an empty outlined object, or vice versa, as already seen in
Eq. (6). Similarly, in (4a) the CGT C with two incoming legs
was depicted by a filled circle, in contrast to the conjugate
tensor C′ with two outgoing legs (empty circle). In a mathe-
matical notation, finally, tensor conjugation can be denoted by
raising or lowering its indices, e.g., (Cqμ)† ≡ Cqμ.

B. CGT normalization convention in OM space

When considering a CGT Cq for an arbitrary but fixed set
of symmetry labels q, a convenient normalization convention
in OM space adopted throughout is

Tr(CqμC†
qμ′ ) ≡ Tr(CqμCqμ′

) = δ μ′
μ , (7)

where Tr(CqμC†
qμ′ ) stands for the full contraction (tensor

trace) of Cq with the conjugate of itself, only keeping OM
indices open and having fixed q. By pairing with its conjugate
tensor, this also reverts the arrow of the OM index, hence
raising the index μ′ in Eq. (7). The CGT normalization in
Eq. (7) simply generates an orthonormal basis in the OM
“vector space,” which is convenient when performing explicit
decompositions or projections in OM space. Equation (7) fixes
the CGT Cq up to an orthogonal transformation in OM space
(see matrix w in Sec. I C). As the CGT will be generated dy-
namically depending on the calculation, this makes it history
dependent, adding OM components as they occur [45]. This
fixes Cq up to an overall sign convention. Including μ as the
last index in Cq and assuming column-major index order, the
standard sign convention of Clebsch-Gordan coefficients is
followed, namely, that the first nonzero matrix element of the
full CGT Cq is chosen positive. Therefore the component for
μ = 1 fixes the sign of the entire Cq for μ � mq.

For rank-3 CGTs, the normalization in Eq. (7) is closely
related to the normalization of Wigner-3 j symbols [69]. As
such, it is different from the normalization of the standard
Clebsch-Gordan coefficients, e.g., for SU(2) (S1S2|S3) that
fuse (S1, S2) into an orthonormal basis in S3 (and not in OM).
The latter would result in a norm in Eq. (7) that is equal to
|S3|, i.e., the dimension of multiplet S3. Consequently, this
would make the normalization dependent on the direction of
arrows in a given CGT. This is rather inconvenient on general
grounds, and specifically so in the TNS context, since the
presence or not of OM does not depend on the direction
of arrows or on the specific order of symmetry labels. This
simply follows from the discussion below that raising or
lowering of an index on a CGT is equivalent to applying
a unitary matrix on that index while also switching to the
dual representation on that leg (see Sec. II D). Conversely, a
permutation of indices on a CGT can only induce orthogonal
rotations in OM space (see Sec. III C) which clearly also
leaves the OM dimension invariant.

Therefore based on the normalization in Eq. (7), the CG3s
q = (q1, q2|q3) ≡ (q1q2q3) have the same normalization for
any permutation of the symmetry labels together with arbi-
trary raising or lowering of indices. Raising and lowering of
labels, however, changes the interpretation of which multi-
plets are fused together. By raising all indices in a CGT, for
q = (q1q2q3), this is equivalent to fusing all three multiplets
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of a CG3 into a total scalar representation denoted by qtot =
0, i.e., q = (q1, q2, q3|0), and subsequently skipping the
trailing singleton dimension. The resulting rank-3 CGT has
all-incoming legs, i.e., q = (q1q2q3), which is exactly equiv-
alent to the Wigner-3 j (here “3q”) symbol up to an overall
sign.

C. Fully contracted CGT networks

When a tensor network is fully contracted, all indices are
paired up and summed over. This holds for both the RMTs
as well as the CGTs. Here, for the sake of the argument,
however, the focus is on an isolated fully contracted TNS
solely comprised of CGTs. The OM for each participating
CGT is assumed fixed to some arbitrary but fixed linear
superpositions in OM space [e.g., see Eq. (5)], such that there
is no open index left in the TNS, and the full contraction yields
some number x. By construction, this number can be nonzero
only if the CGT network is permitted from a symmetry point
of view. Now if one opens up a single leg in this otherwise
fully contraction CGT network, say with symmetry label qi,
the result is proportional to a rank-2 CGT Cqi

qi , i.e., with one
incoming and one outgoing index. The only such CGT that
exists is the identity matrix up to normalization. Its graphical
representation is a single directed line. Therefore it follows
that a CGT network that is fully contracted up to a single
opened up index i necessarily is proportional to the identity
matrix 1|qi| of dimension |qi|, i.e., the size of multiplet qi.

As a specific example, consider the tensor network in
Eq. (7) of just one CGT fully contracted with itself for
arbitrary but fixed μ and μ′. Then, opening up one bond index
i with symmetry label qi, one obtains

Tr\qi (CqμC†
qμ′ ) = δ μ′

μ

|qi| 1|qi|. (8)

The normalization is determined by the requirement that the
final trace over i, when performed, results back in Eq. (7).

D. Reverting arrows and 1 j-symbols

Reverting the arrow on a given bond in a TNS changes its
interpretation, as well as the interpretation of the associated
tensors. As this will be useful also later in the CGT context,
consider first the elementary process where the orthogonality
center in an MPS is iteratively propagated from site n →
n+1 with associated tensors Ãn and An+1 [e.g., see Eq. (1)],
contracted on their shared auxiliary bond [4]:

ÃnAn+1 = (An X̃n)An+1︸ ︷︷ ︸
≡Ãn+1

≡ Ãn
(
X̃ −1

n︸ ︷︷ ︸
≡An

X̃n
)
An+1︸ ︷︷ ︸

≡Ãn+1

, (9)

where the tilde indicates the tensor that carries the OC. Before
the iteration step, the OC is located on site n, and the bond
in between sites (n, n + 1) describes an orthonormal effective
many-body state space for the entire right block of sites n′ >

n. After the iteration step, conversely, the arrow on the bond
changed its direction, and now describes the orthonormal
effective many-body space for the entire left block of sites
n′ � n. On a procedural level, one starts with the tensor
Ãn in Eq. (9) that carries the OC and performs QR or SV
decomposition on it [4,45]. This yields Ãn = AnX̃n, where An

is a new isometry, and the OC is now shifted onto the tensor

X̃n located on the bond in between sites (n, n + 1). When
contracted onto An+1, this makes the former isometry An+1

the new OC Ãn+1. Formally, in the last equality of Eq. (9), the
direction of a bond is flipped by using the Gauge freedom
inherent to TNS [4]. This consists of inserting the identity
1 = X̃ −1

n X̃n and then associating the tensors X̃ −1
n and X̃n with

the left and right A-tensors, respectively. However, as seen
from the left of Eq. (9), it is not necessary to actually compute
the inverse of X̃n here as this may be ill conditioned. Overall,
one can exactly flip the orientation of a leg in a TNS without
changing the global physical state. One only changes the local
perspective and interpretation by splitting off the tensor X̃n

from Ãn and contracting it onto the neighboring tensor An+1.
Now the discussion of flipping the direction of an arrow

on a leg of a given elementary CGT Cq with fixed symmetry
labels q follows much of the same spirit. In contrast to RMTs,
however, the procedure is naturally much more constrained
for CGTs. For example, a CGT is already always in a canon-
ical form (see higher-order SV decomposition [21]). Even
more, with Eq. (8), it has a constant singular value spectrum
with respect to any of its bonds, since by symmetry all states in
a given multiplet are necessarily equally important. As will be
shown below then, the matrix X̃ in Eq. (9) to flip the direction
of an arrow must be unitary for CGTs, while in the same
process the irep label q also needs to be switched to its dual q̄.

In order to show this, it is sufficient to narrow the dis-
cussion further down to a single directed line with symmetry
label q, assuming a single elementary non-Abelian symmetry
for the sake of the argument without restricting the case.
This line may represent, e.g., an auxiliary bond in a TNS,
and may be associated with the CGT C q

q ∝ 1|q|. In general,
now irep q has a unique dual representation q̄. This dual
shares the same multiplet dimension, i.e., |q| = |q̄|, and it
is the only irep that, when fused together with q, permits
the scalar representation as an outcome, i.e., having (qq̄|0)
exactly once. The corresponding CGT Cqq̄

0 therefore never
has OM, but is unique up to an overall sign convention. By
definition, the scalar representation, always denoted by the
label 0 here, is fully symmetric under symmetry operations.
Hence its multiplet only consists of a single state, i.e., |0| = 1.
For example, SU(2) is self-dual, i.e., q̄ = q for all q, such that
the product space of spin q = S with itself (and itself only)
always also yields a singlet with Stot = 0, having (SS|0). The
same argument can be further extended also to U(1) Abelian
symmetries such as charge (N) or spin (Sz). There the dual is
simply given by q̄ = −q, since q + (−q) = 0.

By making use of the dual representation, this allows one
to define the unitary matrix U qq̄

(0) ≡ √|q| Cqq̄
0 of dimension |q|

for any representation q as depicted in (10a):

(10)
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The singleton dimension in the scalar representation, indi-
cated by the dashed line to the right, will be frequently
skipped in U to emphasize that U is a matrix, indeed. Hence
the subscript 0 has been written in brackets. Now Tr(U †U )
[Eq. (10b)] is proportional to a rank-3 CGT fully contracted
with its conjugate. So when opening up a single index, here
the one for q, this must be proportional to the identity ma-
trix [see Eq. (8)], and with the normalization as chosen in
Eq. (10a) U qq̄ must therefore be unitary (strictly speaking,
orthogonal, since CGTs are always real).

This now permits us to insert a simple identity U †U=1 on
a given leg in a TNS, as depicted in Eq. (10c), which provides
a simple recipe to revert the arrow on any contracted line
with symmetry label q that links CGTs, much in the spirit of
Eq. (9) earlier. By simply contracting U and U T onto the two
neighboring tensors linked via the contraction, as indicated
by the broad arrows to the left and to the right in light color in
(10d), the arrow on the black line in the center now points in
the opposite direction as compared to (10c). At the same time,
the symmetry label on the bond flipped to its dual, i.e., q → q̄.
When not mentioned explicitly, the latter will be implicitly
assumed whenever individual indices are lowered or raised.
Since the unitary matrix U qq̄ effectively only refers to a single
symmetry label q, the unitary U qq̄ is referred to as a 1 j-symbol
with reference to the literature on SU(2) [70,71].

One needs to be careful, however, when skipping the
singleton dimension [dashed line in (10c)], which is reduced
to the little residual “stems” to the top in (10d): these stems are
important to keep track of the order of U qq̄ versus U q̄q, e.g.,
for self-dual q. They must point in the same direction (here
up), to ensure that the conjugate of precisely the same object
U qq̄ is inserted together with U qq̄ in order to guarantee an
identity matrix overall. Specifically, the dashed line in (10c)
must not cross the solid horizontal line. Otherwise sign errors
can arise, since [U qq̄]T = ±U q̄q where the sign depends on q.
For example, for SU(2) a sign arises for all half-integer spins.

In summary, 1 j-symbols can be utilized to revert arrows
on lines in a TNS or, equivalently, to raise or lower indices in
mathematical notation (in this sense, the 1 j-symbol acts like
a metric tensor within the tensor algebra of a given multiplet).
In principle, therefore it also suffices to tabulate the CGTs
with all-upper indices only (all incoming), since indices can
be simply lowered by applying 1 j’s.

1. Generation of 1 j-symbols

A 1 j-symbol can be computed, obviously, via a full irep
decomposition of (qq̄|∗). Starting from maximum weight
states, however, the largest ireps are always generated first,
with the 1 j-symbol the very last CGT to be generated. This
is not practical for very large multiplets, bearing in mind
that |q| = |q̄|. Also, in a TNS one typically fuses a given
large effective state space (bond index) with new local state
spaces of small dimension. That is, large (effective) multiplets
get fused routinely with (much) smaller ones. But for the
most part one can avoid fusing two large multiplets. This is
specifically important for large symmetries such as SU(N �
4) (see Appendix A).

Therefore an alternative route to computing 1 j-symbols is
desirable. Note that 1 j-symbols are only square matrices of

dimension |q|, which is in stark contrast to fully decompose a
|q|2 dimensional vector space into irreducible representations.
Moreover, 1 j-symbols are (close to) antidiagonal, i.e., very
sparse like CGTs in general. In the absence of inner multiplic-
ity (IM) [45] such as for SU(2), they are strictly antidiagonal
with alternating entries ±1.

The nontrivial part for 1 j-symbols arises from the antidi-
agonal block structure in the presence of IM, which requires
consistent conventions on how to decompose IM spaces [45].
The 1 j-symbol derives from a CG3. When the underlying
symmetry already permits OM for CG3s, this also implies
the presence of IM, and hence block structure in 1 j-symbols.
The 1 j-symbol itself, however, is unique otherwise up to a
global sign convention which is simply inherited here from the
overall sign convention on CGTs, as discussed with Eq. (7).

The approach taken in QSPACE (see Appendix B) then to
compute 1 j-symbols is based on the fact that the scalar mul-
tiplet q = 0 is destroyed by every one of the α = 1, . . . , rsym

generalized raising and lowering operators S(†)
α , with rsym the

rank of a given symmetry (see Appendix A; note that rsym

needs to be differentiated from the rank r of a tensor which
is just the number of its legs). Having explicit access to the
sparse generators S(†)

α in the representation q of some given
symmetry of rank rsym, one can resort to a variational Krylov
based minimization, and compute the ground state of the
sparse pseudo-Hamiltonian (cost function):

H1 j
q =

∑

α�rsym

(SαS†
α + S†

αSα )q. (11)

where S (tot)
α ≡ Sq

α ⊗ 1q̄ + 1q ⊗ Sq̄
α are the total generators in

the combined state space. This is in general a well-conditioned
problem with a unique ground state (the 1 j-symbol) at “en-
ergy” zero and with a “gap” of order 1. By construction,
this ground state must be simultaneously maximum and min-
imum weight state, hence representing a scalar multiplet. The
Krylov based minimization then allows one to directly con-
verge the 1 j-symbols via iterative means down to one’s nu-
merical floating-point precision. The sparse nature of the the
1 j-symbols strongly limits the variational parameter space,
and hence leads to fast convergence.

2. 1 j-symbols via contractions

A useful application of 1 j-symbols arises when computing
a ground state of a system which itself is in a global sin-
glet symmetry sector, i.e., the scalar representation qtot = 0.
By skipping this global singleton dimension, this requires
access to simple 1 j-symbols during setup. However, when
sweeping through the TNS, the OC repeatedly gets located on
an auxiliary bond deep inside the TNS where a wide range
of multiplets can be explored. Here the shifting of the OC
can also be achieved by contraction, e.g., by projecting onto
identity A-tensors (which correspond to simple A-tensors as
in Eq. (1) yet initially without truncation [45]). The tensor
X̃ that carries the OC onto a bond then has rank 2 with
all indices incoming. Therefore, up to normalization, all of
its CGTs necessarily must correspond to 1 j-symbols. In this
sense, 1 j-symbols can also be generated via contractions.
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E. Determination of OM dimension

Outer multiplicity of a given CGT is independent of the
direction of its legs. This is apparent from the above explicit
construction of reverting arrows which solely corresponds to
applying a specific unitary on a given leg. Therefore OM is an
intrinsic quantity of a CGT. Consequently, the OM index in a
pictorial description needs to be attached to the tensor itself
(and not to any of its legs), as already shown with the tensor
C in Eq. (4c).

The OM dimension for rank-3 CGTs can be determined via
standard fusion rules of a pair of irreducible representations.
If such a tensor product arises from building a quantum
many-body state starting from the vacuum state and iterative
fusion of local state spaces, they need to be computed in full
via a standard decomposition of a pair of ireps [45]. These
CG3s also build the elementary basis and starting point for
subsequent contractions of CGTs.

Now if one encounters a CGT of rank r > 3, its full OM
can be determined iteratively in a constructive way from
smaller rank tensors assuming that their OM is known. For
example, for a rank-4 CGT, the example in (4a) for SU(2)
can be generalized as follows: since arrow directions can be
altered at will without affecting the OM dimension (bearing
in mind to also switch to dual representations), one can build
the sequential MPS-like structure in (11a),

(12)

by taking the fused multiplet qi out of a CGT C1 into a tensor
product space with irep q3, and then picking the desired irep
q4. For fixed q’s then, given that there is no loop in (12a), the
combined OM μtot = 1, . . . , mtot of the CGT described by the
brown box is simply the product of the multiplicities of C1 and
C2. Bearing in mind that the intermediate contracted multiplet
qi can vary, the total OM of the CGT with q = (q1q2q3q4) is
given by

mtot =
∑

qi

m1(qi ) × m2(qi ). (13)

This can be shown by building an OM basis for the CGTs
derived from (12a) for all μ1�m1, μ2�m2, and for all per-
mitted qi. However, these are already all orthogonal to each
other, as seen from computing their overlap as in (12b).
Starting with the orthogonality of CG3s, the contraction in
the left blue box in (12b) is proportional to the identity matrix,
i.e., reduces to a simple line with weight ∝ δμ1μ

′
1
δqiq′

i
. When

repeated iteratively with the next (here last) pair of CGTs C2

and C′
2, this directly leads to Eq. (13). As emphasized there,

the multiplicities m1 and m2 clearly depend on the choice of qi.
The above procedure can be extended towards any sequence
of CGTs also of higher rank, that are contracted in a linear
sequence without loops. As a result this demonstrates that
the full outer multiplicity space grows rapidly (exponentially)
with increasing rank of a tensor.

As a general strategy then to avoid proliferation of OM
spaces, this suggests (i) to reduce the rank of a tensor by fusing
indices as far as possible (and practicable) in a TN algorithm.
Moreover, the actual level of OM generated also depends on
the specific TN calculation performed. For the largest CGTs
encountered, typically a far smaller OM space is explicitly
generated by contractions than theoretically possible. Hence
(ii) one can refrain from insisting on building the full OM
space in any circumstances encountered. Rather, one can build
the OM space on demand (see Appendix B). If a new OM
component is encountered via contractions, it can be added
once and for all to one’s database. On the downside, a buildup
of the CGT database this way becomes dependent on the
history of calculations. So one must be extremely careful to
ensure consistency across independent calculations or threads
that simultaneously access the same central database. This
can be achieved by coordinating updates, e.g., via locking
mechanisms, in order to avoid race conditions resulting in
inconsistent histories.

III. CONTRACTIONS

A. Pairwise contractions and X-symbols

Contractions in any TN state are always tackled by elemen-
tary pairwise contractions, in practice, in complete analogy
to evaluating the product of multiple matrices. Hence the
elementary step for contracting a TN state is the contraction of
two tensors. To be specific, consider some rank-4 tensor with
arbitrary but fixed index order 1, ..., 4, as shown in (14a):

(14)

In the presence of symmetries, it is redrawn schematically in
the spirit of (4a) and (4c) in (14b), depicting the decomposi-
tion of symmetry sectors into the tensor product of RMTs and
CGTs. For simplicity only a single CGT is shown, while in
the presence of multiple symmetries each has its own CGT.
Also, with reference to Eq. (5), there is a sum over symmetry
sectors while in the pictorial representation in (14b) the focus
is on one arbitrary but fixed set of symmetry labels q with the
matrix w that links the CGT to the corresponding RMT. To
further simplify the following discussion, (14b) is redrawn in
(14c) with indices and arrows removed, while bearing in mind
that, of course, arrows and index order stay intact. Also the
matrix wμμ′

q can be fully merged with (i.e., contracted onto)
‖A‖q. Hence the matrix w is not explicitly needed for the sake
of the argument here, and thus is skipped. The shading of
the CGT at the top of (14c), finally, indicates that the CGT
itself does not need to be explicitly stored with the tensor
A itself, but that a reference to a central database suffices.
This way the multiplicity index with the RMT automatically
represents an open index, as suggested by the grouping in
Eq. (5). Depending on the contraction, however, the resulting
CGTs may need to be updated centrally, e.g., if a new OM
component is encountered.
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Now consider a pair of tensors, A and B, as in (14)
contracted on a shared set of indices (state spaces), as shown
in (15a):

(15)

This is a generalized matrix multiplication, and thus is sym-
bolically written as A ∗ B. In the presence of non-Abelian
symmetries, they contain references to CGTs [Eq. (15b)]. Via
the tensor product structure in Eq. (5), the tensorial structure is
exactly the same for both RMTs as well as CGTs. Therefore,
when performing a contraction of two tensors on a specified
set of indices in a TNS, precisely the same contraction needs
to be performed on the level of the RMTs, ‖A‖ ∗ ‖B‖, as
well as on the level of CGTs, C ∗ D. These are separate
from each other, and hence can be dealt with completely
independently. The contraction of the RMTs always needs to
be performed explicitly, as this is part of the physical problem
under investigation. The contraction of CGTs, however, is
purely related to symmetries, and hence can be computed
once and for all and tabulated. Now consider the contraction
of some arbitrary but fixed pair of CGTs, C ∗ D as in (15b),
shown in (16a):

(16)

The contraction of two CGTs C ∗ D necessarily yields another
CGT labeled E in (16b), with its own orthonormal OM space.
Assuming its OM space is complete, then the contraction of
C ∗ D can be projected by inserting the identity E†E = 1 in
(16b). When fully contracting the conjugate E† onto C ∗ D,
this results in what is referred to as an X-symbol:

X μν
κ ≡ Tr

{(
Tri(∗)

C ,i(∗)
D

[Cμ ∗ Dν]
) ∗ E†

κ

}
, (17)

where C is contracted on the subset of legs iC with D on
legs iD, the result of which is fully contracted with E†, while
keeping the OM indices μ, ν, and κ (green lines) open.

The X-symbol is derived from a contraction (hence “X”) of
a pair of CGTs of arbitrary rank each and with fixed symmetry
labels. It has all TNS-related indices fully contracted [yellow
lines in (16b)]. Consequently, X-symbols represent a mapping
in OM spaces with the three open indices (μ, ν) �→ κ . With
E also a CGT fixed by symmetry, it can be referenced in
the final object, again suggested by the shading in (16c).
The overall result out of (16c) can now be inserted back
into (15c).

The pictorial representation in (15c) then exemplifies the
central result of this paper: in the process of a pairwise
contraction of tensors, it suffices to contract the centrally
stored X-symbol onto the OM indices of the corresponding
pair of RMTs, thus merging (μ, ν) and decomposing (κ) the

OM spaces. If the w matrices had not been contracted onto
the RMTs as in (14c), they can also be contracted here onto
the X-symbol, instead. Importantly, in the present context,
the summation over the OM indices μ and ν in Eq. (5)
has turned into a regular contraction involving RMTs and
X-symbols only. With the index κ left open now, it is E here
that can be simply referenced as indicated by the shading in
(15c). Nothing else remains to be done on the level of CGTs
themselves. Therefore if all X-symbols are available and up to
date in the database, the CGTs themselves can be completely
sidestepped. The X-symbols fully take care of the symmetry
related multiplicity spaces in an efficient and general manner.

As apparent from the definition in Eq. (17), each X-symbol
needs to remember where it came from via metadata. This
includes references to the three participating CGTs C, D, and
E (which also specifies all their symmetry labels, order, and
direction of legs), and what indices have been contracted [iC
and iD in Eq. (17)]. Moreover, depending on the context, one
may have to contract the conjugate of the input tensors C or D,
instead [indicated then by i∗C or i∗D in Eq. (17)]. Hence the X-
symbol also stores conjugation flags for all three CGTs. If the
OM space is built successively via contractions as they occur,
the X-symbol further needs to remember identifiers as to the
state of CGTs such as a high-resolution time stamp of their last
modification time when the X-symbol was computed. Then
if any of the CGTs gets updated later along the course of a
calculation, these serve as flags as to whether or not also the
X-symbol needs to be updated when the same contraction is
encountered again at a later stage.

Note that if C and D already have complete OM individu-
ally, this does not at all imply that also the C ∗ D will exhaust
the OM space of the resulting CGT E [see Eq. (13)]. When
(re)computing an X-symbol, if E is already present, e.g., from
other earlier contractions, C ∗ D needs to be projected onto it.
If the OM space of the current E was already complete, the
projection can fully represent the result. If the OM space of
E was incomplete, then new OM components out of C ∗ D
may arise, which need to be extracted and orthonormalized
via Schmidt decomposition (performed twice for numerical
stability). As this extends the OM space of the CGT E , finally,
it needs to be updated centrally.

B. Relation to 6 j-symbols

Consider the fully contracted TN of four tensors with a
total of six contracted lines in (18a):

(18)

The part left of the yellow vertical marker, for example, may
represent the matrix elements of an operator S† acting on
the local site incorporated by tensor A in a matrix product
state [4,9,45] [see also Eq. (6)]. For the sake of argument,
the symmetry sectors are arbitrary but fixed for all legs as
indicated. In the presence of non-abelian symmetries then, the
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contraction can be written in terms of RMTs and X-symbols
as in (18b). Now the contraction in (18a) can be performed
pairwise. The order of contractions is somewhat arbitrary,
where the one chosen in (18b) is [A† ∗ (S† ∗ A)] ∗ Y . Each
of the pairwise contractions of CGTs can make use of X-
symbols. The first contraction S† ∗ A, say, makes use of the
X-symbol x1. The resulting CGT contracted with A† makes
use of the X-symbol x2, the result of which when contracted
with Y makes use of x3. For the pairwise contraction of full
tensors which include RMTs and CGTs, the X-symbols need
to be contracted onto the RMTs as discussed with (15c).
Now the sequence of X-symbols depicted in (18b), in green
lines, can be isolated, thus keeping OM indices open. With
(16c) then, the resulting MPS-like sequence of X-symbols in
(18c) exactly corresponds to the contraction in (18a) but now
purely in terms of CGTs. Moreover, with the TN in (18a)
fully contracted, the CGT describing the overall result is a
rank-zero CGT, which itself clearly has no outer multiplicity.
Consequently, the sequence in (18c) stops with a singleton
dimension indicated by a dashed line with label “0.”

In terms of CGTs then, the contraction of the TN left
of the yellow marker in (18a) line results in a rank-3 CGT
(q2′ |q2q4) ≡ (q4q2|q2′ )†. The result of the contraction A† ∗
S† ∗ A therefore resembles the conjugate of a CG3. In order
to determine the precise decomposition, it can be projected
onto the CGT (q4q2|q2′ ), marked as Y in (18a) and (18b).
The TN in (18a) contains six contracted indices, and therefore
six symmetry sectors q = {q1, q2, q2′ , q3, q3′ , q4}. They con-
nect four CG3s, resulting in a fully contracted TN. Overall,
therefore (18a) represents a “6q” symbol or, in the SU(2)
context, the well-known 6 j symbol. Contrary to the case of
SU(2), however, which has no OM at the rank-3 level such
that 6 j-symbols are plain numbers, for general symmetries,
each of the four participating CGTs in (18a) can carry outer
multiplicity. Therefore the resulting 6q symbol has four open
OM indices for a general non-Abelian symmetry, i.e., repre-
sents a rank-4 tensor purely in terms of OM indices.

It follows therefore from the above constructive approach
that any fully contracted TN built from CGTs can be de-
composed into a linear sequence of contractions based on
X-symbols. In this sense, X-symbols are equally general as
3n- j symbols, in that any 3n- j symbol can be computed from
them. Yet X-symbols are much more naturally suited to tensor
network algorithms, in that they provide a general prescription
for the very elementary operation of a pairwise contraction of
two tensors of arbitrary rank each on an arbitrary subset of
indices.

C. Permutations and sorted CGTs

The indices of any tensor in a TNS need to be chosen in
some arbitrary but fixed order. The precise choice of order
within the TNS is typically a matter of convention, but of
no further concern otherwise. Permutations, if performed,
correspond to resorting of matrix elements according to the
new index order. The same also holds for CGTs. Therefore,
by convention, it suffices to only tabulate sorted CGTs which
have their symmetry labels (q labels) sorted within the set of
incoming or outgoing indices, e.g., in a lexicographical style.
Any reference to a specific CGT then includes a reference

to a sorted CGT together with a permutation p describing
the actual index order. The adopted sign convention is that
the stored sorted CGT starts with a positive coefficient. The
permuted references adhere to this original sorted tensor up to
the permutation only, i.e., there is no further sign adaptation
after permutation. This approach of making use of sorted
CGTs, i.e., with sorted q labels, allows one to significantly
reduce redundancy of the CGTs that need to be stored or,
subsequently, also contracted.

The above is a well-defined prescription for CGTs that
have different q labels on all of their legs. However, subtleties
arise if symmetry labels are degenerate, i.e., when precisely
the same representation occurs on more than one leg within
the group of either incoming or outgoing indices. Then the
prescription back and forth to sorted q labels is not unique,
i.e., there can be a different permutation p′ that also leads
to the same sorted q labels as the default permutation p
used in one’s algorithm. In this case the permutation p that
transforms p into p′ only operates within degenerate q-label
subspaces. It generates a nontrivial orthogonal rotation Up in
OM space that needs to be included in the permutation. This
Up can be explicitly computed by fully contracting Cq with the
conjugate of itself permuted by p, the result of which yields an
X-symbol, say Xp. As such, the matrix Up has all the properties
of an X-symbol, and hence can also be stored as such. Since
Xp represents the full contraction of two CGTs, the resulting
rank-zero tensor cannot have OM. Therefore similar to the
discussion with (18c), Xp has a singleton trailing dimension,
which can be skipped. This way, the X-symbol Xp reduces to
the matrix Up above. It can be absorbed into the matrix w as
in (14b) if w is kept track of, or directly contracted onto the
RMT for the situation in (14c).

D. Generating standard rank-3 CGTs

An elementary starting point for TN calculations are the
standard CG3s that fuse the typically small representations
of a physical site. As a TN grows, however, the multiplets
on the auxiliary bond indices can quickly explore a far larger
set of representations. This implies for contractions that often
one does not require the full tensor-product decomposition for
every single rank-3 CGT encountered, but only very specific
combinations. Since the full tensor-product decomposition of
the fusion of two large multiplets can become prohibitively
expensive for large symmetries (see Appendix A), the ques-
tion arises as to what extent specific (standard) rank-3 CGTs
can be obtained by other means.

Being interested in some specific CGT (q1q2|q3), in a TNS
setting, the typical situation is such that at least one of the legs
belongs to either the local state space of a physical site or to
the ireps according to which irreducible operators transform.
All of these are typically multiplets of small dimension.
Therefore in TN simulations, in practice, one of the ireps
qi (i = 1, 2, 3) in a rank-3 CGT can be considered small.
Frequently, it may even refer to the defining representation
or its dual, i.e., a primitive CGT [72,73]. One simple strategy
to compute such rank-3 CGTs with their full OM is to exploit
the freedom that arrows can be reverted at will (while also
switching to dual ireps). Hence, for example, the multiplets qi

can be sorted according to their dimension |qi|. Then the full
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tensor-product decomposition may be performed by taking
the tensor product of the smallest two ireps, and subsequently
reverting arrows as needed making use of 1 j-symbols.

Rank-3 CGTs also appear routinely as the result out of
contractions. The remainder of this section therefore is ded-
icated to the question as to what extent this can be used more
systematically to generate new (larger) CG3s with full OM.
As this only concerns symmetries, RMTs are fully ignored in
the following discussion.

1. Triangular CGT networks

A minimal CGT network required to compute a CG3 from
the contraction of other CG3s consists of the three CG3s in
the triangular configuration as shown in (19a):

(19)

Once the closed lines along the triangle in (19a) are con-
tracted, one obtains another CGT with three open legs. In
the present arrow configuration, the result is proportional to a
CG3 (q1q2|q3) labeled E in (19b). The proportionality factor
is obtained by projecting E onto the result out of (19a), as
depicted in (19c). This situation then is completely analogous
to computing 6 j-symbols as discussed with (18), with the set
of “6 j”s {q1, q2, q3, q′

1, q′
2, q′

3}. In general, E itself can have
outer multiplicity, in which case the proportionality factor in
(19a) becomes a matrix factor. Specifically, the result out of
contraction (19a) needs to be decomposed into the OM space
of E already present. If E has not yet been computed, the OM
space arising out of (19a) needs to be orthonormalized (e.g.,
via QR decomposition), thus defining the new E . If E already
existed yet had not been obtained from a full tensor-product
decomposition, the contraction in (19a) may yield new OM
components, and thus expands the OM space in E .

2. Iterative schemes for CG3s with full OM

New standard rank-3 CGTs, i.e., with two incoming and
one outgoing index, may be obtained systematically via a
recursive scheme based on contractions of smaller CG3s
for the sake of numerical efficiency [72–75]. To start with,
consider the CG3 (q1q2|q3) in (20a):

(20)

Any non-Abelian multiplet relevant in TN simulations, by
construction, is generated by building a quantum many-body

Hilbert space iteratively by adding one particle after another in
the defining irep (if all possible multiplets can be reached this
way, then the representation is said to be faithful (Burnside
theorem [72]). The number of particles relevant in a given
multiplet for SU(N) then relates to the number of boxes. In this
spirit, one can trivially add a disconnected line in the defining
irep [labeled “1,” e.g., one box in a SU(N) Young tableau]
along indices 1 and 2 as indicated by the blue line in (20b).
In order to have consistent directions with q1 and q2, however,
the arrow on the blue line is reverted with respect to, say, leg
2, which introduces the 1 j-symbol U1 while also switching to
the dual 1̄ on leg 2. This way the particle entering on leg 1 is
annihilated on leg 2, and never affects leg 3.

The blue line can then be fused with both q1 and q2 [(20c)],
giving rise also to larger multiplets q′

1 and q′
2 (indicated

by thicker lines). The contracted result in (20c) is again a
CG3, but now in (q′

1, q′
2|q3). The 1 j-symbol may be simply

contracted onto any of the connected CG3s (empty circles),
thus resulting in a triangular configuration similar to the one
already encountered in (20a).

The procedure above suggests that a CG3 in some larger
ireps q′

1 and q′
2 can be computed via a contraction of three

smaller CG3s (circles) in a triangular TN that has smaller
ireps (thinner lines) on the contracted lines. This also includes
primitive CG3s, i.e., CG3s that contain either the defining irep
qi = 1 or its dual 1̄ on one of their legs [72,73]. Such CG3s
[blue circles in (20)] are always OM free. Starting in (20a)
from a valid CG3, followed by plain operations of adding
and fusing a line in (20b), the result in (20c) is expected
to be nonzero for any valid primitive CG3s (q′

1, 1|q1) and
(q′

2, 1̄|q2), as long as they also result in a valid overall CG3
(q′

1q′
2|q3).

The simple argument with (20a)–(20c) can be reformulated
into a more general strategy on how to compute larger CG3s
recursively from smaller ones. Suppose one is interested in
computing the CG3 with larger ireps (q1q2|q3), as depicted by
thicker lines in (20d), meaning that they are not the defining
irep or its dual. Then one may split off the defining irep
from q1, such that (q1|1, q′

1) with q′
1 = q1 − 1 < q1. Here

q′
1 is “smaller” as compared to q1 in the sense that q′

1 has
one “fewer particle in the defining representation,” e.g., for
SU(N) it has one box fewer in the Young tableau (note q′

1
does not necessarily have to be an irep that is also smaller
in dimension, since a Young tableau with fewer boxes may
represent a multiplet of larger dimension). Similarly, the dual
of the defining representation, 1̄, is split off from q2, such
that (q2|1̄, q′

2) with q′
2 = q2 − 1̄ < q2 in the same sense as

for q′
1 above, except that an “antiparticle” (hole) was removed

from q2 where, e.g., for SU(N) the irep 1̄ consists of N − 1
boxes in a Young tableau, such that N − 1 boxes are split
off from the Young tableau for q2. Then merging the 1 j-
symbol as in (20c) (blue dot) with the lower CGT, this is
equivalent to having a simple line in irep 1 directed downward
in (20e). Depending on the external ireps, one may also have
to consider the reversed process in (20f) where one particle
moves upward. For general non-Abelian symmetry, typically
also multiple intermediate multiplets q′

1 and q′
2 can occur

with the same number of “particles” or “boxes,” all of which
need to be included, as this gives rise to OM in the targeted
(q1q2|q3). Besides, the CG3 (q′

1q′
2|q3) itself may already have
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OM which, however, is assumed to be complete from earlier
iterations, given that this CG3 is “smaller” with respect to two
of its legs in the above sense.

Aiming at reducing the size of the constituting CG3s as in
(20e) fails for a maximum weight CG3, having q3 = q1 + q2.
More generally, it fails for ireps q3 which have all particles
or boxes present from q1 + q2, still. For these cases, q3 can
no longer be reached by the smaller ireps q′

1 = q1 − 1 and
q′

2 = q2 − 1̄. However, in the present case this problem is
simply taken care of by remembering that directions on CGTs
can be easily altered using 1 j-symbols. Therefore adopting
a sorted order q1 � q2 � q3 (e.g., sorted lexicographically
in terms of q labels) this excludes (q1, q2|q3) from ever
becoming a maximum weight CG3 for nontrivial qi > 0.
As an aside, note that for SU(N) the multiplets q3 out of
(q1, q2|q3) all have the same number of boxes in their Young
tableau up to modulo N , i.e., up to having full columns of
N = 1 + (N − 1) boxes removed, the latter corresponding to
1 + 1̄. In (20e), by comparison, the maximum weight state
for q′

1 = q1 − 1 and q′
2 = q2 − 1̄ also has N fewer boxes,

indeed, effectively having removed one column in the Young
tableau.

Consider still the specific example of SU(2) where, for
convenience and also consistency with general SU(N), sym-
metry labels are taken as the integers qi ≡ 2Si � 0 for spin
label Si [45], as this also directly specifies the number of
boxes in the corresponding Yang tableau. When computing
the CG3 (q1q2|q3) as in (20e) then, with 1 = 1̄ for SU(2),
two fewer boxes in a Young tableau can reach q3, i.e., δq = 2,
or equivalently δS = 1. Since the maximum weight CG3 was
excluded by reference to sorted CG3s above, this is no issue.
This shows that the decomposition in (20e), indeed, works
well for SU(2), in that two primitive CG3s (blue circles) are
contracted with a CG3 that strictly contains smaller ireps on
its legs. The present prescription is thus analogous, e.g., to the
three-term recursive schemes for SU(2) introduced in [74,75]
which also make use of primitive CG3s.

The strategy above to compute CG3s for specific q labels
via a recursive approach is general for non-Abelian sym-
metries from its outline. What is explicitly demonstrated by
construction in (20a)–(20c) is that (20e) permits us to split off
and “route” a particle from leg 1 to 2 or vice versa (20f), while
it never reaches or participates in the multiplet on leg 3 [see
(20b)]. This approach above appears to work well empirically
to also generate the full OM space of the larger CG3 (q1q2|q3)
for arbitrary non-Abelian symmetries. At the present stage this
remains a conjecture, though, and a rigorous mathematical
proof is left for the future.

In any case, explicit generation of all encountered CGTs
becomes prohibitive with increasing symmetry rank r, since
typical multiplets grow exponentially in r, in practice like �
10r (see Appendix A). However these tensors are generated,
even the explicit evaluation of the primitive CG3s based on
tensor product decomposition fusing the defining irep only
will quickly hit a hard wall for r � 5 [e.g., with SU(N � 6)
already giving rise to a full tensor-product decomposition of
state spaces frequently exceeding several millions in dimen-
sion, even if the problem is sparse at a density of �10−3].
On the other hand, given that the X-symbols introduced in
this paper represent fully contracted CGT networks up to

OM indices, this also makes them susceptible to recursive
buildup schemes. This is an attractive route, since X-symbols
are generally much smaller in dimension than the contracted
CGTs they represent. For the purposes of this paper, however,
this is left as an outlook.

E. Summary

This paper introduces X-symbols for the efficient treatment
of pairwise contractions in tensor networks in the presence
of general non-Abelian symmetries. Once computed from
CGTs and tabulated, they permit us to completely sidestep
the explicit usage of CGTs at a latter stage, as they are
contracted onto the multiplicity indices of the involved RMTs.
X-symbols represent a general framework that is also trivially
applicable to Abelian symmetries. As such, they provide a
coherent concept for any type of symmetry setting. Much
of this paper is a summary of significant extensions that
have been implemented and already tested thoroughly in
the QSPACE v3 tensor library (see Appendix B) with strong
applications, e.g., in [55,76–81]. In this sense, the present
paper provides a concise, polished, and proven version of the
underlying concepts.
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APPENDIX A: SYMMETRY RANK AND TYPICAL
MULTIPLET DIMENSION

The rank r of a symmetry is an intrinsic property of a given
simple non-Abelian symmetry that needs to be differentiated
from the rank r of tensors. The Lie algebra of a simple non-
Abelian symmetry possesses at most r simultaneously com-
muting generators, which thus defines its rank. This Cartan
subalgebra Sz

α with α = 1, . . . , r can be simultaneously di-
agonalized [56–61], and hence gives rise to an r-dimensional
label, or weight space [45]. The Cartan subalgebra is com-
plemented by generalized raising and lowering operators S(†)

α

with α = 1, . . . , r which correspond to the simple roots of the
Lie algebra.

In practice, then the typical multiplet dimension encoun-
tered grows exponentially with the rank r as in |q| ∼ 10r

[45]. The essential reason for this is that multiplets explore
an r dimensional volume of label space derived from Sz

α . This
makes large symmetries such as SU(N) with rSU(N) = N − 1

023385-12



X-SYMBOLS FOR NON-ABELIAN SYMMETRIES IN … PHYSICAL REVIEW RESEARCH 2, 023385 (2020)

for N � 4 computationally challenging. In contrast, the well-
known SU(2) is a comparatively very simple yet elementary
non-Abelian symmetry, in that it corresponds to a symmetry
of rank rSU(2) = 1. Therefore a single label suffices (i.e., the
spin S). For the same reason, there is no IM for SU(2), and
also no OM for standard Clebsch-Gordan coefficient tensors
(rank-3 CGTs).

APPENDIX B: QSPACE v3

The concepts for non-Abelian symmetries presented in
this paper have been implemented over the past few years
in the tensor library QSPACE [45]. They were thoroughly
tested in a range of papers [7,9,45,55,76–81] with many more
applications via student and other research projects. QSPACE

was introduced in 2006 [as version 1 (v1)] on the level of
arbitrary combinations of Abelian symmetries. This is effec-
tively the present state of the ITensor Library [82]. QSPACE

v1 presented a convenient framework, with Weichselbaum
and von Delft [7] its first notable application. QSPACE v2
[45] was also able to handle non-Abelian symmetries on
a generic level, by introducing an additional tensor layer
for generalized CGTs. It built a database for irreducible
representations (R-store), as well as CG3s (C-store), i.e.,
with two arrows in and one out. The C-store also stored
a listing of the branching rules out of each tensor product
decomposition.

However, in QSPACE v2 the OM resolved CGTs were ex-
plicitly attached to each tensor in full together with the RMTs.
Individual entries (fixed symmetry sectors) contained linear
superpositions in outer multiplicity, i.e., CGTs of type Cμ

q ≡∑
μ′ wμμ′

Cqμ′ [see discussion after Eq. (5)]. This turned out
cumbersome since CGTs were re-contracted in every QSPACE

tensor contraction. Specifically for larger symmetries, e.g., for
SU(N � 4), this quickly shifted the dominant numerical cost
from the actual physical calculation with respect to the RMTs
‖A‖q to the treatment of the CGTs Cq.

Therefore for QSPACE v3 (developed and thoroughly tested
since 2015), not just CG3s but all CGTs of arbitrary rank are
computed on demand once and for all, properly orthonormal-
ized (see Sec. II B), and stored in the C-store. The QSPACE

tensor no longer carries the full CGTs but only a reference.
The X-symbols for pairwise contractions are also computed
on demand once and for all, and stored in an additional
centralized database (X-store).

In QSPACE, databases are generally built on demand, ex-
cept for the very elementary initialization when a symmetry is
used for the very first time. Preemptive calculation of all possi-
ble objects, e.g., up to some prespecified multiplet dimension,
quickly proliferates to hundreds of thousands of entries, even
though redundancy in storage has been minimized to a large
degree by using sorted CGTs, i.e., sorted with respect to their
q labels, etc. In the sense that it is impossible to build a
complete database for non-Abelian symmetries that permit
an infinite number of ireps, it is mandatory eventually in any
case, to build entries on demand. While it would not really
matter for SU(2) or SU(3), since all objects are (re-)computed
quickly in these cases, for larger non-Abelian symmetries, the
concepts of on demand and once and for all become crucially

important for numerical performance. For example, note that,
starting with SU(N � 4), the typical size of individual mul-
tiplets in CGTs quickly surpasses the number of multiplets
in RMTs used in a calculation. For example, in DMRG
simulations one barely exceeds an effective dimension
D∗ � 8000 within the space of RMTs. However, while
typical multiplets for SU(N) already reach dimensions
up to � 10N−1 = 1000 for SU(4), the largest gener-
ated multiplets there already reach � 10N = 10 000 (see
Appendix A).

Now building one’s database on demand quickly makes it
dependent on the history of a calculation. Even if CGTs are
computed with full OM, there can be an arbitrary orthogonal
rotation in OM space. In the absence of OM, this reduces to a
simple sign convention. However, for example, in SU(3), the
CG3 for (qq|q) with q = (nn) (using Dynkin labels [45,56])
with n � 0 has OM m = n + 1, and hence can already be
made arbitrarily large. Using symmetries under exchange of
the three legs is of limited use here to fully fix rotations in
OM space. Given that larger-rank CGTs are computed on
demand via contractions, their specific rotation in OM space
necessarily will depend on the specific tensors contracted first,
and hence on the history of the calculation. There exists no (at
least to the author) known convention that naturally and fully
fixes the basis of an OM decomposition in all circumstances
for CGTs of arbitrary rank.

Standard CG3s can be generated in two ways: (i) via
explicit tensor product decomposition (“standard Clebsch-
Gordan coefficients”) or (ii) via contractions including mul-
tiple rank-3 CGTs (see Sec. III D) or a pair of tensors with
rank r > 3. Option (i) is the clearly preferred option, since it
generates the full OM at once and in a deterministic and thus
well-defined manner. However, this can become prohibitive
for large symmetries, e.g., when considering the fusion of
two large multiplets on the bonds of a tensor network state,
while actually the full tensor-product decomposition is not
required (e.g., since the large bond multiplets only fuse into
the symmetry label of the global wave function, which often
is a singlet). The full tensor product of two large multiplets
may also be far too large to actually occur as a multiplet at the
level of a physical site in the lattice Hamiltonian of interest.
In this sense, there is (necessarily) a cutoff in dimension: if a
tensor product decomposition is required, e.g., when building
a product state space in a TNS setting, it needs to be performed
in any case. But if one needs to compute a contraction
that results in a rank-3 CGT, one may opt to perform a
full tensor-product decomposition first, and then project the
result of the contraction onto it. Or, alternatively, one may be
satisfied just with the result of the contraction itself. If the
resulting CGT already exists, the result is projected onto it,
thus possibly extending the existing OM space. Either way
may result in a different basis in OM space. It is crucially im-
portant then that one strictly ensures consistency across one’s
calculations.

Now given a history dependent database that is accessed
and maintained centrally, this implies when running multiple
jobs at the same time or when parallelizing within a single
job that threads need to be coordinated. That is, threads may
have to wait, if another thread is currently in the process of
updating the same object in the C-store (via contraction or
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tensor-product decomposition) or the X-store (if a contraction
between a new pair of CGTs needs to be performed, or if a
new OM component was encountered such that the derived
X-symbol needs to be updated). This coordination can be
enforced on the level of the database (e.g., locks on affected
objects) and also in memory in between different threads
(thread locks).

In summary, QSPACE v3 consists of three databases (re-
ferred to as “RCX store” as a whole):

(1) The R-store for irep representations generated in a
calculation. These include a full basis decomposition in terms
of weight labels, a sparse representation of the diagonal
Cartan subalgebra, as well as of the simple roots of the Lie
algebra (the generalized raising and lowering operators) under
consideration (see Appendix A).

(2) The C-store for storage of all CGTs of arbitrary rank
r � 2. The CGTs are stored in sparse format with typical aver-
age sparsity �10−3. The sparse format necessarily requires a
framework for sparse tensors of arbitrary rank which has been
coded from scratch into QSPACE v2. The C-store also stores
the fusion rules out of full tensor product decompositions, as
well as all 1 j-symbols, which simply represent a special case
of CGTs, namely, (qq̄|0).

(3) The X-store for the X-symbols that derive from any
encountered pairwise CGT contraction that are not trivially
zero due to non-permissible combinations of symmetry labels
(e.g., when a CGT contraction results in a nondiagonal rank-2
CGT or a rank-3 CGT that was not listed in an earlier full
tensor product decomposition).

The data in the R- and C-store are computed in better
than double precision (roughly quad), since the entire RCX
store is built iteratively along a TN calculation starting from
the very elementary defining representation (and its dual,
for convenience). This guards against accumulated error and
ensures that all entries are numerically exact in double pre-
cision. It is also important for sparse storage in order to
reliably distinguish actual possibly small CGT coefficients
from numerical noise. The X-symbols are computed from
CGTs in the C-store, but can eventually be cast into plain
double precision as they are contracted onto RMTs anyway.

The C-store for larger symmetries is extremely heteroge-
neous, as it contains tensors that represent scalars, all the
way up to individual CGTs that [e.g., for rank-4 CGTs in

SU(4) quickly] require 1 TB of space or larger. The X-store
contains by far the most of the entries. Many contractions
are known to be trivially zero since the symmetry labels of
the resulting CGT are not permitted from a symmetry point
of view, and hence can be excluded from the X-store. Still,
e.g., by not insisting that OM spaces are complete, the X-store
also contains many X-symbols that are actually zero, meaning
that the pairwise contractions of two CGTs results in a CGT
of finite dimensions, yet with (Frobenius) norm resembling
numerical noise.

When running multiple jobs, it is convenient to maintain
a central global RCX store that has strictly read-only access
(except for times when it is updated manually) which contains
the bulk of all symmetry related data. In addition, a differential
store that is local to each job allows each job to compute
and store whatever is needed in addition. Since the latter
is decoupled from other running jobs, at least at this level
interference between different simulations leading to possible
inconsistencies is avoided. Once an RCX store is complete
for a given calculation (e.g., if the same calculation is run
a second time), only metadata are read from the R and
C-store (such as branching rules in tensor products or irep
dimensions). For contractions, only the required X-symbols
in the X-store need to be read once, e.g., at runtime into a
program-internal hash table, with no need to explicitly load
the full CGTs from the C-store. The X-symbols are typically
much smaller than the involved CGTs, much like 6 j-symbols.

Since any tensor is stored as a QSPACE with the data
comprised as the tensor product in Eq. (2), in principle, it
has access to all matrix elements in the full state space.
This makes QSPACE tensors versatile [45] in that all of the
elementary tensor operations are allowed that one is used to
when performing calculations without symmetries, as long as
they do not explicitly break a symmetry. For example, it is
very difficult (since inconsistent) to represent a finite magnetic
field BSz if the calculation was initialized with SU(2) spin
symmetry. A representation of Sz would require us to break
up CGTs into specific components which when preserving
symmetries, however, are considered inseparable units. In the
presence of spontaneous symmetry breaking of an otherwise
symmetric Hamiltonian, on the other hand, symmetries can
be turned on and off at will. In particular, non-Abelian sym-
metries can also be reduced to their Abelian center. This is a
valuable approach to shed light on physical scenarios where
spontaneous symmetry breaking is weak or debated.
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