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Towards a soft magnetoelastic twist actuator
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Soft actuators allow external stimuli to transform into mechanical deformations. Because of their defor-
mational response to external magnetic fields, magnetic gels and elastomers are ideal candidates for such
tasks. Mostly, linear magnetostrictive deformations, that is, elongations or contractions along straight axes, are
discussed in this context. In contrast to that, here we propose the concept of a twist actuator that responds
by torsional deformations around the axis of an applied magnetic field. For this purpose, we theoretically
investigate the overall mechanical response of a basic model system containing discrete magnetizable particles
in a soft elastic matrix. Two different types of discrete particle arrangements are used as starting conditions in
the nonmagnetized state. These contain globally twisted anisotropic particle arrangements on the one hand, and
groups of discrete helical-like particle structures positioned side by side on the other hand. Besides the resulting
twist upon magnetization, we also evaluate other modes of deformation. Our analysis supports the construction
of magnetically orientable and actuatable torsional mixing devices in fluidic applications or other types of soft
actuators that initiate relative rotations between different components.
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I. INTRODUCTION

Torsional actuators respond by a twist-type deformation
to external stimuli. Most studies are concerned with linear
actuators that contract or elongate along a certain axis upon
actuation. However, there are several important prospective
applications of twist actuators, for example, microfluidic mix-
ing, microscopic surgery tools, and prosthetics [1]. Depending
on the application, a certain degree of softness of the actuator
in combination with a certain degree of biocompatibility may
be beneficial or even mandatory, particularly when it comes to
medical applications. This is one of the reasons why so-called
magnetic gels and elastomers (also commonly referred to
as magnetorheological elastomers or ferrogels) [2–11] were
introduced as important candidates for the construction of
soft actuators [2,12–24]. These materials usually consist of
magnetic or magnetizable colloidal particles embedded in an
elastic, typically polymeric matrix. Such magnetic gels have
the advantage that their distortions can be induced by external
magnetic fields, and the resulting deformation is typically
reversible [25].

To now generate magnetoelastic twist actuators in the form
of magnetic gels or elastomers (see Fig. 1), we suggest to build
on the following previously explored insights. When the ma-
terials are fabricated in the presence of strong homogeneous
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external magnetic fields, chainlike structures of the inserted
particles may form before the surrounding polymeric matrix is
permanently established through corresponding chemical pro-
cesses. Once the elastic matrix has reached its elastic (solid)
state, these particle structures remain locked in the material,
as can be seen in many experimental realizations [13,26–33].
One possible route to generate torsional actuators may be
to additionally twist these chainlike aggregates, before the
particle positions are fixed in the material by the final chem-
ical crosslinking and establishing of the elastic polymeric
matrix. This leads to self-supported torsional actuators. Such
a concept is different from materials that are clamped at
one end, contain anisotropic nonchiral structures, and are
twisted by external magnetic fields that exert torques on
the contained anisotropic aggregates [34,35]. Naturally, the
situation that we consider is also different from studying how
magnetic fields modify the stiffness of magnetic gels and
elastomers when distorted by externally imposed torsional
deformations [36–42].

To realize soft torsional actuators, in our case, on the one
hand, one may think of a globally, collectively twisted state of
the whole set of embedded chainlike aggregates in the initial,
cured state of the materials. On the other hand, one may as-
sume each individual chainlike aggregate to show an initially
twisted structure.

We start by considering globally twisted particle arrange-
ments as initial states. To generate corresponding samples, a
procedure of the following kind could be realistic. The ap-
proach is inspired by a protocol of synthesizing monodomain
nematic liquid-crystalline elastomers [43–45] consisting of
liquid-crystal molecules that are chemically attached to or
part of crosslinked polymeric networks [45–47]. Its scheme
follows a two-step crosslinking process [43–45], employing
two crosslinkers of different speed of chemical reaction. The

2643-1564/2020/2(2)/023383(14) 023383-1 Published by the American Physical Society

https://orcid.org/0000-0002-8462-3517
https://orcid.org/0000-0003-0713-4979
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.023383&domain=pdf&date_stamp=2020-06-23
https://doi.org/10.1103/PhysRevResearch.2.023383
https://creativecommons.org/licenses/by/4.0/


LUKAS FISCHER AND ANDREAS M. MENZEL PHYSICAL REVIEW RESEARCH 2, 023383 (2020)

FIG. 1. Illustration of the general idea and setup. The considered
soft magnetoelastic composite system is spherical in overall shape.
Upon application of a homogeneous external magnetic field B, it
shows a reversible torsional twist deformation, as indicated by the
bent arrows on the right-hand side.

action of the first crosslinker generates a weakly crosslinked
elastomeric sample that is stiff enough to already be uniax-
ially stretched. Maintaining this stretched state in which the
liquid-crystal molecules are on average uniaxially oriented
in response to the imposed strain, the second crosslinker
reacts and locks in this configuration. Along these lines,
monodomain nematic samples, featuring an average uniaxial
molecular liquid-crystalline alignment, are obtained. Such
materials show pronounced nonlinear stress-strain properties
when stretched perpendicular to the direction of nematic
alignment [43,44,48,49].

In our case of magnetic gels and elastomers, the two-step
crosslinking process may be performed accordingly. First,
under the presence of strong homogeneous external magnetic
fields, uniaxially ordered chainlike aggregates of the mag-
netized particles form. They get locked into the sample by
the generated surrounding elastic environment resulting from
the quick action of the first crosslinker [26–28,31–33,50,51].
Finite gaps between the particles as considered below may
result from previous coating of the particles or by using
surface-functionalized particles themselves as crosslinkers
[19,52–55]. In a next step, this precrosslinked system is
twisted around the anisotropy axis. This leads to a global twist
of the contained chainlike particle aggregates. The sample is
maintained in this state while the second, slower crosslinker is
reacting chemically and establishing the final elastic matrix.
In this way, the twisted structure gets permanently locked in.

Another, possibly more academic procedure to generate
example systems for investigations of the effects that we
predict here might be to deposit the particles in a controlled
way, maybe even by hand, at prescribed positions while gen-
erating the elastic environment layer by layer [56,57]. Even
macroscopic spherical particles could be used for such proofs
of concept [58]. In this case, besides implementing globally
twisted structures, one could also arrange the magnetizable
particles in individual helices, positioned in an aligned way
side by side. Maybe, in the future, such a deposition process
can be automated, as has recently been achieved for the
production of magnetic microhelices [59,60].

In the present work, we use such twisted discrete particle
configurations as an input to calculate the resulting magnet-
ically induced overall deformations of corresponding elastic
composite systems. Our theoretical approach is analytical,
based on linear elasticity theory, and then evaluated numer-

ically. To achieve such an analytical approach, we concentrate
on elastic systems of overall spherical shape. The degree of
initial twist is varied and the consequences of such variations
are analyzed, both by numerical evaluations and by simplified
analytical considerations. Both the globally twisted structures
as well as several individual helical-like aggregates arranged
side by side are addressed.

We give a brief overview of our theoretical approach in
Sec. II, together with a motivation of our chosen parame-
ter values. After that, in Sec. III the torsional actuation of
systems containing globally twisted particle configurations is
addressed. In Sec. IV, we consider particle arrangements of
helical aggregates positioned side by side. To further facilitate
the understanding, we compare the resulting twisting defor-
mation to a minimal analytical consideration in Sec. V. We
conclude in Sec. VI.

II. THEORETICAL FRAMEWORK

To perform the following evaluations, we build on our
methods developed in Ref. [61]. We assume that the elastic
material used for the magnetorheological elastomer and con-
taining the magnetizable particles is spatially isotropic as well
as homogeneous. Moreover, we confine ourselves to small
deformations (up to a couple of percent) so that we can use
linear elasticity theory. This allows us to superimpose the
deformations resulting from each internal force center.

Consequently, we describe this material via only two elas-
tic coefficients, namely, the shear modulus μ and the Poisson
ratio ν. They quantify the stiffness and compressibility of the
material, respectively. A Poisson ratio ν of 1/2, representing
an upper bound [62], describes incompressible materials.
However, the Poisson ratio can reach negative values as well,
down to −1 [62]. In these cases, the corresponding material is
called auxetic, implying that when stretched along one axis
it will show expansion to the lateral directions instead of
contraction.

Generally, the response of the elastic material to an applied
force density f (r) inside it is then quantified by the so-called
Navier-Cauchy equations [63],

μ�u(r) + μ

1 − 2ν
∇∇ · u(r) = − f (r), (1)

where u(r) denotes the displacement field at position r. In our
case, the elastic material forms a freestanding elastic sphere
of radius R. Fortunately, an analytical solution for Eq. (1) in
this case is available in terms of the corresponding Green’s
function. f (r) then specifies the effect of a pointlike force
center inside the elastic sphere. We were able to transfer
this solution to the case of a freestanding sphere of free
surface [61], starting from previous work that considered the
sphere embedded in an elastic background material [64]. This
analytical solution for the elastic part of the problem was
afterwards implemented numerically.

Next, to include the magnetic effects of magnetorheologi-
cal gels and elastomers, we distributed magnetic inclusions at
prescribed positions inside the elastic material, see Secs. III
and IV. We always assume the magnetic inclusions to be
sufficiently far apart from each other so that we can describe
their magnetic signature as magnetic dipoles. As a further
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simplification, we assume that the magnetic dipole moment
m = mm̂, where m = |m|, is identical for all inclusions. In
experiments, such a situation could be realized by applying a
strong external magnetic field that magnetizes all (identical)
inclusions to saturation.

In this case, the magnetic dipole-dipole forces are given
by [65]

Fi = − 3μ0m2

4π

N∑
j = 1
j �= i

5ˆ̄ri j (m̂ · ˆ̄ri j )2 − ˆ̄ri j − 2m̂(m̂ · ˆ̄ri j )

r̄4
i j

, (2)

where Fi is the force exerted by all other inclusions on the
ith inclusion. Moreover, μ0 denotes the magnetic vacuum
permeability, r̄i marks the position of the ith inclusion, the
difference vector of positions is given by r̄i j = r̄i − r̄ j =
r̄i j ˆ̄ri j with r̄i j = |r̄i j | (i, j = 1, ..., N), and N sets the number
of magnetized inclusions. The resulting force density inserted
into Eq. (1) based on Eq. (2) is

f (r) =
N∑

i=1

Fi δ(r − r̄i ), (3)

where δ(r) represents the Dirac delta function, and we thus
assume pointlike magnetic force centers.

After rescaling lengths by R and forces by μR2, the
strength of the magnetic forces relative to the elastic restoring
forces is characterized by a dimensionless force coefficient
3μ0m2/4πμR6. Its value is set to 5.4 × 10−8 for all that
follows, as inspired by realistic experimental parameters [61].
The inclusions are assumed to be of spherical shape as well,
with their radius set to a = 0.02R.

To include the effect of the induced elastic distortions on
the positions of the magnetized inclusions and thus on the
resulting magnetic forces and vice versa, an iterative scheme
had been developed, see Ref. [61]. Finally, to characterize
the induced overall deformations and capabilities of actuation,
we evaluate the resulting displacement field on 49 152 surface
points of the elastic sphere. These points are approximately
evenly distributed with positions generated by the HEALPix
package [66].

For the problem at hand, we choose the z axis to always
coincide with the magnetization direction of the magnetic in-
clusions, i.e., m̂ = ẑ. Moreover, we express the displacement
of each surface point using spherical coordinates as

u(r(θ, ϕ))= u⊥(θ, ϕ)

⎛
⎜⎝

sin θ cos ϕ

sin θ sin ϕ

cos θ

⎞
⎟⎠+uθ (θ, ϕ)

⎛
⎜⎝

cos θ cos ϕ

cos θ sin ϕ

− sin θ

⎞
⎟⎠

+ uϕ (θ, ϕ)

⎛
⎜⎝

− sin ϕ

cos ϕ

0

⎞
⎟⎠, (4)

with

r(θ, ϕ) = R

⎛
⎜⎝

sin θ cos ϕ

sin θ sin ϕ

cos θ

⎞
⎟⎠. (5)

Thus, the components u⊥, uθ , and uϕ describe displacements
inwards or outwards of the elastic surface, tangential deforma-
tions along the polar direction, and tangential deformations
along the azimuthal direction, respectively. Below, the com-
ponent uϕ will become particularly important to quantify the
overall twisting deformation.

To associate the resulting displacement field with different
modes of overall deformation, we perform spherical harmonic
expansions of u⊥, uθ , and uϕ . We use the same definitions
for spherical harmonics, especially concerning the Condon-
Shortley phase, as in Ref. [65]. The most relevant spherical
harmonics for our analysis are given by Y00 = √

1/4π , Y10 =√
3/4π cos θ , and Y20 = √

5/16π (3 cos2θ − 1).
As announced above, we then focus on the resulting overall

torsional deformations for two types of spatial arrangements
of the magnetizable inclusions: globally twisted and side-by-
side aligned helical structures, see Secs. III and IV, respec-
tively. The degree of initial structural twist in the nonmagne-
tized state is quantified by a parameter γ ; see below for its
definition. In both cases we confine the initial positions of the
inclusions by requiring a minimal distance of 3a = 0.06R to
the elastic spherical surface.

III. GLOBALLY TWISTED STRUCTURES

To numerically generate the globally twisted structures,
we start from layers of hexagonally arranged magnetic in-
clusions [51,67–69]. These layers are all oriented parallel to
the xy plane and spaced equally from each other in their
normal direction by a distance dlayer = 0.11R. The center layer
is located in the plane z = 0. In the initial, nonmagnetized
situation, the hexagonal particle arrangements within each
layer are in a state rotated by an angle of γ z/dlayer relative
to the arrangement in the plane z = 0. This corresponds
to a globally twisted configuration of the inclusions when
compared to straight chainlike aggregates aligned parallel
to the z axis. Here we consider small angles γ � 0.159π

to preserve the chainlike structure, see Fig. 2. The lattice
constant within each plane, which equals the lateral distance
between the chains, is set to dchain = 0.25R. Overall, this leads
to 623 magnetizable inclusions in 55 chains. An illustration
of an initial structure is presented in Fig. 3, where we have,
however, increased dchain to 0.5R for clarity. In the numerical
evaluation, we consider the range 0 � γ � 0.159π in steps of
approximately 0.0016π . We distinguish four possible values
of the Poisson ratio: ν = 0.5 (incompressible), ν = 0.3, ν =
0, and ν = −0.5 (auxetic).

As a first step, we focus on the following spherical har-
monic expansion parameters for the resulting overall surface
distortions: u⊥

00, u⊥
20, and uϕ

10. The coefficient u⊥
00 quantifies

overall changes in volume of the composite material. Positive
values correspond to an increase in volume, while negative
values correspond to a decrease in volume. Next, the coeffi-
cient u⊥

20 describes a relative elongation (u⊥
20 > 0) or contrac-

tion (u⊥
20 < 0) along the direction of magnetization, here along

the z axis. Most important for our investigation in the present
context is the parameter uϕ

10. This coefficient is set by the
lowest mode of a twist-type deformation around the z axis. For
a counterclockwise rotation of the upper hemisphere against
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dchain

dlayer

ẑ

γ

FIG. 2. Illustration of two layers of hexagonally arranged mag-
netizable inclusions inside the elastic material. dlayer sets the vertical
distance between two layers, dchain the in-plane particle distance.
We set dchain = 0.25R > dlayer = 0.11R, which implies vertically
aligned, chainlike aggregates. Here, for illustration, dlayer is exag-
gerated. The upper arrangement shows a rotation by an angle γ

relative to the lower arrangement, where we chose γ = π/6 for
reasons of visibility. To emphasize the twist from layer to layer,
we plot the positions corresponding to the lower layer in the upper
layer as gray spheres, together with a dotted arrow that shows their
vertical identification. Having applied a rotation by γ to the structure
from the lower layer, the positions marked by dark spheres result.
We indicate this in-plane rotational displacement by blue in-plane
arrows. In the teal triangle, we illustrate the definition of the angle γ .

FIG. 3. Illustration of an example for the initial structure of the
magnetizable inclusions, indicated as small (blue) spheres, inside
the larger elastic sphere. This structure is generated from hexago-
nally arranged parallel chainlike aggregates of particles, where each
horizontal layer of particles is rotated relative to the next particle
layer underneath by an angle γ , see Fig. 2. In this illustration,
we chose γ ≈ 0.019π . Moreover, for better visibility, we here set
dchain = 0.5R. Instead, for our actual numerical evaluation, we used
a value of dchain = 0.25R.
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FIG. 4. Resulting overall surface displacement field of the spher-
ical magnetoelastic composite upon magnetization for an initially
globally twisted configuration of the magnetizable inclusions. To
quantify perpendicular surface displacements, we plot the two co-
efficients (a) u⊥

00 and (b) u⊥
20, indicating overall volume changes

and overall elongation along the magnetization direction relative to
lateral contraction, respectively. To quantify the lowest mode of an
overall twist deformation around the magnetization axis, we plot
the coefficient (c) uϕ

10. In all three cases, we display the behavior
with increasing angle γ , characterizing the global twist of the initial
nonmagnetized structure of inclusions (see Fig. 2 for the definition
of γ ). Moreover, we show graphs for the four different values of the
Poisson ratio, namely, ν = 0.5, ν = 0.3, ν = 0, and ν = −0.5.

the lower hemisphere it becomes uϕ
10 > 0. For a reversed

mutual sense of rotation, one obtains uϕ
10 < 0.

The three coefficients u⊥
00, u⊥

20, and uϕ
10 are shown in Fig. 4

when the aforementioned particle structures are magnetized.
We have not included the data for negative values of γ because
the curves in Figs. 4(a) and 4(b) are mirror symmetric with
respect to the line γ = 0, while the curve in Fig. 4(c) features
a point symmetry with respect to the origin.

As a first result, we infer from Fig. 4(a) that the overall
volume is constant (u⊥

00 ≈ 0) for ν = 0.5, as expected for
an incompressible material. With decreasing Poisson ratio,
we find that the elastic sphere shrinks more and more upon
magnetization. Naturally, this volume decrease is maximal for
γ = 0, i.e., straight chains of magnetizable inclusions. In this
case, the induced attraction between the particles along each
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chain is strongest. When increasing γ , the volume decrease
becomes smaller and oscillates for higher values of γ .

Similarly, we infer from Fig. 4(b) that the overall con-
traction along the magnetization direction relative to a lateral
expansion, as quantified by u⊥

20, is strongest for γ = 0 for the
same reason as above. This effect is most pronounced for in-
compressible materials because the contraction along the field
implies lateral expansions for reasons of volume conservation.
In contrast to that, the auxetic nature for ν = −0.5 counteracts
the lateral expansion for γ = 0. The oscillations for increasing
values of γ can be found in this coefficient as well.

When we focus on the behavior of uϕ
10 in Fig. 4(c), we

observe that it is almost independent of the Poisson ratio.
This is expected because a pure twist-type deformation leaves
the total volume unchanged. A small effect of the Poisson
ratio is still present and can most likely be attributed to
nonlinear effects revealed by our iterative scheme, i.e., to
the effects of the resulting displacements of the magnetic
inclusions, which are larger for more compressible materials.
Furthermore, we do not observe any torsional deformation for
γ = 0 because our initial configuration is not twisted in this
case. Increasing γ from zero, we see that the corresponding
values of uϕ

10 first become more and more negative. The sign
here represents the sense of the induced torsional deformation
of the composite, which is opposing the sense of initial twist
of the initial structure. We reach a maximum magnitude of
this twist deformation at γ ≈ 0.019π . For larger values of γ ,
the magnitude of uϕ

10 again decreases. This effect results from
the increasing distance between the inclusions with increasing
γ , implying a decreasing magnetic interaction. At even larger
values of γ , uϕ

10 oscillates around zero. We return to this
feature in Sec. V.

In practice, one would typically be interested in the situa-
tion of maximum observed effect. We therefore concentrate
on the system for γ ≈ 0.019π . First, we checked how the
magnitude of the induced torsion around the z axis varies with
the height z above or below the horizontal center plane (the xy
plane). For this purpose, we calculated the average azimuthal
angular displacement of the horizontal plane parallel to the xy
plane at height z as

�ϕ(z) =
〈
arctan

(
uϕ

√
R2 − z2

)〉
z

, (6)

where 〈. . . 〉z denotes an average over all surface points at
which uϕ was evaluated at a given height z. We found that
this quantity is approximately proportional to z. Furthermore,
we find that it is nearly independent of the Poisson ratio, in
agreement with the behavior of uϕ

10 in Fig. 4(c).
As a further visualization of the magnetically induced

deformation of the spherical elastic systems, again for angles
of initial global twist of γ ≈ 0.019π and for the four values of
the Poisson ratio as in Fig. 4, we illustrate in Fig. 5 the types
and magnitudes of deformation associated with the three main
modes that we have focused on, namely, u⊥

00, u⊥
20, and uϕ

10. For
this purpose, we show in each case the elastic sphere in the
undeformed state in blue. The sphere in the deformed state is
shown in ocher. Only the modes with expansion coefficients
u⊥

00 and u⊥
20, associated with the overall change in volume and

the relative elongation along the axis of the magnetic field,

FIG. 5. Illustrations of the differences between the undeformed
spherical state of each system (blue) and its deformed state (ocher)
upon magnetization for elastic spheres containing globally twisted
structures of the magnetic inclusions. The structures initially feature
the same value of γ as in Fig. 3. Only the effects of the modes u⊥

00 and
u⊥

20 are included to draw the deformed spheres. These deformations
are represented (approximately) quantitatively; however, we have
increased their magnitudes by a factor of 50 for illustration. More-
over, the deformation associated with the mode uϕ

10, representing
the magnitude as well as the direction of the magnetically induced
torsional deformation, is encoded by the lengths (increased by a
common global factor for illustration) and directions of the bent
(ocher) arrows. Results are displayed for the same four values of the
Poisson ratio ν as in Fig. 4.

respectively, are used to determine the shape of the deformed
sphere in these illustrations. We multiply the values of u⊥

00
and u⊥

20 by a factor of 50 for visualization. Furthermore, the
lengths of the bent arrows encode the magnitude of uϕ

10 and
the sense of the associated torsional deformation.

Considering the results, Fig. 5 confirms the aforemen-
tioned trends of the overall shrinking volume for compressible
materials and the additional relative contraction along the
axis of the magnetic field. The latter process is linked to an
expansion/contraction along the lateral directions for the pos-
itive/negative value(s) of the Poisson ratio. Furthermore, we
see that the magnitude of the induced twist-type deformation
is approximately independent of the Poisson ratio.

Next, in Fig. 6 we provide additional information on the
importance of different modes involved in the overall surface
displacement, obtained by our expansion of the perpendicular
and tangential components of the surface displacement field
into spherical harmonics. Again, we concentrate on the value
of γ ≈ 0.019π , and we use the same four values of the
Poisson ratio as in Fig. 4. We select the expansion coef-
ficients alm of ten representative spherical harmonic modes
for each component of the displacement field according to
the following scheme. First, for each mode the value of
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FIG. 6. For the same systems considered in Fig. 4, we depict for
γ ≈ 0.019π the values of the expansion coefficients into spherical
harmonics for the three components (a) u⊥, (b) uθ , and (c) uϕ of the
overall surface displacement field. The value of γ is the same as in
Fig. 3. The real part is always plotted along the upper line, while
the lower line illustrates the imaginary part of the corresponding
spherical harmonic expansion coefficient. We use bar plots with
the four colors corresponding to the four selected values of the
Poisson ratio ν = 0.5, ν = 0.3, ν = 0, and ν = −0.5. In this way,
the values of the expansion coefficients for ten representative modes
are displayed for the three components of the surface displacement
field. Particularly, we note the dominating character of the mode
(l, m) = (1, 0) for uϕ , which is associated with the type of twist
actuation upon magnetization that we here focus on. Additionally,
we include matrix plots to illustrate the magnitudes of the expansion
coefficients associated with these and additional modes in the Sup-
plemental Material [70].

alm of highest magnitude is identified from the four values
associated with the different Poisson ratios ν. These alm are
then ordered according to their absolute values, and we find
the labels l, m for the ten largest ones. Due to the high
degree of symmetry of our configurations, the most dominant
modes are those of m = 0. However, we observe nonvanishing
modes that depend on ϕ as well, characterized by m �= 0.
This leads to complex expansion coefficients. Since u⊥, uθ ,
and uϕ are real, we can find values for negative m via the
relation al (−m) = (−1)ma∗

lm, where the star denotes complex
conjugation. Consequently, for real alm the corresponding

spherical harmonics result together with al (−m) in a cos (mϕ)
mode, while purely imaginary alm result in a −sin (mϕ) mode.
The real and the imaginary parts of alm are shown separately
in the plots. (For an illustration of the values of the coefficients
alm in a different way, namely, matrix plots, together with
values for additional modes and for modes of negative m, we
refer to the Supplemental Material [70].)

Figure 6 confirms that those coefficients that we have been
concentrating on so far indeed dominate the spectrum. For u⊥,
see Fig. 6(a), these correspond to an overall volume change
(l = m = 0), especially for auxetic materials and except for
ν = 0.5, and to an overall contraction along the magnetization
direction relative to a lateral expansion (l = 2, m = 0), with
small higher-order corrections. All coefficients odd in l for
m = 0 are approximately zero here. We observe some very
small contributions related to the sixfold symmetry about the
z axis in the modes of l = 15, m = 6 and l = 24, m = 6.

Turning to uθ in Fig. 6(b), significantly smaller absolute
values of the expansion coefficients are obtained. Here, as for
uϕ in Fig. 6(c), the coefficients even in l vanish approximately
for m = 0, in contrast to the case for u⊥. The most important
contribution to uθ in the mode l = 1, m = 0 corresponds
to an overall surface displacement towards the equator on
both the upper hemisphere and the lower hemisphere upon
magnetization. In the incompressible case this effect is most
pronounced, as we then have the strongest expansion of the
sphere in the lateral directions. Again, higher-order contribu-
tions emerge which strengthen the aforementioned effect in
the vicinity of the equatorial plane.

Considering uϕ in Fig. 6(c) reveals the most important
mode in the present context, associated with the twist de-
formation through magnetization. As noted already above,
the mode l = 1, m = 0 is associated with a rotation around
the magnetization direction of the upper hemisphere relative
to the lower hemisphere. This mode dominates the overall
behavior by its absolute value [only exceeded by the mode
corresponding to overall volume expansion for the auxetic
case ν = −0.5 in Fig. 6(a)]. Near the equatorial plane, higher-
order modes in combination still support the effect of the
upper hemisphere being rotated relatively to the lower hemi-
sphere.

IV. HELICAL STRUCTURES

As a next step we address helical structures of the mag-
netizable particles embedded in the same elastic spheres as
before, arranged side by side. In contrast to the globally
twisted structure of parallel chainlike aggregates investigated
in Sec. III, we now consider each chainlike element by itself
to feature an initial helical shape. To set up our numerical sys-
tems, we again start from hexagonal arrangements of aligned
chainlike aggregates as before, this time for dchain = 0.5R,
i.e., for double the distance to each other. As above, the
vertical distance of the horizontal layers of particles is set
to dlayer = 0.11R. However, instead of initiating each layer
rigidly rotated relatively to its upper and lower neighboring
one, we now rigidly displace each layer laterally by adding a
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FIG. 7. Illustration of initially nonmagnetized particle structures
composed of helical elements of magnetizable inclusions, arranged
side by side. Within each layer parallel to the xy plane, the particles
form a hexagonal lattice of lattice constant dchain = 0.5R. The layers
have a vertical spacing of dlayer = 0.11R. Furthermore, we here chose
the radius of each helix to be rhelix = 0.05R. In the depicted case, we
set γ = π/8.

vector

rhelix(z) = rhelix

⎛
⎜⎝

cos(γ z/dlayer )

sin(γ z/dlayer )

0

⎞
⎟⎠. (7)

This lateral shift introduces an additional parameter, namely,
rhelix. Here we show results for structures corresponding
to two different values rhelix = 0.05R and rhelix = 0.1R, see
Figs. 7 and 8, respectively. In both cases, we fit 95 magneti-
zable inclusions into our elastic sphere, avoiding inclusions

FIG. 8. Same as in Fig. 7, but for rhelix = 0.1R.

FIG. 9. Same as in Fig. 4 but for the systems composed of helical
structure elements of magnetizable inclusions arranged side by side
instead of a globally twisted structure. Here, rhelix = 0.05R, as in
Fig. 7.

that would need to be deleted for particular values of γ .
Importantly, the overall structure in each case is no longer
sixfold rotationally symmetric about the z axis nor globally
screw-symmetric within the spherical boundaries. In the cen-
ter layer for z = 0, all helices start with a particle deflection
in the x direction, rhelix(0) = rhelixx̂, according to Eq. (7).
The resulting structures composed of helical aggregates are
depicted in Figs. 7 and 8. Using our numerical approach, we
evaluate the full range 0 � γ � 2π in steps of π/360.

As in Sec. III, we first address the expansion coefficients
u⊥

00, u⊥
20, and uϕ

10 for the overall displacements upon magneti-
zation as functions of γ . The curves in Figs. 9(a), 9(b), 10(a),
and 10(b) show a mirror symmetry with respect to the vertical
line γ = π , while those in Figs. 9(c) and 10(c) feature a point
symmetry with respect to the point (γ , uϕ

10) = (π, 0). This is
expected because Y00 and Y20 are even in z, while Y10 is odd.
Obviously, the results for helices of an initial twist π < γ <

2π can be mapped onto those for a corresponding initial twist
of 2π − γ . Illustratively, this corresponds to helices that differ
only by their sense of twist. The resulting displacements are
of much smaller magnitude when compared to the results for
the globally twisted arrangements in Fig. 4, which can already
be expected from the lower total number of inclusions for the
helical structures (95 here versus 623 inclusions in Fig. 4).
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FIG. 10. Same as in Fig. 9 but for setups with rhelix = 0.1R.

We start by considering the configurations of rhelix =
0.05R. In Fig. 9(a), we again find that the elastic sphere,
except for ν = 0.5, shrinks as a whole, specifically for
the smallest and largest values of γ . For these values, the
chains are straightest and therefore show the maximal internal
longitudinal attractive forces. Furthermore, the absolute mag-
nitude of overall contraction strongly increases with decreas-
ing Poisson ratio, i.e., for more compressible spheres.

Next we address in Fig. 9(b) the elongation along the
magnetization relative to the lateral contraction. Qualitatively,
we infer a similar behavior as in Fig. 9(a). Here we observe a
further, much smaller minimum for γ = π because we have
effectively generated two chains of distance 2rhelix = 0.1R out
of each helix. Apart from that, auxetic materials show stronger
relative contractions along the magnetization axis.

Concerning the magnitude of the twist actuation quantified
by Fig. 9(c), we again find a pronounced minimum, here
around γ ≈ 0.24π . In line with the point symmetry of the
curve mentioned above, the corresponding maximum is lo-
cated at γ ≈ 1.76π . As in Sec. III, uϕ

10 as a measure for the
twist actuation is approximately independent of the Poisson
ratio. This behavior will also be discussed in Sec. V.

Figure 10 shows corresponding results for rhelix = 0.1R.
The qualitative picture is similar to Fig. 9, with the same
symmetries of the curves. We notice that the aforementioned
minimum at γ = π [Fig. 10(b)] is more pronounced and can
be found in u⊥

00 [Fig. 10(a)] as well. Concerning the coefficient

FIG. 11. Same as in Fig. 5, but here for a system containing
helical structures of radius rhelix = 0.05R arranged side by side, see
Fig. 7, for γ ≈ 0.24π . This value of γ corresponds to the minimum
of the curves in Fig. 9(c) and thus to the maximal magnitude of
induced twist actuation. Here the rescaling factor for illustrating
the overall changes in volume and the relative elongation along the
direction of the imposed magnetic field is two times bigger than
in Fig. 5 for the case of the initially globally twisted structures.
Moreover, we rescale the lengths of the bent arrows by an additional
factor of 20 when compared to Fig. 5.

uϕ
10 quantifying the twist actuation, we see that the minimum

is shifted to smaller values of γ , namely, to γ ≈ 0.13π , and
is increased in magnitude by a factor of approximately 2.23.
Moreover, some oscillations together with positive values of
uϕ

10 occur at higher values of γ < π . Again, we will return to
this topic in Sec. V.

To further visualize these deformations, we again add
in Figs. 11 and 12 corresponding illustrations in analogy
to Fig. 5. The values of γ are chosen as those identified
for maximized amplitudes of magnetically induced torsional
deformations, represented by the minima in the curves of
Figs. 9(c) and 10(c). For rhelix = 0.05R and rhelix = 0.1R, we
show the results in Figs. 11 and 12, respectively. Here u⊥

00
and u⊥

20 are multiplied by a factor of 100 for illustration. The
lengths of the bent arrows are rescaled by an additional factor
of 20 when compared to Fig. 5 in Sec. III.

These different factors already indicate that the overall
induced deformations are much smaller in the present cases
of included helical structural elements when compared to the
investigated globally twisted structures in Sec. III. Specifi-
cally, this remark concerns the twist deformation. Comparing
the results for the two types of helical structures, we observe
that in the case of rhelix = 0.05R the amount of torsional
deformation is much smaller (less than half the magnitude)
than in the case of rhelix = 0.1R. However, the reduction in
overall volume and the relative contraction along the axis of
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FIG. 12. Same as in Fig. 11 but for a system of the included
helical structures of radius rhelix = 0.1R, as illustrated in Fig. 8, here
for γ ≈ 0.13π . The latter value identifies the minimum on the curves
in Fig. 10(c).

the magnetic field are both very similar in magnitude, albeit
slightly bigger in the former case.

We continue with a discussion on the coefficients ob-
tained from an expansion of the surface displacement fields
into spherical harmonics for the same two configurations.
Corresponding values are displayed in Figs. 13 and 14 for
the configurations of rhelix = 0.05R and rhelix = 0.1R, respec-
tively. Again, we plot ten relevant modes for each of the
three components of the surface displacement field identified
according to the same scheme as in Sec. III. (As before,
additional illustrations in terms of matrix plots can be found
in the Supplemental Material [70].)

Figure 13(a) shows that u⊥
00 and u⊥

20 dominate the over-
all behavior (for ν = 0.5 we correctly find u⊥

00 ≈ 0). Some
higher-order contributions to u⊥ are observed, however, of a
relative magnitude of less than 15% of the dominant mode,
given by either u⊥

00 or u⊥
20. The configurations are less sym-

metric than those in Sec. III, and we observe a stronger
influence of the modes of m �= 0, particularly for m = 1,
which characterizes the lowest-order nontrivial dependence
on ϕ.

Next, Fig. 13(b) identifies uθ
10 as a dominating mode of uθ

for ν � 0. The same was observed in Fig. 6(b). In general,
higher-order modes enter as well, especially for auxetic ma-
terials. As before, the maximal magnitude of the modes de-
scribed by uθ is smaller than the magnitude of the dominating
mode for u⊥.

The modes relevant to torsional deformations of the elastic
material are addressed in Fig. 13(c). We observe again the
most dominant mode to be the lowest one, i.e., uϕ

10. However,
we also find another mode to be almost equally as strong,
namely, uϕ

41. This is most likely an effect related to the

FIG. 13. Same as in Fig. 6 but for the configuration underlying
Fig. 9 for γ ≈ 0.24π . See also the Supplemental Material for corre-
sponding matrix plots [70].

specific helical structure that was used in our investigation.
Nevertheless, both modes are of smaller magnitude when
compared to the modes of uθ and even smaller when compared
to u⊥. Thus, the twisting actuation for this structure is only
of secondary importance when compared, for instance, to
the global volume change or relative elongation along the
magnetization direction.

In addressing the results for the structures of rhelix = 0.1R
in Fig. 14, we mainly focus on the differences when compared
to the situation in Fig. 13. Due to the larger magnitude of rhelix,
the asymmetry of the configurations with respect to rotations
around the z axis by π/3 is still more pronounced, and we
thus observe even more relevant modes for m �= 0. This trend
concerns all three components of the surface displacement
field in Figs. 14(a), 14(b), and 14(c). Differences between
Figs. 13 and 14, especially in the mode numbers for m �= 0,
can to some extent be traced back to the different value of γ of
the investigated structure, according to the different locations
of the minima in Figs. 9(c) and 10(c).

Particularly when focusing on the torsional deformation
addressed in Fig. 14(c), we observe that the mode uϕ

10 iden-
tifying a global twist deformation is not even the strongest
one here. Instead, the strongest mode is uϕ

31. This mode is
symmetric for z → −z, implying that it cannot describe an
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FIG. 14. Same as in Fig. 6 but for the configuration underlying
Fig. 10 for γ ≈ 0.13π . See also the Supplemental Material for
corresponding matrix plots [70].

overall twist deformation corresponding to a relative rotation
of the top hemisphere with respect to the bottom hemisphere.
However, the lowest mode of twist actuation uϕ

10 has a much
higher absolute magnitude when compared to the structures
of rhelix = 0.05R in Fig. 13(c). Apparently, the radius of
the helical elements can have a pronounced effect, partly of
antagonistic consequences. If such systems are transferred
to actual applications, it is therefore important to adjust the
radius of the helical elements to the desired behavior.

Overall, we observe a significantly more pronounced influ-
ence of higher-order modes and particularly modes depending
on ϕ for the displacement fields in Figs. 13 and 14 when
compared to the results in Fig. 6. Importantly, the ratio of
the magnitudes of uϕ

10 to the magnitudes of u⊥
00 (except for

ν = 0.5) or u⊥
20 is much smaller. Thus, the twist actuation

is not as pure for the investigated structures composed of
helical elements, and we conclude that the globally twisted
structures of Sec. III are in general more promising candidates
to construct a magnetoelastic twist actuator.

V. MINIMAL ANALYTICAL MODEL

Having presented our numerical results for the functions
uϕ

10(γ ) in Secs. III and IV, shown in Fig. 4(c) as well as in

i

j

dlayer

Δ

r̄ij

ζ

ẑ

(a)

ẑ

j

i

ρρ
γ
2

γ
2

Δ
(b)

FIG. 15. In a simplified discussion, we consider the interactions
between the magnetized nearest-neighboring particles i and j on an
initially twisted chainlike aggregate. Their dipole moments, aligned
with the center axis ẑ, are depicted by small arrows. We denote the
vector from the position of j to the position of i by r̄i j . In (a), their
distance along the z axis is given by dlayer , and their lateral distance is
denoted as �. ζ quantifies the angle between the z axis and r̄i j at the
site of particle i. In (b) we show a bottom view of the configuration.
We introduce two right-angled triangles to relate the lateral distance
� between the particles to the radial distance ρ of the particles from
the center axis, around which the initial twist of the structure was
set. The angle γ was defined previously for both the globally twisted
structures and the helically twisted structural elements arranged side
by side; see Fig. 2 and Eq. (7), respectively.

Figs. 9(c) and 10(c), respectively, we here discuss how we
can understand the behavior qualitatively in simpler terms.
To this end, we propose a minimal analytic model based on
the dipole-dipole force between the inclusions, see Eq. (2).
If we only concentrate on the magnetic interactions between
two nearest neighbors on a single chain, the geometry can be
parameterized as depicted in Fig. 15.

Obviously, the situation in reality is more complex as
magnetic dipole interactions are long-ranged, leading to mag-
netic interactions between all particles. Furthermore, due to
the magnetically induced deformations, the particle positions
are affected as well, which in turn changes the magnetic
interactions, see Sec. II. Nevertheless, considering pairwise
nearest-neighbor interactions along one chain will allow for a
basic qualitative description, see below.

Since we are interested in the magnetically induced over-
all twist deformation, we here focus on the magnetic force
components perpendicular to the magnetization direction, i.e.,
in the xy plane. These in-plane force components are the
source of torsional deformations around the z axis. Instead,
the z components of the magnetic forces are associated with
axial contractions. For initially twisted particle configurations
and not-too-large values of γ , the in-plane force components
aim to straighten the chains. Defining ζ as the angle be-
tween m̂ and the connecting vector r̄i j between two nearest-
neighboring particles i and j, see Fig. 15(a), the magnitude
Fxy of the in-plane force component on particle i, exerted by
particle j, see Eq. (2), is given by

Fxy(ζ ) = 3μ0m2

4π

cos4 ζ

d4
layer

|5 sin ζ cos2 ζ − sin ζ |. (8)
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Here we have inserted m̂ · ˆ̄ri j = cos ζ , r̄i j = dlayer/ cos ζ , and
sin ζ for the component of ˆ̄ri j in the xy plane.

Next, we maximize Fxy(ζ ) with respect to ζ to find an
optimal configuration of particles i and j that supports a
maximized twist actuation. The maximum is found for

cos2 ζmax = 1

2
+ 1

2

√
19

35
. (9)

If we now restrict the solutions to the range 0 < ζ < π/2, we
find the unique solution

ζmax = arccos

⎛
⎝

√
1

2
+ 1

2

√
19

35

⎞
⎠ ≈ 0.118π. (10)

When we compare to our previous results, we can use the
relations deduced from Fig. 15(a),

tan ζ = �

dlayer
, (11)

and Fig. 15(b),

sin
(γ

2

)
= �

2ρ
, (12)

where we have introduced ρ as the distance of the inclusions
i and j from the axis of the initial twist of the corresponding
structure. To relate the result of this analytical consideration
to our numerical evaluation, we find from Eqs. (11) and (12)

γmax = 2 arcsin

(
dlayer

2ρ
tan ζmax

)
, (13)

where γmax implies a maximized in-plane torsional force com-
ponent, based on this simplified analytical consideration. For
the systems addressed in Sec. IV, to compare these analytical
and the numerical results, we can simply set ρ = rhelix. For
the globally twisted configurations in Sec. III, the situation is
more complex, as there is not a single value of ρ that is equal
for all chainlike aggregates, but the value of ρ depends on
which chain we consider.

To illustrate this more complex dependence for the glob-
ally twisted structures on the angle γ , quantified by uϕ

10(γ ),
we have generated additional globally twisted configurations
while removing from the systems considered in Sec. III those
chainlike elements that have a value of ρ smaller than a certain
threshold. Illustratively, this corresponds to only considering
those chains that are located outside a coaxial cylinder of di-
ameter 2ρ. In Fig. 16 we present results for cutoff values for ρ

of R/2, 2R/3, and
√

13 dchain ≈ 0.901R, where the latter value
marks the outermost chains. For comparison, we have added
in Fig. 16 the results for the configurations of Sec. III as well.
For this evaluation, we restrict ourselves to incompressible
elastic materials (ν = 0.5) for clarity.

The main result of Fig. 16 is that as we increase the lower
threshold value of ρ, the global minimum is shifted towards
lower values of γ . For all chains considered, see Sec. III, the
value of γ corresponding to a maximized twist deformation
is γ ≈ 0.019π . Introducing a cutoff for ρ of R/2, this value
is reduced to γ ≈ 0.018π . Moving on to a cutoff for ρ of
2R/3, it is further reduced to γ ≈ 0.016π . When keeping
only the outermost chains, we obtain γ ≈ 0.014π for the

0.00 0.04 0.08 0.12 0.16
γ/π

−5.0

0.0

10
3
u

ϕ 10
/R

ν = 0.5
all chains
chains forρ > R/2
chains forρ > 2R/3
outermost chains

FIG. 16. Same as in Fig. 4(c) but for configurations for which
we only consider those chains that have a minimal distance ρ from
the axis of twist of the initial nonmagnetized structure. We show
a comparison between the results of Fig. 4(c), here labeled as “all
chains,” and corresponding configurations that include only those
chains for which ρ > R/2 and ρ > 2R/3. Furthermore, we show
results for only keeping the outermost chains, i.e., chains of ρ =√

13 dchain ≈ 0.901R. In all cases, we only display the results for
incompressible systems, i.e., for ν = 0.5, for clarity. Particularly,
we note how the position of the global minimum is slightly shifted
towards smaller values of γ for configurations of larger average
values of ρ for the chains. The vertical gray dashed line marks the
value γmax ≈ 0.015π as obtained from Eqs. (10) and (13) for the
outermost chains.

location of the maximized twist deformation. Moreover, we
observe a decrease in magnitude of the minimum of uϕ

10.
This contains, however, a trivial effect, as we decrease the
number of inclusions for increasing cutoff values for ρ. More
precisely, we find 623, 324, 168, and 60 inclusions for the four
different systems addressed in Fig. 16.

When we now compare our numerical results to the min-
imal analytical model according to Eqs. (10) and (13), we
consider the configurations of only keeping the outermost
chains. In this case, inserting ρ ≈ 0.901R into Eq. (13), we
obtain a value of γmax ≈ 0.015π ; see the vertical dashed line
in Fig. 16. This is only slightly bigger than the numerical value
of γ ≈ 0.014π . It shows a fair agreement, considering, for
instance, the assumptions of including only nearest-neighbor
particle interactions and rigid particle positions in the analyti-
cal model.

Next, we compare the numerical and analytical results for
the structures composed of helical elements as considered in
Sec. IV. Setting ρ = rhelix, we find from the analytical con-
sideration γmax ≈ 0.28π and γmax ≈ 0.14π for rhelix = 0.05R
and rhelix = 0.1R, respectively. The results of our numerical
investigation for uϕ

10 were γ ≈ 0.24π and γ ≈ 0.13π , respec-
tively, see Sec. IV. While showing fair agreement concern-
ing the involved approximations, our analytical model again
shows a tendency of overestimating the numerical results, see
above.

Within our minimal analytical model, we may equally well
estimate analytically the lowest value of γ > 0 for which uϕ

10
becomes zero. Again, we require a fixed value of ρ. From
Eq. (8), we find that Fxy = 0 for a value ζ0 > 0 of

ζ0 = arccos

(
1√
5

)
≈ 0.352π, (14)
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FIG. 17. Sum �xy over the appropriately signed azimuthal mag-
netic force components acting on all particles as defined in the main
text (dotted line) for the systems containing the globally twisted
structures. The shape of the curve for �xy qualitatively agrees with
the shape of the curves for uϕ

10 reproduced from Fig. 4(c) (solid lines)
that quantify the induced overall torsional deformation.

corresponding to

γ0 = 2 arcsin

(
dlayer

2ρ
tan ζ0

)
= 2 arcsin

(
dlayer

ρ

)
. (15)

Inserting the value of ρ for the outermost chains in Fig. 16
implies γ0 ≈ 0.078π , while the numerical result for uϕ

10 sug-
gests γ ≈ 0.057π . As before, we observe that the analytically
determined value of γ exceeds that determined numerically.
For the systems containing the helical structural elements, our
analytical estimate does not imply any value of 0 < γ < π

at which Fxy = 0, because dlayer > rhelix in both cases. This
is in line with our numerical results for rhelix = 0.05R, for
which uϕ

10 < 0 for all 0 < γ < π . However, our numerical
investigation reveals a value of γ ≈ 0.62π , at which uϕ

10 = 0
for rhelix = 0.1R.

As had become obvious above and from Fig. 16, comparing
the simple analytical model approach to the numerical results
for the complete globally twisted structures of Sec. III is less
direct. The different chainlike aggregates in the system are
located at different radial distances ρ from the center axis.
These varying distances need to be taken into account.

To find a reasonable measure, we start from the magnetic
forces Fi according to Eq. (2) on each particle i. We denote by
ϕ̂i the local azimuthal unit vector in the spherical coordinate
system at the position of particle i. To identify those force
components that supposedly directly support the overall twist
deformation, we project Fi onto ϕ̂i on the upper hemisphere
and onto −ϕ̂i on the lower hemisphere. Particles i located on
the center axis and on the equatorial plane are not taken into
account. Finally, the sum over all force components obtained
in this way is denoted as �xy. It is plotted as the dotted line
in Fig. 17, together with the results for uϕ

10 as displayed in
Fig. 4(c). Since the initial positions of the particles are used
for this basic analytical evaluation, the curves for �xy are
independent of the value of the Poisson ratio ν.

Comparing these graphs, we notice that the force compo-
nent �xy as well as the curves for uϕ

10 have a pronounced
minimum at approximately the same value of γ ≈ 0.019π .
Moreover, for the lowest value of γ > 0 at which �xy = 0 and
uϕ

10 = 0, we find γ ≈ 0.068π and γ ≈ 0.072π , respectively.

In summary, we can estimate certain characteristic points
on the curves of uϕ

10(γ ) by simple analytical model consid-
erations. Often, it is sufficient to focus on the interactions
between neighboring dipoles only. For the globally twisted
structures, see Sec. III, the different distances of the chainlike
aggregates from the center axis of the elastic sphere need
to be taken into account for more quantitative evaluations.
Nonaffine elastic deformations have not been included in the
simple analytical model. Furthermore, our simplified analyt-
ical approach does not account for the change in magnetized
particle positions during deformations included in our numer-
ical description.

VI. CONCLUSIONS

To conclude, we have suggested a way to construct soft
torsional actuators using magnetic gels and elastomers. For
this purpose, we have addressed two different structural
arrangements of the magnetizable inclusions in the elastic
material: globally twisted structures and side-by-side arrange-
ments of helical elements. Both are generated from initially
hexagonally arranged parallel chainlike elements. For both
configurations, we have explicitly calculated the resulting
magnetostrictive distortion of the overall system upon magne-
tization. In this context, for reasons of analytical accessibility,
we have here concentrated on systems of overall spherical
shape. Particularly, we have focused on the degree of induced
twist actuation, which we quantified using a spherical har-
monic mode expansion of the surface displacement field.

Among the systems that we investigated, we found the
globally twisted structures to show a significantly larger tor-
sional actuation when compared to the systems containing
helical elements arranged side by side. For the studied glob-
ally twisted structures, the overall deformational response
is indeed dominated by a twist-type distortion. Instead, the
overall twist response in the case of the embedded helical
elements arranged side by side was less pure. Thus, it appears
that the considered globally twisted structures are better suited
to construct a soft torsional actuator. In the near future, these
might also be the ones requiring less additional effort for
actual fabrication.

Furthermore, we have quantified which degree of initial
structural twist in the nonmagnetized state leads to a max-
imized torsional actuation. Such an optimized value arises
from two antagonistic tendencies. If the internal structure
is not twisted at all, then an overall torsional deformation
cannot be induced. However, if the initial structure is twisted
too much, then the interactions between the inclusions upon
magnetization may even become repulsive for a too large
lateral separation. We find an optimized value in between. In
fact, these properties can be understood already on a quali-
tative basis by addressing the magnetic interactions between
two neighboring particles on one initially deformed chainlike
structural aggregate.

Concerning actual applications, soft magnetic actuators
have the advantage that they can be addressed in a contactless
way from outside by an external magnetic field and may
respond relatively quickly on timescales of tens of millisec-
onds. This qualifies them, for instance, as candidates for
microrobotic and microsurgical use [23,71]. Frequently, one is
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interested in realizing maximized amplitudes of deformations
or stresses. Here we have deliberately concentrated on com-
paratively small amplitudes of deformation. We emphasize
that this is predominantly a necessary requirement by the
employed method of calculation in the framework of linear
elasticity theory, which then allows for a quantitative eval-
uation. Yet, in reality, various types of modification could
increase and maximize the presented effects. For instance,
the system size, particle size, and volume fraction could be
increased, the mutual distances between the particles may be
decreased, or a softer elastic matrix material could be used. By
our work, we wish to stimulate investigations on such possible
ways of optimization.

Overall, we hope that our study will inspire experimental
realizations of corresponding soft magnetoelastic torsional
actuators in the future. Such devices may find further possible
applications, for instance, as microfluidic mixing actuators.
Not only can twist deformations and thus torsional flows

around such an element be induced upon request from outside
by alternating magnetic fields, but also, due to the existence
of an overall structural anisotropy axis associated with the
axis of global twist, the mixing element can simultaneously be
oriented by the direction of the external magnetic field. More-
over, as long as dynamic effects like leaking electrical currents
do not play an important role, our results equally apply to the
construction of corresponding devices from electrorheological
gels and elastomers [14,72,73] using external electric fields
for actuation.
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