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Discrete-time quantum walk on complex networks for community detection
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Many systems such as social networks and biological networks take the form of complex networks, which
have a community structure. Community detection in complex networks is of great interest to many researchers
in statistical physics and mathematical physics. There have been studies on community detection that use the
classical random walk. The present study utilizes the discrete-time quantum walk instead. The quantum walk
plays an important role in various fields, especially in research on quantum computers, and attracts much
attention from mathematical physics too. The discrete-time quantum walk has two properties: it linearly spreads
on a flat space, and it localizes in some cases because of quantum coherence. We demonstrate that these properties
of the quantum walk are useful for community detection on complex networks. We define the discrete-time
quantum walk on complex networks and utilize it for community detection. We numerically show that the
quantum walk with a Fourier coin is localized in a community to which the initial node belongs. Meanwhile,
the quantum walk with a Grover coin tends to be localized around the initial node, not over a community. The
probability of a classical random walk on the same network converges to a uniform distribution with a relaxation
time generally unknown a priori. We thus claim that the time average of the probability of a Fourier-coin quantum
walk on complex networks reveals the community structure more explicitly than that of a Grover-coin quantum
walk and a snapshot of the classical random walk. We first demonstrate our method of community detection
for a prototypical three-community network, producing the correct grouping. We then apply our method to two
real-world networks, namely, Zachary’s karate club and the U.S. Airport network. We successfully reveal the
community structure, the two communities of the instructor and the administrator in the former and major airline
companies in the latter.
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I. INTRODUCTION

A. Quantum walk

The quantum walk has been studied in various areas of
physics. The quantum walk is divided into two types: the
discrete-time quantum walk [1] and the continuous-time quan-
tum walk [2]. The time evolution of the latter is expressed by a
Hamiltonian obeying the Schrödinger equation. In the present
paper, we focus on the former.

The discrete-time quantum walk is a quantum counterpart
of the discrete-time classical random walk. In the classical
random walk, e.g., in one dimension, a particle hops to the left
or right stochastically, generating a probability distribution,
whereas the quantum walk is described instead in terms of
the probability amplitude of quantum superposition of the
left-mover and the right-mover [1].
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The quantum walk generally has the following two prop-
erties: it linearly spreads on a flat space and localizes in
particular spots [3]. To be more specific, however, quantum
walks with different inner states and different coin operators
behave differently. The probability distribution of the three-
state quantum walk in one dimension, for example, has three
peaks: one that moves linearly to the left, one that moves
linearly to the right, and one that localizes at the initial node
[4]. The probability distribution of the two-state quantum
walk in one dimension, on the other hand, has only two peaks,
which spread linearly to the left and right, without any peak
that localizes [5]. In the present thesis, we focus on the two-
state walk, using the Fourier coin and the Grover coin [6,7].
The walks with these coin operators are called the Fourier
walk and the Grover walk, respectively. We demonstrate that
the two walks behave differently.

The quantum walk has been applied to quantum computers,
search problems, and so on [8–10]. Many researchers consider
that quantum-mechanical computers may solve problems
more efficiently than their classical computers. The quantum
walk has been implemented in the laboratory [11].

There have been several studies on the quantum walk on
networks, mostly on regular ones [9,12]. The shift operator
and the coin operator have been defined in conformity to
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FIG. 1. (a) Schematic of the communities of a complex network
arranged in a hierarchy. (b) Example of a dendrogram.

the structure of networks. The quantum walk on networks
occupies an important role in search problems. In general,
it takes classical algorithms O(N ) steps to identify the target
record from an unsorted database of N records, while it takes
quantum mechanical systems only O(

√
N ) steps [8].

B. Complex networks

Many systems including social networks and biological
networks have been found to have distinctive features dras-
tically different from random graphs and, hence, are col-
lectively called complex networks [13–16]. Representative
examples include acquaintance networks [17], the World
Wide Web [18], corporate transaction networks [19], neural
networks [20], food webs [21], and metabolic networks [22].

The distinctive features of the complex networks often
quoted include the scale-free property and the small-world
effect, although there are so-called complex networks that
do not have these features. The former feature means that
the histogram of the degrees of the nodes (the number of
links attached to a node) follows a power-law behavior [23];
in other words, there are a large number of nodes with low
degrees and a small number of nodes with high degrees in
a self-similar way. The latter feature means that the average
distance between a randomly chosen pair of nodes in a com-
plex network is surprisingly shorter than that in a random
network [24].

These features may indicate that many complex networks
have a hierarchical structure; see Fig. 1, for example. When
we depict the structure as a tree, which is called a dendrogram
in the social sciences [25] [see Fig. 1(b), for example], the
leaves correspond to the nodes and the branches to the links.
Nodes in higher levels of the dendrogram can have more links
to nodes in lower levels in a self-similar way. A node in one
branch of the dendrogram to another node in a different branch
can be connected by a short path through nodes in higher
levels.

In a hierarchical complex network, we should be able to
find communities in various levels. The community is a subset
of nodes within the network such that connections among the
nodes of the community are denser than those among the other
nodes [25]. As the hierarchy in Fig. 1 suggests, a node at
a high level of the dendrogram is likely to be at the center
of each community typically with many links, which we call
a hub. It is therefore of great importance for detecting the
features of complex networks to identify communities.

There are several algorithms for community detection
[13,25–28]. The conventional method is the hierarchical clus-
tering [13,25,26,29]. In this method, one calculates a weight
Wi, j for every pair of nodes in the network. The weight shows
how closely connected the nodes are. Starting from the nodes
with no links between them, one adds links between pairs
in the order of their weights. The nodes are classified into
communities, and the communities are grouped into larger
communities. Many different weights have been proposed in
this algorithm. The weight considering the paths longer than
the shortest ones was taken into account in Ref. [30]. Another
method is called the divisive algorithm [13]. Starting from the
whole network, one cuts the links. The network is divided into
smaller subnetworks, which are identified as communities.
Another research presents an algorithm with a modularity
[26,27,31,32]. The modularity is a property of a network and
a division of the network into communities. If there are many
links within the communities and a few links between the
communities, the division is good.

There have been several studies on community detection
that used discrete-time classical random walks [28,33]. These
approaches are based on the consideration that random walks
on the networks tend to get trapped within the communities
[28]. One computes the frequency at which each node is
visited by a random walker and explores possible partitions
by using deterministic algorithms [33].

We here utilize the discrete-time quantum walk instead
for community detection. The infinite-time average of the
transition probability, normalized by the number of links, of
the Fourier-coin quantum walk on a complex network shows
localization in a community and, thereby, reveals the com-
munity structure. The Grover-coin quantum walk, in contrast,
tends to be localized around the initial node, presumably
due to the localized eigenstates of the time-evolution unitary
with degenerate ±1 eigenvalues. For the classical random
walk on the same network, the probability converges to a flat
distribution as time passes. Although the community structure
partially emerges before the convergence, it is generally a
priori unknown which time step of the walk is best for the
community detection. We thus claim that the Fourier-coin
quantum walk on complex networks reveals the community
structure more explicitly than the Grover-coin quantum walk
and the classical random walk.

II. QUANTUM WALK ON COMPLEX NETWORKS

We first describe our definition of the quantum walk on
complex networks. It requires a node-dependent coin operator
because each node generally has a different number of links.
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FIG. 2. Definition of a quantum state in complex networks.

We define the quantum state in a complex network (see
Fig. 2, for example) in the form

|ψ (t )〉 =
N∑

i=1

ki∑
j=1

ψi, j (t )|i → j〉, (1)

where N is the total number of nodes, state |i → j〉 resides on
node i and is about to hop to the adjacent node j on a link con-
necting i and j, and ki is the number of links attached to node
i. The total Hilbert space H = H1 ⊕ H2 ⊕ . . . ⊕ HN consists
of the Hilbert space of each node Hi, which is spanned by
(|i → j1〉, |i → j2〉, . . . , |i → jki〉). The dimensionality of the
total Hilbert space is therefore given by

D =
N∑

i=1

ki, (2)

which is the total number of links under double-counting. We
normalize state |ψ (t )〉 as in

〈ψ (t )|ψ (t )〉 =
N∑

i=1

ki∑
j=1

|ψi, j (t )|2 = 1. (3)

We can write the probability of the existence on a node i at
time t as

p(i; t ) =
ki∑

j=1

|ψi, j (t )|2. (4)

The time evolution of state |ψ (t )〉 is given by

|ψ (t )〉 = U |ψ (t − 1)〉 (5)

= Ut |ψ (0)〉, (6)

where the unitary operator U is the product of a shift operator
S and a coin operator C:

U = SC. (7)

We define the shift operator S : H → H by

S|i → j〉 = | j → i〉. (8)

The choice of this shift operator may appear to be atypical
compared to the one defined for a one-dimensional lattice, but
it is necessary because of the existence of dangling bonds.
When node j is at the end of a dangling bond as the bottom
one i → j3 in Fig. 2, Eq. (8) is the only possible choice.
Indeed, it has been used for searching a marked vertex on
a specific graph called the Cayley tree [9]. We can also
easily prove that the shift operator of Eq. (8), if defined on
a one-dimensional lattice, can be mapped to the standard shift
operator by introducing an extra factor to the coin operator;
see Appendix A.

We define the coin operator C by

C = C1 ⊕ C2 ⊕ . . . ⊕ CN , (9)

where we first set the coin operator of a node i, Ci : Hi → Hi,
as

CF
i

⎛
⎜⎜⎜⎜⎝

|i → j1〉
|i → j2〉
|i → j3〉

...∣∣i → jki

〉

⎞
⎟⎟⎟⎟⎠ = 1√

ki

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 eiθ/ki e2iθ/ki · · · e(ki−1)iθ/ki

1 e2iθ/ki e4iθ/ki · · · e2(ki−1)iθ/ki

...
...

...
. . .

...
1 e(ki−1)iθ/ki e2(ki−1)iθ/ki · · · e(ki−1)(ki−1)iθ/ki

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

|i → j1〉
|i → j2〉
|i → j3〉

...∣∣i → jki

〉

⎞
⎟⎟⎟⎟⎠ (10)

with θ = 2π . (Note that the numbering of the neighboring nodes { j1, j2, . . . , jki} is arbitrary but does affect the dynamics.) This
specific operator is called the Fourier coin [7] because it is a Fourier matrix. The Fourier-coin quantum walk (the Fourier walk)
has been used on a particular kind of network [34].

Below we also consider the quantum walk with an alternative coin operator, namely, the Grover coin [6], which is given by

CG
i

⎛
⎜⎜⎜⎜⎝

|i → j1〉
|i → j2〉
|i → j3〉

...∣∣i → jki

〉

⎞
⎟⎟⎟⎟⎠ = 1

ki

⎛
⎜⎜⎜⎜⎝

2 − ki 2 2 2 2
2 2 − ki 2 2 2
2 2 2 − ki 2 2
...

...
...

. . .
...

2 2 2 · · · 2 − ki

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

|i → j1〉
|i → j2〉
|i → j3〉

...∣∣i → jki

〉

⎞
⎟⎟⎟⎟⎠. (11)

This is called the Grover matrix, being related to Grover’s
search algorithm [35]. There are many studies on the Grover-
coin quantum walk (Grover walk). The periodicity of the
Grover walk on some finite graphs has been clarified [36]. We
show that the Fourier coin works much better than the Grover
coin for the purpose of community detection.

We prepare the initial state for the quantum walk as a state
in which a specific state on a specific node istart, |istart → j〉,
has the element unity and the others have elements 0. In
Sec. III, we take the average over the adjacent nodes j as
shown in (13) below.
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III. COMMUNITY DETECTION

A. Infinite-time average

We numerically show hereafter that the probability of a
Fourier walk becomes higher in hubs as time passes whichever
node we choose as the initial one istart. We can thus detect hubs
of complex networks, although the threshold to detect them is
an open question. We also show that the state of the Fourier
walk on complex networks is localized in a community of
the initial node and, thereby, reveals the community struc-
ture. For a quantum walk on a one-dimensional finite lattice,
the probability distribution after a long period of time has
been proved to be stationary and uniform when the quantum
walk behaves symmetrically [37]. For a quantum walk on a
complex network, on the other hand, we here show that the
infinite-time average of the normalized transition probability,
calculated from the eigenvectors, shows localization.

Let us calculate the infinite-time average of the transition
probability by expanding the unitary operator U = SC in
terms of its eigenstates,

U =
D∑

μ=1

|μ〉eiθμ〈μ|, (12)

where |μ〉 is the eigenvector and eiθμ is its eigenvalue with a
real argument θμ. The transition probability that the quantum
walk starting from a node i reaches a node l is given by

p(i → l; t ) = 1

ki

kl∑
m=1

ki∑
j=1

|〈l → m|Ut |i → j〉|2, (13)

where |i → j〉 is the initial state and |l → m〉 is the state at
step t . The factor 1/ki is to average over direction j of the
initial state. We also took the summation over direction m of
the final state.

The infinite-time average of the transition probability is
given by

p(i → l ) = lim
T →∞

1

T

1

ki

T −1∑
t=0

kl∑
m=1

ki∑
j=1

|〈l → m|Ut |i → j〉|2

(14)

= 1

ki

D∑
μ=1

kl∑
m=1

ki∑
j=1

|〈l → m|μ〉|2|〈μ|i → j〉|2, (15)

where we have assumed

lim
T →∞

1

T

T −1∑
t=0

ei(θμ−θν )t = δμν, (16)

which is valid if the eigenvalues are nondegenerate and dis-
tributed almost randomly over the unit circle. In this case, the
quantum walk on the network is a superposition of oscillation
with various frequencies, and hence the infinite-time average
makes sense.

In order to check the validity of the formulation, we show
in Figs. 3(b) and 3(c) the eigenvalue distributions of the time-
evolution unitary matrix U for the Fourier walk and the Grover
walk on the prototypical three-community network given in
Fig. 3(a), for which N = 21 and D = 78. In both cases, the 78
eigenvalues are distributed over a unit circle on the complex

plane. The eigenvalues of the Fourier walk are nondegenerate,
while almost half of the eigenvalues of the Grover walk are
degenerate at either +1 or −1. (Precisely, the degeneracies are
20 and 18 for the eigenvalues ±1, respectively.) The histogram
in Fig. 3(d) shows more clearly that the eigenvalues of the
Fourier walk are distributed much more evenly over the unit
circle than the eigenvalues of the Grover walk. We thus realize
that the Fourier walk is more suitable for formulation (15) than
the Grover walk.

It has been proven for the Grover walk that the eigenvectors
of the eigenvalues degenerate to ±1 are localized on loops of
graphs [38]; indeed the degree of the degeneracy is completely
determined by the topology of the graph (see Appendix B for
tutorial examples). On regular graphs, this degeneracy would
lead to a proof of the localization on the initial node after
linear combination of the eigenvectors on the loops [38]. We
numerically show below that the Grover walk on a graph is
also localized around the initial node of the walk.

Figure 4(a) shows the infinite-time average of the proba-
bility of the Fourier walk on the three-community network
in Fig. 3(a), computed according to Eq. (15) based on the
numerical diagonalization of U . The vertical axis shows the
initial node i, the horizontal axis shows the target node l , and
each square color-codes the amplitude of the time-averaged
probability p(i → l ); note that the probabilities are roughly
proportional to the number of links, and those of the hubs
(nodes 1, 13, and 21) are the highest. We can thus identify
hubs clearly from the infinite-time average of the probability.

Based on the observation in Fig. 4(a), we define the nor-
malized probability P(i → l; t ) of each node by dividing the
probability p(i → l; t ) by the number of links of the target
node l:

P(i → l; t ) = p(i → l; t )

kl

= 1

kl ki

kl∑
m=1

ki∑
j=1

|〈l → m|Ut |i → j〉|2. (17)

The infinite-time average of the normalized probability is
given by

P(i → l ) = p(i → l )

kl

= lim
T →∞

1

T

1

klki

T −1∑
t=0

kl∑
m=1

ki∑
j=1

∣∣〈l → m|Ut |i → j〉∣∣2

(18)

= 1

klki

D∑
μ=1

kl∑
m=1

ki∑
j=1

|〈l → m|μ〉2|〈μ|i → j〉|2.

(19)

This infinite-time average then becomes symmetric with re-
spect to the exchange of l and i as in P(i → l ) = P(l → i).

Figure 4(b) color-codes the infinite-time average of the
normalized probability P(i → l ) calculated from the eigen-
vectors of the Fourier walk for the three-community network
in Fig. 3(a). The normalized transition probability between
the initial node and the other nodes in the same community
is high, which reveals the community structure.
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FIG. 3. (a) A prototypical three-community network, for which N = 21 and D = 78. The hubs are nodes 1, 13, and 21. (b, c) Complex
eigenvalues of the time-evolution unitary matrix U for (b) the Fourier walk and (c) the Grover walk on the three-community network in (a).
The horizontal axis shows the real part and the vertical axis shows the imaginary part of the eigenvalues. There are 78 eigenvalues plotted
because D = 78. Within the numerical double-precision, the unitary matrix of the Fourier walk has no degeneracy in (b), whereas for that of
the Grover walk, the eigenvalues ±1 have the degeneracy 20 and 18, respectively, in (c). (d) Distribution of the argument of the eigenvalues
for the Fourier walk (wide blue columns) and for the Grover walk (narrow red columns).
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FIG. 4. (a) Infinite-time average, (15), of the probability p(i → l ) of the Fourier walk on the three-community network in Fig. 3(a).
(b) Infinite-time average of the normalized probability P(i → l ) in Eq. (19) of the Fourier walk on the three-community network. In (b) and
(c), the vertical axis shows the initial node i and the horizontal axis shows the target node l , while each square indicates the value of either
p(i → l ) or P(i → l ). A white square indicates a value off scale in the higher direction. (c–e) Infinite-time average of the normalized probability
P(i → l ) in Eq. (19) of the Fourier walk on the three-community network that starts from the hub i = 1 (c), the hub i = 13 (d), and the hub
i = 21 (e), each of which is indicated by a red arrow. The horizontal axis shows the target node l and the vertical axis shows the normalized
probability P(i → l ) with i = 1, 13, 21. The horizontal line in the middle indicates the threshold q = 1/78 � 0.0128. (f) Time average of the
normalized probability P(i → l; t ) over the first 100 steps of the Fourier walk on the three-community network. (g) The same as (f), but for
the Grover walk.
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Figures 4(c)–4(e) show the same quantity as in Fig. 4(b),
but only for cases in which the walk starts from the hubs
[nodes i = 1, 13, and 21, which are indicated by red arrows
in Figs. 4(c)–4(e)]. In order to detect the community structure
quantitatively, we here tentatively define the threshold for
the detection of a community to be q = 1/D, where D =
78, which is indeed the stationary probability normalized by
the number of links kl of the classical random walk on the
network.

We thereby define a community as follows:
(i) We first define a hub i as a node with the highest

order ki.
(ii) If the normalized probability starting from hub i to a

node l is greater than the threshold q, namely, if

P(i → l ) > q, (20)

node l is a member of the community of hub i.
This algorithm clearly reveals the three communities of the
three-community network in Fig. 3(a). For instance, if the
Fourier walk starts from hub 1 as in Fig. 4(b), the probability
of nodes 2, 3, 4, 5, 6, and 7, which belong to the same commu-
nity, is higher than the threshold q. We can thus successfully
identify which community each node belongs to.

In order to justify the algorithm from a different perspec-
tive, we show that the Fourier walk on the network is localized
in a community to which the initial node belongs. Let us
evaluate the localization of the eigenvectors using the inverse
participation ratio (IPR) [39,40]. The IPR of an eigenvector

|μ〉 =
N∑

l=1

kl∑
m=1

ψμ(l, m)|l → m〉 (21)

is given by

IPR(μ) =
∑N

l=1 pμ(l )2

(∑N
l=1 pμ(l )

)2 =
N∑

l=1

pμ(l )2, (22)

where the probability pμ(l ) is

pμ(l ) =
kl∑

m=1

|ψμ(l, m)|2 (23)

with the normalization
∑N

l=1 pμ(l ) = 1 for all μ.
If the eigenvector is sharply localized to one node, the IPR

is close to unity. If the eigenvector is delocalized, the IPR is as
small as 1/N , which is 1/21 ≈ 0.0476 in the present case of
the three-community network in Fig. 3(a). If the eigenvector
were localized uniformly in one of the communities of the
network as in

pμ(l ) =
{

1
7 for l = 1, 2, . . . , 7,

0 otherwise,
(24)

the IPR would be exactly 1/7 ≈ 0.14.
Figure 5(a) shows the IPR of each eigenvector for the

Fourier walk on the three-community network. We find that all
states have an IPR higher than 1/21 � 0.047 62 [the thinner
horizontal line in Fig. 5(a)] and several eigenvectors are
localized more strongly than the IPR = 1/7 � 0.1429 [thicker
horizontal line in Fig. 5(a)]. The naive average of the IPR over

all eigenstates is about 0.1151 � 1/8.7, which is not far from
1/7.

Figure 5(b), on the other hand, shows the normalized
probability

Pμ(l ) = pμ(l )

kl
(25)

of the Fourier walk on the three-community network. The
probability distribution for each eigenvalue shows the local-
ization, often over a community. For the probability distri-
bution for eigenstate number 1 (for which the IPR is about
0.150), for instance, the probability for node 1 and the nodes
in the same community (from l = 1 to l = 7) is visibly higher
than that for the other nodes; in other words, this eigenvector
is localized in the first community. Similarly, the probability
distribution of eigenstate number 46 (for which the IPR is
about 0.137) is localized in the second community, and that
of eigenstate number 11 (for which the IPR is about 0.135) is
localized in the third one.

The localization of the quantum walk may be related to the
Anderson localization. In the standard sense, the Anderson
localization is the property of quantum particles in random
media [41,42]. There are several studies on the Anderson
localization of the discrete-time quantum walk on lattices
with randomness [43,44]. The quantum walk on the complex
network may be similar to the quantum particle in random
media because of the inhomogeneity of the network and,
hence, may experience the Anderson localization.

B. Finite-time calculation

We next present our finite-time results for the quantum
walk on the same three-community network in Fig. 3(a). We
operated the unitary matrix U to the initial state |i → j〉 up to
100 steps and averaged the resulting probability over j.

Figure 4(f) shows the time average of the normalized
probability Pt (i → l ) over 100 steps, from t = 1 through t =
100. It is almost the same as Fig. 4(b), also revealing the
community structure. The fact that the finite-time average is
almost equal to the infinite-time average is presumably thanks
to the property of the quantum walk that the front of the
probability spreads linearly. This implies that we can apply
the present method to complex networks which are too large to
diagonalize the time-evolution unitary matrix U by computing
a finite-time average instead of the infinite-time average.

Figure 4(g), on the other hand, shows the same time
average of the normalized probability P(i → l; t ), but for the
Grover walk. We can see that the diagonal elements are much
larger than the other elements. In other words, the Grover walk
mostly stays at the initial node through the 100 steps, implying
strong localization at each node.

We may relate this phenomenon to findings for the
Grover walk on regular lattices [38,45,46]. As mentioned
in Sec. III A, it has been proven that any eigenvectors with
degenerate eigenvalues ±1 of the unitary matrix of the Grover
walk on regular lattices are broken down to states localized
on loops, which leads to a proof of the localization of the
walk on the initial node. This may also be the case in the
present three-community network. Indeed, the localization
numerically demonstrated in Fig. 1(a) of Ref. [45] resembles
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FIG. 5. (a) Inverse participation ratio (IPR) of each eigenvector for the Fourier walk on the three-community network. The horizontal axis
shows the eigenstate number μ and the vertical axis shows the IPR of each eigenstate. The thin blue horizontal line indicates the IPR value
1/21, which corresponds to a uniformly extended state, while the thick red horizontal line indicates the IPR value 1/7, which corresponds to a
state uniformly localized in one of the three communities. (b) Normalized probability Pμ(l ) in Eq. (25) calculated from the eigenstates for the
Fourier walk on the three-community network. The horizontal axis shows the eigenstate number μ and the vertical axis shows node l , while
each square indicates the value of Pμ(l ). (c) The same as (b), but for the Grover walk.

the behavior of the diagonal concentration in Fig. 4(g) here.
Figure 5(c) also shows that the normalized probability Pμ(l )
in Eq. (25) calculated from the eigenstates for the Grover
walk are localized in nodes rather than in communities if the
eigenvalue is ±1 (eigenstate numbers 41 to 78). For example,
states 41, 44, 47, 49, and so on, have small elements in a
community but are mostly localized to one or a couple of
nodes.

Figure 6 shows the first few steps in the time evolution
P(i → l; t ) of the Fourier and Grover walks that started from
various initial nodes i. When a walk starts from node 1 of

the three-community network in Fig. 3(a), the Fourier walk
[Fig. 6(a)] spreads over the first community in a couple of
steps and stays so afterwards. On the other hand, the Grover
walk [Fig. 6(b)], although it has higher probabilities over
the first community than the rest, shows some oscillation
in time and has an even higher probability at the initial
node 1 from time to time. When a walk starts from node
7, the Fourier walk [Fig. 6(c)] again spreads over the first
community in a few steps and stays so afterwards. The Grover
walk [Fig. 6(d)], however, has high probabilities on nodes
7, 6, and 2.
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FIG. 6. Time evolution on the three-community network of the
normalized probability P(i → l; t ) from t = 0 to t = 15 for (a) the
Fourier walk with i = 1, (b) the Grover walk with i = 1, (c)
the Fourier walk with i = 7, and (d) the Grover walk with i = 7.

To summarize, the time evolution of the Fourier walk tends
to get localized over a community whichever node it starts
from, while that of the Grover walk tends to get localized on a
couple of nodes around the initial one. Therefore, the Fourier
walk reveals the community structure more clearly than the
Grover walk.

Finally, we compare the probability of the quantum walk
to that of the classical random walk on the same network. The
probability of the classical random walk eventually relaxes to
a flat distribution, which is equal for all nodes, and hence
the infinite-time average of the probability does not reveal
the community structure. For community detection we would
have to choose a specific time step, which is unknown a priori.
We thus claim that using the time average of the probability
of the quantum walk is a more tractable way of community
detection than trying to find a specific time step of the classical
random walk.

IV. APPLICATION TO REAL-WORLD NETWORKS

A. Zachary’s karate-club network

Let us apply the above algorithm of the community detec-
tion to Zachary’s karate-club network [17] [Fig. 7(a)], which
is a friendship network in a karate club in a university in
the United States. The club split into two communities, one
clustered around the instructor (node 1) and the other around
the administrator (node 34). In Zachary’s psychological exper-
iment, each member of the club answered his or her friends’
names and the community to which he or she belongs.

The network in Fig. 7(a), for which the total number of
nodes is N = 34 and the total number of links is D = 156, is
based on the first set of answers. The hubs of this network are
nodes 1 and 34. The second set of answers tells us that the
communities are as follows:

Group of node 1: 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17,
18, 20, 22 [red squares in Fig. 7(a)].
Group of node 34: 9, 10, 15, 16, 19, 21, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34 [blue circles in Fig. 7(a)].
In this sense, this is a rare case of the complex network

for which the ‘correct’ answer of the community detection is
known, although the correctness can be disputed; see the last
paragraph of the present section. We show that our method
‘correctly’ identifies the two communities.

Figure 7(b) indicates that the eigenvalues for the Fourier
walk, which we computed by numerical diagonalization of
the 156 × 156 matrix, distributes quite evenly on the unit
circle. We confirmed that there is no degeneracy within the
numerical double-precision. This guarantees the computation
of the infinite-time average given in Sec. III A to be valid for
the karate-club network too. Figure 7(c) shows the infinite-
time average of the probability in Eq. (15), which we com-
puted from the numerical diagonalization. The probabilities
of nodes 1 and 34 are higher than those of any other nodes.
We can clearly identify nodes 1 and 34 as the hubs in this
figure.

Figures 7(d) and 7(e) show the infinite-time average of
the normalized probabilities, (19), of the Fourier walk which
starts from the hubs [nodes 1 and 34, which are indicated by
red arrows in Figs. 7(d) and 7(e)]. Let us again tentatively
define the threshold as q = 1/D, where D = 156. The nodes
whose probabilities are higher than the threshold q belong
to the community in which the initial node is the hub. For
instance, if the Fourier walk starts from hub 1, the probability
of node 2, which belongs to the same community, is higher
than the threshold q. We can thus detect which community
each node belongs to.

Figures 7(f) and 7(g) show the time evolution of the
normalized probabilities, (17), of the Fourier walk that starts
from nodes 1 and 34. Here the nodes in the first community
are gathered on the left, and those in the second community
on the right. We can clearly see that the walk spreads over the
respective community in the first couple of steps in the time
evolution.

Comments are in order here; the detection of nodes 3
and 20 [highlighted by the dotted arrow in Fig. 7(a)] is
quite marginal. First, for node 20, the normalized probabil-
ities P(1 → 20) and P(34 → 20) are both greater than the
threshold q = 1/D. Nonetheless, the former, P(1 → 20) �

023378-9



KANAE MUKAI AND NAOMICHI HATANO PHYSICAL REVIEW RESEARCH 2, 023378 (2020)

q

q

10 20 30
0

5

10

15

0

5

10

15

10 20 30
0

0.025

0.05

0.075

0

0.025

0.05

Ti
m

e 
st

ep
s t

The target node l
(f)

The target node l
(g)

FIG. 7. (a) Zachary’s karate-club network [17], for which N = 34 and D = 156. The hubs are nodes 1 and 34. The square red nodes are
supposed to be in the group of node 1, and the circular blue nodes in the group of node 34. (b) Distribution of the argument of the eigenvalues
of the time-evolution unitary matrix of the Fourier walk on the karate-club network. (c) Infinite-time average of the probability p(i → l ) in
Eq. (15) of the Fourier walk on the karate-club network. The vertical axis shows the initial node i and the horizontal axis shows the target
node l , while each square indicates the value P(i → l ). (d, e) Infinite-time average of the normalized probability P(i → l ) in Eq. (19) of the
Fourier walk on the karate-club network that starts from the hub i = 1 (d) and the hub i = 34 (e), each of which is indicated by a red arrow.
The horizontal axis shows the target node l and the vertical axis shows the normalized probability p(i → l ) with i = 1, 34. The horizontal
line in the middle indicates the threshold q = 1/156 � 0.006 41. (f, g) Time evolution of the normalized probability P(i → l; t ) from t = 0 to
t = 15 for the Fourier walk with i = 1 (f) and i = 34 (g), where we have reordered the target nodes l so that the nodes in the first community
in (a) may be gathered on the left and those in the second community on the right.
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0.007 062, is markedly greater than the threshold, q �
0.006 410, while the latter, P(34 → 20) � 0.006 451, is only
marginally greater. A slight increase in the threshold q would
exclude the possibility of classifying node 20 into the com-
munity of hub 34. We thereby conclude that node 20 should
belong to the community of node 1. Second, for node 3, the
normalized probability P(1 → 3) is only slightly greater than
the threshold, although for node 3, P(34 → 3) is less than the
threshold.

There are indeed several views of the grouping for
Zachary’s network. One study [47] divided the nodes into
three groups; the first is a group of node 1, the second is a
group of node 34, and the third is a neutral group of nodes
9, 10, 20, 28, and 29. It is therefore reasonable that node 20
has a marginal value in Fig. 7(d). In another study [13], their
algorithm classified node 3 into the group of node 34. This is
consistent with our result that node 3 has a marginal value in
Fig. 7(c). After all, the grouping according to the second set
of answers of Zachary’s experiment is based on the personal
views of each subject and, hence, is not the only possible
answer but remains a quite possible one.

B. U.S. Airport network

We next apply our method to the domestic airport network
in the United States in 1997 [48,50] [Fig. 8(a)]. The original
datum is a weighted network [48], but we use the network data
as a nonweighted network. Each node in the airport network
corresponds to an airport in the United States. They are
connected by a link if there is a flight connection between the
two airports. The total number of nodes in the airport network
is N = 332 and the total number of links is D = 4252. We
computed the infinite-time average, (15), of the probability of
the Fourier walk by numerical diagonalization of the 4252 ×
4252 matrix. Figure 8(b) shows that the eigenvalues of the
time-evolution unitary matrix are distributed almost evenly on
the unit circle of the complex plane. This validates the usage
of Eq. (16).

The community structure of this airport network is a priori
unknown, unlike the prototypical three-community network
and Zachary’s karate-club network. Based on the successful
results above, we here use the following algorithm for com-
munity detection:

(i) We order the nodes according to the number of links ki

and regard the nodes from the top of the list as
candidates for hubs.

(ii) Starting from the node i with the highest degree, which
is the first candidate for the hub, we classify the nodes
l whose normalized probability, (19), is higher than a
threshold q, as in P(i → l ) > q, into the community
of hub i.

(iii) We carry out (2) repeatedly, ignoring the nodes that
have been classified, until all of the nodes are
classified into communities. If the node with the
highest degree at the moment [e.g., node 2 in
Fig. 8(c)] has already been classified into a
community [e.g., the dashed green circle in Fig. 8(c)],
we assume that the hub and the members of the group
of the hub [e.g., the dashed orange circle in Fig. 8(c)]
belong to the community into which the hub has been
classified [e.g., the solid circle in Fig. 8(c)].

When we use the threshold q = 1/D � 0.000 235 183 4 as
in the two cases above, we classify all the nodes into two
communities, one with 260 nodes and the other with 72. As
reported in Table I(a), most of the major airports are classified
into the first community, while the second community con-
tains mostly minor airports with a few exceptions.

Changing the value of the threshold q reveals the hier-
archical structure of the communities as the dendrogram in
Fig. 1 implies; see Fig. 8(d). We find three communities when
we use the threshold q in the range 0.000 235 443 4 � q �
0.000 235 473 4 [see Fig. 8(e)]. The orange circle shows the
airport which belongs to the first community (147 nodes), the
green square the second (151 nodes), and the blue star the
third (34 nodes). Comparing the top airports in Tables I(a) and
I(b), we see that many major airports in the first community in
Table I(a) are distributed to the second and third communities
in Table I(b).

The top airport in each community is the hub airport of the
present-day major three airline companies, Chicago O’Hare
for United, Dallas/Fort Worth for American, and Atlanta for
Delta. We therefore claim that each of the three communities
indicates the subnetwork of airline companies. Nonetheless,
except for the hub airports, we see mixtures of various airlines.
Note that TWA, US Airways, and America West have been
merged into American, Northwest into Delta, and Continental
into United. We observe that these mergers were strategically
reasonable in the sense that Delta and American, respectively,
merged companies that appear in communities different from
their own hub airports. It would be interesting to analyze the
airport network after mergers (including that of TWA into
American), but it is out of the scope of the present paper.

Our algorithm of community detection can further find
the hierarchy of the airline companies. By increasing the
threshold further, to q = 0.000 235 583 4, we find five com-
munities [see Fig. 8(f)], with 109, 111, 51, 44, and 17 nodes,
respectively. The fourth community (olive hexagons) splits off
exactly from the second community in Fig. 8(e), and the fifth
community (red ellipses) mostly from the first. We can easily
see that the fourth community corresponds to Alaska Airlines
[49], which is indeed a partner company of American Airlines,
a major company in the second community in Fig. 8(e).

In contrast, a previous study [50] divided the airports into
two communities that geographically correspond to the east
and the west, the latter including the midwest. Our algorithm
excels in finding a different structure since it starts from
finding the hubs.

V. CONCLUSION

In the present paper, we define the discrete-time quantum
walk on complex networks and utilize it for community detec-
tion. We numerically show that the Fourier walk is localized in
a community to which the initial node belongs. We calculate
the infinite-time average of the transition probability by the
use of eigenvectors. We confirm that the eigenvectors of
the Fourier walk tend to be localized in a community, while
those of the Grover walk tend to be localized in some specific
nodes.

We find that the infinite-time average reveals the commu-
nity structure better if the eigenvalues of the unitary matrix are
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FIG. 8. (a) Airport transport network in the United States in 1997, for which N = 332 and D = 4252. (b) Distribution of the argument
of the eigenvalues of the time-evolution unitary matrix for the Fourier walk on the U.S. Airport network. (c) Schematic of the community
which has two hubs. Node 1 is the first hub and node 2 is classified as a member of the group (dashed green circle). Node 2 is the second hub
concurrently. We classify hub 2 and its community (dashed orange circle) into the community of hub 1, ending up with a larger community
(solid green circle). (d) Number of communities depending on the threshold q. The horizontal axis shows the threshold q that we set and the
vertical axis shows the number of communities that we obtain. (e) Result of the community detection of the airport network. We classify the
nodes into three communities when we use the threshold q � 0.000 235 473 4. The orange circle represents the airport which belongs to the
first community (147 nodes). The green square shows the second one (151 nodes) and the blue star shows the third one (34 nodes). (f) Result of
the community detection of the airport network. We have five communities when we use the threshold q � 0.000 235 583 4. The olive hexagon
shows the airport which belongs to the fourth community, and the red ellipse the fifth..

nondegenerate, and hence the Fourier walk is more suitable
for community detection than the Grover walk. The transition
probability becomes higher in proportion to the number of
links, and thereby we can detect the hubs. Next, we normalize
the probability of each node by dividing it by the number of
links. The normalized probability in the initial node and the
other nodes in the same community is high, which reveals the
community structure. Meanwhile, the probability of the clas-

sical random walk on the same network eventually converges
to the flat distribution. We thus claim that the time average
of the probability of the Fourier walk on complex networks
reveals the community structure more explicitly than that of
the classical random walk.

Finally, we apply the method to real-world networks. For
Zachary’s karate-club network, we confirm that our method
reveals its community structure correctly. Most nodes of the
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TABLE I. The top airports in each community according to our algorithm, along with the carrier that carried the largest number of
passengers out of it. (a) For the threshold q = 1/D � 0.000 235 183 4, all airports are classified into two communities. We omit some
minor airports in the second community. (b) For the threshold 0.000 235 443 4 � q � 0.000 235 473 4, all airports are classified into three
communities.

(a) q = 1/D � 0.000 235 183 4

First community Second community

Departure airport Carrier Departure airport Carrier

Chicago O’Hare, IL (ORD) United Dallas/Fort Worth, TX (DFW) American
Atlanta, GA (ATL) Delta San Francisco, CA (SFO) United
St. Louis, MO (STL) TWA Salt Lake City, UT (SLC) Delta
Pittsburgh, PA (PIT) US Airways Nashville, TN (BNA) Southwest
Charlotte, NC (CLT) US Airways New York JFK, NJ (JFK) American
Denver, CO (DEN) United Portland, OR (PDX) Alaska
Minneapolis-St. Paul, MN (MSP) Northwest
Detroit, MI (DTW) Northwest
New York Newark, NJ (EWR) Continental
Philadelphia, PA (PHL) US Airways
Houston, TX (IAH) Continental
Cincinnati, OH (CVG) Delta
Phoenix, AZ (PHX) America West
Los Angeles, CA (LAX) United
Seattle-Tacoma, WA (SEA) Alaska
Orlando, FL (MCO) Delta
Baltimore, MD (BWI) US Airways
New York La Guardia, NJ (LGA) Delta
Raleigh, NC (RDU) US Airways
Boston, MA (BOS) Delta
Las Vegas, NV (LAS) Southwest
Washington Dulles, VA (IAD) United
Miami, FL (MIA) American
Cleveland, OH (CLE) Continental
Memphis, TN (MEM) Northwest
Tampa, FL (TPA) Delta
Washington National, VA (DCA) US Airways
Indianapolis, IN (IND) US Airways

(b) 0.000 235 443 4 � q � 0.000 235 473 4

First community Second community Third community

Departure airport Airline Departure airport Airline Departure airport Airline

Chicago O’Hare, IL (ORD) United Dallas/Fort Worth, TX (DFW) American Atlanta, GA (ATL) Delta
St. Louis, MO (STL) TWA Charlotte, NC (CLT) US Airways Philadelphia, PA (PHL) US Airways
Pittsburgh, PA (PIT) US Airways Denver, CO (DEN) United Cincinnati, OH (CVG) Delta
Minneapolis-St. Paul, MN (MSP) Northwest San Francisco, CA (SFO) United Orlando, FL (MCO) Delta
Detroit, MI (DTW) Northwest Houston, TX (IAH) Continental Baltimore, MD (BWI) US Airways
New York Newark, NJ (EWR) Continental Los Angeles, CA (LAX) United Raleigh, NC (RDU) US Airways
Phoenix, AZ (PHX) America West Salt Lake City, UT (SLC) Delta New York La Guardia, NJ (LGA) Delta
Boston, MA (BOS) Delta Seattle-Tacoma, WA (SEA) Alaska Miami, FL (MIA) American
Washington Dulles, VA (IAD) United Nashville, TN (BNA) Southwest New York JFK, NJ (JFK) American
Cleveland, OH (CLE) Continental Las Vegas, NV (LAS) Southwest Memphis, TN (MEM) Northwest
Indianapolis, IN (IND) US Airways Washington National, VA (DCA) US Airways Tampa, FL (TPA) Delta

network are classified clearly, while two nodes are marginally
identified. This result is consistent with other research. For
the airport network in the United States, we confirm that our
method reveals its community structure that corresponds to

the three major airline companies in the United States. By
adjusting the threshold, our algorithm successfully reveals the
hierarchical structure of the communities as the dendrogram
in Fig. 1 implies.
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We argue that the strong localization of the Grover walk
is presumably due to many eigenstates of degenerate eigen-
values ±1, which have been mathematically proven to be
localized on loops [38]; hence we are almost certain that
the Grover walk is not suitable for community detection. On
the other hand, we numerically show that the Fourier walk
works for community detection, but we have yet to find any
mathematical reasons why it does. We have not tried other
types of quantum walks either. These are beyond the scope of
the present paper and should be pursued in future studies.

Let us, finally, add a remark on a possible extension of the
present algorithm. We define our quantum walk ignoring the
weight and the direction of the links of the networks. We can
vary the weight as integers by making each link have multiple
connections. In order for a directed network to accommodate
a quantum walk, the network cannot have any dead ends of
directed links [12]. We may be able to apply our algorithm to
the directed network as long as the condition is satisfied.
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APPENDIX A: TRANSFORMATION TO THE STANDARD
SHIFT OPERATOR

In the present Appendix, we explicitly show for a one-
dimensional lattice that we can transform the atypical shift
operator, (8), to the standard shift operator by multiplying the
coin operator by the flipping operator.

Following the text, let us express the right- and left-movers
on the one-dimensional lattice as follows:

Right mover: . . . ,|(x − 1) → x〉,
|x → (x + 1)〉,
|(x + 1) → (x + 2)〉, . . . , (A1)

Left mover: . . . ,|(x + 2) → (x + 1)〉,
|(x + 1) → x〉,
|x → (x − 1)〉. . . . (A2)

We can express the atypical shift operator, (8), in the form of
the matrix

(A3)

under the ordering of the bases

(A4)

because

S|x → (x − 1)〉 = |(x − 1) → x〉,
S|(x − 1) → x〉 = |x → (x − 1)〉,
S|(x + 1) → x〉 = |x → (x + 1)〉,
S|x → (x + 1)〉 = |(x + 1) → x〉. (A5)

The time-evolution unitary operator is therefore given by

U = SC (A6)

with the coin operator

C = . . . ⊕ Cx−1 ⊕ Cx ⊕ Cx+1 . . . (A7)

with a 2 × 2 unitary matrix Cx, for example, a Fourier coin,

Cx = 1√
2

(
1 1
1 −1

)
. (A8)

We now define a new coin operator with an additional
factor Px inserted to the left of the original coin operator Cx,

C′ = PC = . . . ⊕ Px−1Cx−1 ⊕ PxCx ⊕ Px+1Cx+1 . . . , (A9)

where the new factor

Px =
(

0 1
1 0

)
(A10)

flips the direction of the right- and left-movers. In the new
time-evolution operator

U ′ = SC′ = SPC, (A11)
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FIG. 9. (a–c) An eigenvector of the Grover walk on a graph, which is localized on a triangular loop, has the eigenvalue +1. (d–f) An
eigenvector localized on a square loop also has the eigenvalue +1. (g–i) Another eigenvector localized on a square loop has the eigenvalue −1.

we find

(A12)

because

S′|x → (x + 1)〉 = S|x → (x − 1)〉 = |(x − 1) → x〉,
S′|(x − 1) → (x − 2)〉 = S|(x − 1) → x〉 = |x → (x − 1)〉,
S′|(x + 1) → (x + 2)〉 = S|(x + 1) → x〉 = |x → (x + 1)〉,

S′|x → (x − 1)〉 = S|x → (x + 1)〉 = |(x + 1) → x〉.
(A13)

We can see that the operator S′ works as the standard shift
operator, which shifts the right-mover to the right, keeping it
as a right-mover, and shifts the left-mover to the left, keeping
it as a left-mover.

Therefore, the time-evolution operator

U ′ = SC′ = S′C (A14)

is the atypical shift operator, (8), multiplied by a slightly
jammed coin operator; for example, for Eq. (A8),

C′
x = PCx = 1√

2

(
1 −1
1 1

)
(A15)

but, at the same time, is the standard shift operator S′ mul-
tiplied by the standard coin operator C. In this sense, the
atypical shift operator, (8), is quite similar to the standard shift
operator.
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APPENDIX B: EIGENVECTORS OF THE GROVER WALK
ON GRAPHS FOR THE EIGENVALUES ±1

We here present tutorial examples of the eigenvectors of
the Grover walk on graphs for the degenerate eigenvalues ±1.
The following is based on private discussions with H. Obuse
[51] and E. Segawa [52].

Let us first note that the Grover coin CG
i in Eq. (11) always

has an eigenvalue of −1 for an eigenvector with only two
nonzero elements. We can straightforwardly confirm it by ap-
plying the Grover coin to the vector (1 −1 0 0 . . .)T :

1

ki

⎛
⎜⎜⎜⎜⎝

2 − ki 2 2 2 2
2 2 − ki 2 2 2
2 2 2 − ki 2 2
...

...
...

. . .
...

2 2 2 · · · 2 − ki

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1
−1
0
...
0

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

−1
1
0
...
0

⎞
⎟⎟⎟⎟⎠.

(B1)

We first show [51] that the vector depicted in Fig. 9(a) is
an eigenvector of the Grover walk with the eigenvalue +1.
There the blue arrow with the sign +1 indicates that the vector
has an element +1 for the basis at the node to which the
arrow is attached and is about to hop to the next node. The
red arrow with the sign −1 indicates an element −1 for the
corresponding basis. The other elements are all 0. In other
words, this vector is strictly localized on a triangular loop.

Application of the Grover coin to the vector changes it
to the one depicted in Fig. 9(b) because of the operation in
Eq. (B1). Further application of the shift operator in Eq. (8)
changes it back to the original one as in Fig. 9(c). We have
thereby confirmed that the vector in Fig. 9(a) is an eigenvector
of the Grover walk with the eigenvalue +1.

We can confirm in the same way that the vector depicted in
Fig. 9(d), localized strictly on a square loop, is also an eigen-
vector of the Grover walk with the eigenvalue +1. On a square
loop, we can find that another vector, depicted in Fig. 9(g), is
an eigenvector of the Grover walk but with the eigenvalue −1.
We can thus easily guess that the Grover walk must have large
degrees of degeneracies for the eigenvalues ±1.

Indeed, it has been proven [38,52] for the Grover walk on a
graph G that the degeneracy of the eigenvalue +1 is b1(G) +
1, whereas the degeneracy of the eigenvalue −1 is b1(G) + 1
if the graph G is bipartite and b1(G) − 1 if it is not, where
b1(G) = |E | − |V | + 1 is the Betti number of the graph G,
with |E | and |V | denoting the number of edges (links) and
vertices (nodes), respectively.

(d)

(b) (c)(a)
+1 +1

+1 +1+1

+1 +1

+1+1

+1

+1

+1

+1

+1

+1

+1

+1
+1

+1

+1 +1

+1+1

FIG. 10. (a–c) The three eigenvectors degenerate to the eigen-
value +1. (d) The only eigenvector with the eigenvalue −1.

We can easily confirm this, e.g., for the graph in Fig. 10,
which is a combination of a square and a triangle with the
Betti number b1(G) = 6 − 5 + 1 = 2. According to the theo-
rem, the degeneracies of the eigenvalues ±1 are b1(G) + 1 =
3 and b1(G) − 1 = 1, respectively, because the graph is not
bipartite. Indeed, the vectors depicted in Figs. 10(a)–10(c)
have the eigenvalue +1, while the vector in Fig. 10(d) has
the eigenvalue −1.

Note that although there is always an extended eigen-
vector, such as exemplified in Fig. 10(c), namely, the same
element in all bases, with the eigenvalue +1, its overlap
with the initial state of the Grover walk should be of the
order of 1/

√
D because of the normalization of the eigen-

vector, and hence we can ignore its contribution for large
networks.

For the three-community network in Fig. 3(a), because the
Betti number is given by b1(G) = 39 − 21 + 1 = 19, the de-
generacies in the eigenvalues ±1 are 20 and 18, respectively.
For Zhachary’s karate club in Fig. 7(a), they are 46 and 44, and
for the airport transport network in Fig. 8(a), they are 1796
and 1794. Except for the one extended eigenvector, they are
all localized on loops in at least one set of linear combinations
of degenerate eigenvectors.

[1] Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random
walks, Phys. Rev. A 48, 1687 (1993).

[2] E. Farhi and S. Gutmann, Quantum computation and decision
trees, Phys. Rev. A 58, 915 (1998).

[3] D. Aharonov, A. Ambainis, J. Kempe, and U. V. Vazirani,
Quantum walks on graphs, in Proceedings of the 33rd Annual
ACM Symposium on Theory of Computing (Association for
Computing Machinery, New York, 2001), pp. 50–59.

[4] N. Inui, N. Konnno, and E. Segawa, One-dimensional
three-state quantum walk, Phys. Rev. E 72, 056112
(2005).

[5] T. Machida, Limit theorems for a localization model of 2-state
quantum walk, Int. J. Quant. Info. 9, 863 (2011).

[6] A. C. Oliveira, R. Portugal, and R. Donangelo, Decoherence
in two-dimensional quantum walks, Phys. Rev. A 74, 012312
(2006).

023378-16

https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevE.72.056112
https://doi.org/10.1142/S0219749911007460
https://doi.org/10.1103/PhysRevA.74.012312


DISCRETE-TIME QUANTUM WALK ON COMPLEX … PHYSICAL REVIEW RESEARCH 2, 023378 (2020)

[7] K. Saito, Periodicity for the Fourier quantum walk on regular
graphs, Quantum Info. Comput. 19, 23 (2019).

[8] L. Grover, A fast quantum mechanical algorithm for database
search, in Proceedings of the 28th Annual ACM Symposium on
Theory of Computing (Association for Computing Machinery,
New York, 1996), pp. 212–219.

[9] S. D. Berry and J. B. Wang, Quantum-walk-based search and
centrality, Phys. Rev. A 82, 042333 (2010).

[10] B. C. Travaglione and G. J. Milburn, Implementing the quantum
random walk, Phys. Rev. A 65, 032310 (2002).

[11] A. Crespi, R. Osellame, R. Ramponi, M. Bentivegna, F.
Flamini, N. Spagnolo, N. Viggianiello, L. Innocenti, P.
Mataloni, and F. Sciarrino, Suppression law of quantum states
in a 3D photonic fast Fourier transform chip, Nat. Commun. 7,
10469 (2016).

[12] A. Montanaro, Quantum walks on directed graphs,
Quantum Info. Comput. 7, 93 (2007).

[13] M. Girvan and M. E. J. Newman, Community structure in social
and biological networks, Proc. Natl. Acad. Sci. USA 99, 7821
(2002).

[14] E. Estrada, The Structure of Complex Networks: Theory and
Applications (Oxford University Press, Oxford, UK, 2011).

[15] G. Chen, X. Wang, and X. Li, Fundamentals of Complex
Networks: Models, Structures and Dynamics (John Wiley &
Sons, Singapore, 2015).

[16] V. Latora, V. Nicosia, and G. Russo, Complex Networks: Prin-
ciples, Methods and Applications (Cambridge University Press,
Cambridge, UK, 2017).

[17] W. W. Zachary, An information flow model for conflict and
fission in small groups, J. Anthropol. Res. 33, 452 (1977).

[18] G. W. Flake, S. Lawrence, C. Lee Giles, and F. M. Coetzee,
Self-organization and identification of web communities, IEEE
Comput. 35, 66 (2002).

[19] M. Takayasu, S. Sameshima, T. Ohnishi, Y. Ikeda, H. Takayasu,
and K. Watanabe, Massive economics data analysis by econo-
physics methods—The case of companies’ network structure, in
Annual Report of the Earth Simulator Center April 2007–March
2008 (Earth Simulator Center, Japan Agency for Marine-Earth
Science and Technology, Yokohama, 2008), pp. 263–268.

[20] D. J. Watts and S. H. Strogatz, Collective dynamics of ’small-
world’ networks, Nature (London) 393, 440 (1998).

[21] R. J. Williams and N. D. Martinez, Simple rules yield complex
food webs, Nature (London) 404, 180 (2000).

[22] A. W. Rives and T. Galitski, Modular organization of cellular
networks, Proc. Natl. Acad. Sci. USA 100, 1128 (2003).

[23] S. H. Strogatz, Exploring complex networks, Nature (London)
410, 268 (2001).

[24] S. Milgram, The small world problem, Psychol. Today 2, 60
(1967).

[25] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi,
Defining and identifying communities in networks, Proc. Natl.
Acad. Sci. USA 101, 2658 (2004).

[26] S. Fortunato, Community detection in graphs, Phys. Rep. 486,
75 (2010).

[27] M. E. J. Newman, Finding community structure in networks
using the eigenvectors of matrices, Phys. Rev. E 74, 036104
(2006).

[28] P. Pons and M. Latapy, Computing Communities in Large
Networks Using Random Walks (Springer, New York, 2005),
pp. 284–293.

[29] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of
Statistical Learning (Springer, Berlin, 2001).

[30] E. Estrada and N. Hatano, Communicability in complex net-
works, Phys. Rev. E 77, 036111 (2008).

[31] M. E. J. Newman, Modularity and community structure in
networks, Proc. Natl. Acad. Sci. USA 103, 8577 (2006).

[32] A. Clauset, M. E. J. Newman, and C. Moore, Finding commu-
nity structure in very large networks, Phys. Rev. E 70, 066111
(2004).

[33] M. Rosvall and C. T. Bergstrom, Maps of random walks
on complex networks reveal community structure, Proc. Natl.
Acad. Sci. USA 105, 1118 (2008).

[34] A. M. C. Souza and R. F. S. Andrade, Discrete time quantum
walk on the Apollonian network, J. Phys. A: Math. Theor. 46,
145102 (2013).

[35] N. Shenvi, J. Kempe, and K. B. Whaley, Quantum random-walk
search algorithm, Phys. Rev. A 67, 052307 (2003).

[36] Y. Higuchi, N. Konno, I. Sato, and E. Sagawa, Periodicity of the
discrete-time quantum walk on a finite graph, Interdiscip. Info.
Sci. 23, 75 (2017).

[37] Y. Ide, N. Konno, and E. Segawa, Time averaged distribution
of a discrete-time quantum walk on the path, Quantum Info.
Process. 11, 1207 (2012).

[38] Y. Higuchi, N. Konno, I. Sato, and E. Segawa, Spectral and
asymptotic properties of Grover walks on crystal lattices, J.
Func. Anal. 267, 4197 (2014).

[39] P. Pradhan, A. Yadav, S. K. Dwivedi, and S. Jalan, Optimized
evolution of networks for principal eigenvector localization,
Phys. Rev. E 96, 022312 (2017).

[40] A. V. Goltsev, S. N. Dorogovtsev, J. G. Oliveira, and J. F. F.
Mendes, Localization and Spreading of Diseases in Complex
Networks, Phys. Rev. Lett. 109, 128702 (2012).

[41] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[42] T. Devakul and D. A. Huse, Anderson localization transitions
with and without random potentials, Phys. Rev. B 96, 214201
(2017).

[43] I. Vakulchyk, M. V. Fistul, P. Qin, and S. Flach, Anderson
localization in generalized discrete time quantum walks, Phys.
Rev. B 96, 144204 (2017).

[44] S. Derevyanko, Anderson localization of a one-dimensional
quantum walker, Sci. Rep. 8, 1795 (2018).

[45] N. Inui, Y. Konishi, and N. Konno, Localization of two-
dimensional quantum walks, Phys. Rev. A 69, 052323
(2004).

[46] T. Komatsu and T. Tate, Eigenvalues of quantum walks of
Grover and Fourier types, J. Fourier Anal. Appl. 25, 1293
(2019).

[47] H. Wu, L. Gao, J. Dong, and X. Jang, Detecting overlapping
protein complexes by rough-fuzzy clustering in protein-protein
networks, PLOS ONE 9, e91856 (2014).

[48] V. Batagelj and A. Mrvar, Pajek datasets; http://vlado.fmf.uni-
lj.si/pub/networks/data/.

[49] Bureau of Transportation Statistics, https://www.transtats.bts.
gov/DL_SelectFields.asp.

[50] E. Estrada and N. Hatano, Communicability graph and commu-
nity structures in complex networks, Appl. Math. Comput. 214,
500 (2009).

[51] H. Obuse (private communication, 2019).
[52] E. Segawa (private communication, 2019).

023378-17

https://dl.acm.org/doi/abs/10.5555/3370239.3370242
https://doi.org/10.1103/PhysRevA.82.042333
https://doi.org/10.1103/PhysRevA.65.032310
https://doi.org/10.1038/ncomms10469
https://dl.acm.org/doi/abs/10.5555/2011706.2011711
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1109/2.989932
https://doi.org/10.1038/30918
https://doi.org/10.1038/35004572
https://doi.org/10.1073/pnas.0237338100
https://doi.org/10.1038/35065725
https://doi.org/10.1073/pnas.0400054101
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.77.036111
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1088/1751-8113/46/14/145102
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.4036/iis.2017.A.10
https://doi.org/10.1007/s11128-012-0424-5
https://doi.org/10.1016/j.jfa.2014.09.003
https://doi.org/10.1103/PhysRevE.96.022312
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevB.96.214201
https://doi.org/10.1103/PhysRevB.96.144204
https://doi.org/10.1038/s41598-017-18498-1
https://doi.org/10.1103/PhysRevA.69.052323
https://doi.org/10.1007/s00041-018-9630-6
https://doi.org/10.1371/journal.pone.0091856
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://www.transtats.bts.gov/DL_SelectFields.asp
https://doi.org/10.1016/j.amc.2009.04.024

