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The exceptional point (EP) is a non-Hermitian degeneracy of an open quantum system, where the behavior of
the system is of a fundamental distinguishing nature. Within the framework of exact quantum electrodynamics in
dispersing and absorbing media, we study the strong-coupling regime of a single emitter—high-Q cavity system in
the case where two cavity modes and the corresponding resonant frequencies coalesce at an EP. We demonstrate
a substantial increase in the effective decay time of the spontaneous emission in the EP case. We show that this
effect is directly related to the peculiar spectral response of the electromagnetic field at the EP. We apply the
concept to the case of a microdisk cavity perturbed by nanoparticle scatterers, where the spontaneous emission
decay suppression can be related to the parameters of the real system.
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I. INTRODUCTION

Non-Hermitian physical systems have attracted much at-
tention recently for their unconventional behavior around
exceptional points (EPs), which are defined as spectral singu-
larities at which two or more eigenvalues and their associated
eigenvectors coalesce [1]. These singularities do not have
equivalents in Hermitian systems, because the eigenvectors
of non-Hermitian systems, which coalesce at the EP, are
biorthogonal, in contrast to Hermitian systems, where the
eigenvectors are orthogonal [2]. In particular, EPs have been
studied in various physical contexts bringing new features
to the overall response of optical systems [3], which lead
to a number of intriguing phenomena such as loss-induced
light transmission [4,5], enhanced sensing [6—8], and mode
selection in lasers [9,10]. In practice, EPs and related effects
have become experimentally accessible in many photonic
systems [11].

In relation to the study of light-matter interaction, it has re-
cently been shown that spontaneous emission of dipole emit-
ters in the weak-coupling regime can be modified at an EP,
leading to strong enhancement of the emission rate [12,13].
Generally, control of the spontaneous emission of fluores-
cent emitters near a resonant environment, which is typically
characterized by the Purcell factor [14], attracts great interest
for a wide range of applications, from sensing, where the
modification of spectral properties of emitters is used to
increase the detection sensitivity, to quantum information pro-
cessing, where efficient single-photon sources are needed. The
spontaneous emission rate enhancement is related to the linear
response of a resonant system, e.g., an optical cavity, which
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in the case of an EP exhibits a narrowed, squared Lorentzian
line shape, with a larger peak value in comparison to the
single-resonance case. This effect makes it possible to modify
the frequency response near the EP resonance [15-17].

In this paper, we exploit the modification of the response of
a high-Q cavity operating at an EP and study the spontaneous
emission of a single emitter in the strong-coupling regime. In
particular, within the frame of exact quantum electrodynamics
(QED) we investigate the emission of the emitter embedded
in a cavity supporting a second-order EP at a nearly resonant
frequency. As we discuss below, the dynamics of the emitter-
field interaction at an EP results from two features of the EP:
the larger emission peak value at the EP in comparison to
the single-mode case and the narrower emission peak of a
squared Lorentzian line shape compared to that of a standard
Lorentzian spectrum.

II. GENERAL THEORY

We consider a single emitter (position r4) that interacts
with the electromagnetic field in the presence of a dispersing
and absorbing dielectric medium and assume that only a
single transition (|1) <> |2); frequency w;;, dipole-moment
dy|) is quasiresonantly coupled to a narrow-band cavity-
assisted electromagnetic field. Applying the multipolar-
coupling scheme in the electric dipole approximation, we
write the Hamiltonian that governs the temporal evolution of
the overall system, which consists of the electromagnetic field,
the dielectric medium (including the dissipative degrees of
freedom), and the emitter coupled to the field, in the form of
(for details, see Appendix A and Refs. [18-20])
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In this equation, the first term is the Hamiltonian of the
field-medium system, where the fundamental bosonic fields
f(r, w)and £ (r, w) play the role of the canonically conjugate
system variables. The second term is the Hamiltonian of the
emitter, where the S, are the flip operators, S, = |I)(I'|,
corresponding to the |I) <> |I) transition, with |/) being the
energy eigenstate of the emitter. Finally, the last term is the
emitter-field coupling energy. In the above, the classical Green
tensor G(r, r’, w) defines the structure of the electromagnetic
field in the presence of the dielectric bodies described by the
spatially varying, frequency-dependent permittivity e(r, o).
In particular, the Green tensor determines the spectral re-
sponse of the resonator cavity.

In what follows we assume that the emitter is initially
(at time t = 0) prepared in the upper state |2) and the
cavity and electromagnetic field system is prepared in the
ground state |{0}), defined by f(r, w)|{0}) = 0. Then we may
approximately span the Hilbert space of the whole system by
the single-excitation states and expand the state vector of the
overall system at later times 7 (+ > 0) as

[W (1)) = Ca(t)e™ " [{0})12)

+/d3r/oo dwe ™ Ci(r, »,1) - 1 (r, »)|{O})]1).
0
2

It is not difficult to show that the Schrodinger equation for
|¥(¢)) leads to the following integrodifferential equation for
Cy(¢) (see Ref. [21]):

G =/ dt' K@t —t")Co (), 3)
0

with the initial condition C;(0) = 1. In the above, the kernel
function K (¢) reads

K(t) =—
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III. SPONTANEOUS EMISSION AT AN EP

Let us assume that any expression s(w) that includes the
Green tensor can be presented as

)
" D(w)’
where the function D(w) describes the resonant structure of
the Green tensor and S(w) is analytic in the lower half-plane.
Let s() be a function of time whose Fourier transform is given
by

s(w) 5)

s(w) = / dte'™ s(1), (6)
with
_ [do _,S)
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In the case where the cavity features nondegenerate high-
O modes, the excitation spectrum effectively turns into a
quasidiscrete set of resonant frequencies 2; = w; — il';/2

according to the zeros of the function D(w). Then, from
Egs. (6) and (7) we find

N
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which represents a sum of Lorentzian profiles.

In the case where the cavity is operating at a second-order
EP, that is, when two modes coalesce, forming an EP of
complex frequency, 2; = w; — il'yx/2, a second-order pole
emerges in the Green tensor [22]. For the sake of simplicity,
we assume that the emitter transition frequency w» is near the
frequency wy and the influence of other modes is weak. Then,
integrating Eq. (7) in the case where s(w) features a pole of
second order, from Eq. (6) we obtain

oy L Br 7
(a)—Qk)2 a)—Qk

with oy = S(€2¢) and By = [dS(w)/dw]|,—gq, - Note that for
w close to the resonance frequency wy,
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approximately holds. Equation (10) reveals that in the case
of a second-order EP the cavity spectral response features, in
addition to the conventional linear Lorentzian profile, a square
Lorentzian term associated with the singular spectral point.

To illustrate the effect induced by the squared Lorentzian
term we insert Eq. (4) together with Eq. (10) into Eq. (3)
and assume Im o, Re By < 0. Then we compare the results of
the probability |C,(¢)|* and the spectral mode function of the
outgoing field (for details of calculations, see Ref. [21]) for
three cases. In the first case, we assume that only one mode
is nearly resonant to the emitter transition. Then, applying
Eq. (8) to the w-dependent function under the integral in
Eq. (4), and assuming that only the kth mode is quasireso-
nantly coupled to the emitter at the coupling rate Ry, we can
solve the integrodifferential equation in Eq. (3). As Fig. 1(a)
reveals, the amplitude of the upper level |Cy(¢)|? reflects the
emitter-field interaction, where the oscillations decay due to
the finite lifetime of the cavity mode. From the right plot
in Fig. 1(a) we can see that the spectral mode function
features Rabi splitting of the strong emitter-field coupling.
In the second case, we assume that two orthogonal modes
with the same €2; are quasiresonantly coupled to the emitter
at the coupling rate R; and apply Eq. (8) now with two
modes. Then we can see from Fig. 1(b) that the spectral
mode functions for both modes are identical and feature Rabi
splitting, which is larger in comparison to that in the single-
mode case.

Finally, to study the influence of the modified frequency
response in the case of an EP, we consider the third case, the
EP case, Eq. (9), where we first assume |Im o | > I'i|Re S|,
that is, the first term in Eq. (10) is much larger than the second
one. In this case, the dynamics of the system is determined by
the square Lorentzian line shape with an enhanced emission
rate and reduced line width. As we see in the right plot in
Fig. 1(c), the spectral mode function in this case again features
Rabi splitting of the strong emitter-field coupling, and the
Rabi splitting is nearly the same as in the single-mode case.

Im s*F (w) =

(10)
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FIG. 1. Amplitude |C,(¢)|> and spectral mode function of the
outgoing field for w;; = w;, = 10000, and R, = 2T: (a) in the
single-mode case, (b) in the two-mode case, and (c) in the EP case.

Most importantly, the comparison of the plots of the left
column in Fig. 1 reveals that the effective decay in the EP
case is smaller than in the single-mode and double-mode
cases. Similarly, as the right column in Fig. 1 reveals, the
line width of the Rabi peaks is smaller in the case of the EP
in comparison with the single-mode and double-mode cases.
Effectively, the single excitation decay rate is much lower in
the EP case, causing longer oscillations between the emitter
and the cavity field.

In general, both the linear and the square Lorentzian terms
may contribute to the Green tensor. In particular, from Eq. (10)
it can be seen that the contributions of the linear and square
Lorentzian terms in the kernel function K(¢) are proportional
to Re By and Im oy, respectively. Thus, by increasing the pro-
portion |Im oy /(T'xRe By)| we can make the EP contribution
dominant. In this way, as we can see from the plots of the
amplitude of the upper level |C>(¢)|? in Fig. 2, the effective
decay time can be substantially increased.

To explain the above-mentioned results, we note that the
presence of the EP leads to a higher emission rate in com-
parison to the single-mode case. At the same time, a large
emission at the EP is compensated by narrowing of the mode
line width. The consequence is comparable values of the
Rabi frequency in the single-mode and the EP cases but an
effectively lower decay rate in the EP case.

As an example of an optical cavity that can operate
at an EP we consider a microdisk cavity perturbed by a
non-Hermitian backscattering [23]. The clockwise (CW) and
counterclockwise (CCW) propagating modes can be cou-
pled by two nanoparticle scatterers introducing asymmetric
backscattering, which may lead to non-Hermitian degeneracy
with coalescing frequencies, decay rates, and eigenmodes. For
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FIG. 2. Amplitude |C,(¢)|*> for various |Imay/(T'«Re B;)|. Pa-
rameters are the same as in Fig. 1.

the description of the EP, we use a two-mode approximation,
assuming that the nanoparticles introduce a small perturbation
that couples only the modes within a given degenerate mode
pair of the isolated microdisk. We consider CW and CCW
modes in the angular momentum representation with the given
mode azimuthal number m, where the wave function inside the
cavity can be given by means of cylindrical harmonics,

Y (p, §) = Y () m(nwrp/c)e™
+ (=1)"Y_ () u(naxp/c)e™™,  (11)

with J,, being the mth-order Bessel function of the first
kind and n = n(p) the piecewise constant refractive index of
the microdisk cavity. Then, in the slowly varying envelope
approximation the Maxwell equations reduce to the following
Schrodinger-type equation for the wave function ¢ = ¥ (¢) =
(Y4 (2), ¥_(t))T, with T denoting the transposed vector (see
Ref. [23], for details):

d
— Y = H, 12
i 1 v (12)
where the effective Hamiltonian reads
Q A
H = < B Q) (13)

In the above, the complex-valued parameters A and B, de-
scribing the scattering from the CW to the CCW and from
the CCW to the CW traveling waves, depend on the size,
refractive index, and location of the scatterers. The right
eigenvectors of the Hamiltonian Eq. (13) corresponding to the
solution with outgoing boundary condition read

vh = (jfg) (14)

with eigenvalues Q1 = Q £ +/AB. Here, we are interested
in the particular case where by appropriate choice of the
parameters of the scatterers, backscattering in a sole direction
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vanishes with B = 0. Then an EP is realized, where the
eigenfrequencies 21 and eigenvectors 1ﬁi coalesce, and the
remaining eigenstate is a pure CCW wave with the eigenvalue
2 and the right eigenvector

Vip = (é) (15)

which, together with the left eigenvector (WEP)T =0 1),
satisfies the self-orthogonality condition (Y5p)" - ¥hp = 0.
Note that considering the Hamiltonian H as parameter de-
pendent from B, in the neighborhood of the EP (small |B)),
the Hamiltonian has two nearly parallel eigenvectors wi with
nearly degenerate eigenvalues €2.. Then the Green tensor
G(r, 1, w) can be approximately given by a non-Hermitian
quasinormal expansion [24] which, close to the resonant fre-
quency wy (in the nondispersive case [25]), can be presented
by means of the wave functions defined in the basis of CW
and CCW traveling waves (Appendix B; see, also, Ref. [1]):

yR )T 1 PReYHT
0= @HT-YY o —Q @HT YR

Further, using perturbative expansion for eigenvalues €21 and
eigenvectors wli’L around the EP (see, e.g., Ref. [26] for the
use of the Newton-Puiseux expansion in the vicinity of EPs)
and taking the limit of B — 0, we find

1 k)"
(@ — )" (ko) - it
1 ¥ (jEP)T + ng('/’IéP)T

Glw) = . (16)

; 17
T .
@ — £ ('ﬁép) - jip
where the Jordan vectors jgl’,l‘ are defined by the relations
Hie = Qudte + Vi, (18)
L \T LT T
(ite) M = Q(itp) + (Vi) - (19)

together with the normalization conditions (jgp)" - jrp = O
and (YEp)" - jB = A~!. Then, using Egs. (13), (15), (18),
and (19) from Eq. (17), we obtain

1 A

8EP(w) =[e-% (o _IQ")2 . (20)
0

a)—Qk

As we can see, the structure of the Green tensor reflects the
asymmetric character of the effective non-Hermitian Hamil-
tonian, Eq. (13), with B = 0. In particular, a consequence of
this structure is the asymmetric backscattering at an EP, e.g.,
in the case of a cavity with two scatterers [26,27] or weakly
(and asymmetrically) deformed cavities [28-30], where the
reflection coefficient exhibits a resonant peak in one propaga-
tion direction but vanishes in the other.

Most importantly, Eq. (20) reveals that by means of ad-
justment of the parameter of the asymmetric backscattering
A the square Lorentzian term can be made prevailing in
comparison to the standard Lorentzian term. In practice, the
parameters of the system can be controlled by adjusting the

sizes, the size relation, and the relative phase angle between
the scatterers. Note that for passive cavities the inequality
|A] < T'x holds ([7]; but also see [31]). Thus, in the case of
a strong interaction with the emitter, effective decay times
of the spontaneous emission can be substantially increased
by adjusting the parameter ImA from O (linear Lorentzian
regime) to larger than 'y, (square Lorentzian regime); cf.
Fig. 2 with [Im o /(T'yRe By )| = 1.

IV. SUMMARY AND DISCUSSION

In summary, starting with macroscopic QED theory in dis-
persing and absorbing media, we have presented an exact de-
scription of the resonant interaction of a two-level emitter in a
high-Q cavity in the case where two cavity modes form an EP.
The quantum theory allows the study of the properties of spon-
taneous emission of the single emitter. The spectral response
of the resonator cavity is described by a square Lorentzian, in
contrast to a Lorentzian function in the single-mode case. The
consequence is much longer effective decay times in the EP
case in comparison to the single-mode case. High effective O
values of the cavity mode allow the reaching of high emis-
sion rates of the emitter into the cavity mode robust against
dephasing effects, which can be used, e.g., to achieve high
indistinguishability of single-photon generation—a building
block for many scalable quantum information technologies,
where indistinguishability is required to realize a photon-
photon interaction achieved by means of quantum interference
effects [32]. Moreover, the usage of EP resonances in cavity
QED may open possibilities for new practical approaches of
nonlinear optical interaction at the single-photon level [33].
We would like to emphasize that the theory presented in
this work has a general validity, and the results suggest the
possibility of experimental observation of the emission decay
suppression in a wide range of photonic systems, which can
operate at an EP. Obviously, the theory can be applied over a
wide range of experimentally relevant parameters of different
non-Hermitian systems in the regime of strong coupling. In
particular, the theory can be applied to optical waveguides
with strong evanescent coupling to a molecular dipole [34]
or coupled whispering-gallery mode microresonators [4,5],
two-dimensional photonic crystal slabs [35], and microring
resonators with an embedded angular structure [36] or two
nanotip scatterers [27], where a strong coupling regime with
a single semiconductor quantum dot [37-39] can be achieved.
Further decay suppression is possible if the system operates
at a higher-order EP [40,41], in which case the Green tensor
features higher-order Lorentzian functions. Another question
to ask is the sensitivity of the results with respect to a small
change in parameters that moves the system away from the
EP. For example, as shown in Ref. [2], the eigenfunctions
that coalesce at an EP become almost orthogonal to each
other by a weak disturbance that steers the system away from
the EP.
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APPENDIX A: BASICS OF THE MACROSCOPIC QED

The theory of macroscopic QED is an extension of vacuum
QED that describes the quantized electromagnetic field in
the presence of macroscopic dielectric bodies. Local, inho-
mogeneous, linear dielectric bodies can be characterized by
a spatially varying permittivity e(r, w), which is a complex
function of the frequency. The Hamiltonian of the electromag-
netic field and the dielectric medium is given by [18,19]

o0
Hiea = /d%/ dohot'(r, ) - f(r, 0), (A1)
0

which integrates the medium-modified creation and annihi-
lation operators of the medium-field system over the entire
space in position and frequency. The medium-field bosonic
operators satisfy the commutation relations

[f(r, ), (', 0)] = 8(w — @)8(r — 1), (A2)

[f(r, w), f(r', )] = 0. (A3)

The expression for the medium-assisted electric field is de-
fined by the field operators and the dyadic Green tensor,

Er) = / ” do [E(r, w) + E'(r, »)]

0
B e 3
=i |— dw—2 d’r'\/Ime(r', w)
E0TT Jo c
x G(r, ¥, w) - f(r', w) + He., (A4)
where the Green tensor solves the Helmholtz equation for the

electric field resulting from the Maxwell equations as

2
VxVxG(r,r,o) — w_2 e(r, w)G(r, v, 0) = 8% — 1),
C
(AS)
together with the boundary condition at infinity,
G(r,r',w) — 0 if |[r —r'| — oo. The emitter Hamiltonian
can be given by

ﬁA = Z hwmms\‘mma (A6)

with S,,,, being the flip operators,

A

Smn = |m)(nl, (A7)

where |m) are the energy eigenstates of the emitter. Finally,
the emitter-field coupling energy

Hiy = —d - E(ry) (AB)

contains the electric dipole-moment operator of the emitter,
which can be represented by means of the flip operators as

with d,,, = (m|d|n). The Hamiltonian of the overall system

consists of the medium field, emitter, and interaction parts:
H = Hiig + Hp + Hine. (A10)

Further, we assume that only a single emitter transition |1) <>
|2) is involved, with the emitter eigenenergy w;; = 0. Then
wy = wy1, where wy is the single transition frequency. Thus,
inserting Egs. (Al), (A6), and (A8) together with Eq. (A4)
into Eq. (A10) we obtain the total Hamiltonian, Eq. (1).

APPENDIX B: MODAL EXPANSION OF THE
GREEN TENSOR

In general, the spectral representation of a non-Hermitian
Hamiltonian can be given in terms of the left and right
eigenvectors as

PRYE)T
H = Q——. Bl
X,: "hT gk B

Resonances of the Hamiltonian in the Schrodinger-type equa-
tion, Eq. (12), can be defined in the Fourier space as the poles
of the Green tensor or the resolvent (wZ — H)~'. Similarly to
Eq. (B1) the mode expansion of the Green function reads
- R, /LT
G =y L YD
0= (YT -9y

l

(B2)

In the vicinity of an EP the terms of the expansion with van-
ishing denominators are dominant. Thus, we obtain Eq. (16).
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