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Trapped-ion Fock-state preparation by potential deformation
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We propose protocols to prepare highly excited energy eigenstates of a trapped ion in a harmonic trap which do
not use laser pulses to induce transitions among internal levels. Instead the protocols rely on smoothly deforming
the trapping potential between single and double wells. The speed of the changes is set to minimize nonadiabatic
transitions by keeping the adiabaticity parameter constant. High fidelities are found for times more than two
orders of magnitude smaller than with linear ramps of the control parameter. Deformation protocols are also
devised to prepare superpositions to optimize interferometric sensitivity, combining the ground state and a highly
excited state.
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I. INTRODUCTION

A trapped-ion architecture for quantum technologies rests
on combining basic operations such as logic gates or shuttling,
and generally needs fast and accurate control of internal and
motional states. Preparing (Fock) states with a well defined
number of vibrational quanta is one of the basic manipulations
that may be used to implement quantum memories, entangle-
ment operations, or communications [1,2]. Fock states with
large number of phonons can be useful in metrology protocols
based on NOON states, which give measurement outcomes
with uncertainties reaching the Heisenberg bound [3,4]. Also,
superpositions of eigenstates with maximally separated en-
ergies give optimal interferometric sensitivities [5,6], e.g., to
measure motional frequency changes [7].

Several schemes to prepare Fock states have been proposed
[3,8–14], but for a trapped ion they have only been produced
stepwise by sequences of pulses, which is quite challenging
for a large phonon number n. Resonant pulses need of the
order of n pulses with accurately defined frequency and area,
so intensity and frequency errors and timing imperfections
reduce the fidelity [15]. Adiabatic transfers admit parameter
flexibility but the long times needed make them prone to suffer
from decoherence and noise, which may be mitigated [13,14]
by shortcuts to adiabaticity (STA) [16,17].

A recent experiment [7] applied sequences of Rabi pulses
with unprecedented accuracy to approximately reach Fock
states of up to n = 100 transfering 50% of the population.
To reach the highest Fock states, higher order sidebands, i.e.,
pulses that jump more than a single level at a time (up to four
in this case), had to be applied, but still the required time and
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errors grow rapidly with the phonon number, and the measur-
able gains in interferometric sensitivity using superpositions
with the ground state were limited to n � 12.

While lasers will keep playing a major role in quantum
technologies in the foreseeable future, a laser-based archi-
tecture does not scale well for complex operations involving
large registers and/or many connected or repeated modulii.
The large overhead of laser power and control [18,19], in-
stabilities in frequency, position or intensity, and spontaneous
decay make engineering large scale devices challenging. This
motivates the exploration of different, truly scalable plat-
forms, e.g., using microwave control [18,19] and microfab-
ricated structures, which of course will involve their own, dif-
ferent, technical limitations. The goal pursued here is to create
an excited Fock state for a single ion from the ground state
without laser-induced internal transitions involved, by means
of deformations of the trap. The potentials in linear, multi-
electrode Paul ion traps can be deformed by programming the
voltages applied to the electrodes to control motional states,
see Refs. [20–25]. A change of species implies a relatively
minor software adaptation. This type of control can even be
applied to other particles besides ions, like nanoparticles [26]
or electrons [27].

The approach proposed is depicted in Fig. 1 and involves
three steps: (a) demultiplexing; (b) bias inversion; (c) multi-
plexing. Steps (a) and (c) could be carried out adiabatically
or using some shortcut to adiabaticity since the level ordering
at the start and at the end of the process is conserved. For
the second step the ordering of the levels is altered, so there
is no global adiabatic mapping that connects initial and final
states. However, in a fast process the wells are effectively
independent and STA approaches can also be applied [28].
A faster-than-adiabatic approach for step (a) was worked out
in Ref. [1] with neutral atoms, but only for a model with two
motional levels. In this paper we design step (c) using an STA
approach to minimize the nonadiabatic transitions distributing
them homogeneously along the process time [29,30]. The first
step requires a similar protocol but in reverse.
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FIG. 1. Scheme for Fock-state preparation. (a) Demultiplexing:
splitting the harmonic trap into an asymmetrical double well; (b) Bias
inversion of the double well; (c) Multiplexing: inverse of demulti-
plexing. The shaded wave functions are the ideal initial and target
states.

II. MULTIPLEXING

Consider a single ion in a trap that is effectively one
dimensional driven by the Hamiltonian

H (t ) = p2

2M
+ α(t )x2 + β(t )x4 + γ (t )x, (1)

where x, p are the position and momentum operators, and M
is the mass of the ion; α(t ), β(t ), and γ (t ) are in principle
time-dependent coefficients.

The trapping potential Vt (x) = α(t )x2 + β(t )x4 + γ (t )x is
a double well potential when α(t ) < 0 and β(t ) > 0. The
term γ (t )x corresponds to a homogeneous electric field that
induces an energy bias between the wells. In the symmetric
potential (γ = 0) the minima are at x0,± = ±√−α/(2β ). We
consider the bias small enough so that the shift of the minima
depends linearly on γ [28],

x0,± ≈ ±
√

−α/(2β ) + γ /(4α), (2)

valid when

|γ | � 4
√

2
√

−α3/β/3, (3)

which defines the small-bias regime, in which the energy
difference between the wells is approximately �Vt = γ D,
where

D ≡ x0,+ − x0,− =
√

−2α/β (4)

is the distance between the minima. The parameters for the
initial double well will be chosen within this regime. The
effective frequency ωeff,± of each well, in the small-bias
regime is

ωeff,± ≈ � = 2
√

−α/M. (5)

When α > 0 and β = 0 the trapping potential is harmonic
with angular frequency ω = √

2α/M. Multiplexing consists
on driving the system from the double well configuration to
the harmonic trap configuration so that the initial eigenstates
are dynamically mapped onto the final ones. For simplicity
we shall keep γ (t ) fixed, γ (t ) = γ . The boundary conditions
in a multiplexing operation are α0 < 0, β0 > 0 for the initial
values and α f > 0, β f = 0 for the final values,

Vt=0(x) = α0x2 + β0x4 + γ x,

Vt=t f (x) = α f (x − xeq )2 − γ /
(
4α2

f

)
,

(6)

with xeq ≡ −γ /(2α f ). We shall also impose that the fre-
quency of the final harmonic trap is equal to the frequency
of the initial wells so α f = 2|α0|.

If the evolution is adiabatic, the lowest state of the upper
well (nth state globally) will become the nth Fock excited
state |n〉 of the final harmonic potential. If the wells are
deep enough, in the left (right) well there is a set of har-
monic eigenstates |nL〉 (|nR〉) with energies EnL = h̄�0(nL +
1/2) (EnR = h̄�0(nR + 1/2) + �Vt ), where �0 ≡ 2

√−α0/m.
We need the initial ground state of the right well, |0R〉, to be
the nth excited state of the whole system, so the inequality
E(n−1)L < E0R < EnL must be satisfied,

n − 1 < γ D0/(h̄�0) < n, (7)

where D0 ≡ D(α0, β0). The ratio D/� = √
M/(2β ) only de-

pends on β so a change of α within the small bias regime
for constant β does not modify this state ordering. In our
simulations we choose the value

γ = (n − 1/2)h̄�0/D0 (8)

for the bias. The small-bias condition and Eq. (7) provide an
upper bound for the highest Fock state that can be prepared
with α0 and β0,

n � 4
√

−Mα3
0/

(
h̄2β2

0

)
/3. (9)

To design the driving of the control parameters, a straightfor-
ward approach would be an adiabatic evolution, for example
a linear ramp protocol along a large run time. Long times,
however, are inadequate for many applications and give rise
to heating and decoherence. Shortcuts to adiabaticity [16,17]
stand out as a practical, faster option.

III. DESIGN OF THE PROCESS

Shortcuts to adiabaticity [16,17] are a family of methods
that speed up adiabatic processes to get the same final popu-
lations or states in shorter times. Shortcuts have been applied
for many different systems and operations and can be adapted
to be robust against implementation errors and noise [17,31].

Among the different STA techniques available, Fast quasia-
diabatic dynamics (FAQUAD) [29] is well suited to our
current objective. Invariants-based inverse engineering [32]
requires explicit knowledge of a dynamical invariant of the
Hamiltonian, which is not available here, and fast-forward
driving [33,34] produces potentials with singularities due to
the nodes of the wave function [35], which can be problematic
with highly excited states. FAQUAD reduces the diabatic
transitions between the states of the Hamiltonian by making
the adiabaticity criterion constant during the process. For a
time-dependent Hamiltonian that depends on a single control
parameter H (t ) = H[λ(t )] such that λ(t ) is a monotonous
function in the [0, t f ] interval, the adiabaticity criterion to
avoid transitions between the instantaneous eigenstates |n(λ)〉
and |m(λ)〉 is [36]

h̄λ̇

∣∣∣∣
〈n(λ)|dH/dλ|m(λ)〉

[En(λ) − Em(λ)]2

∣∣∣∣ = c � 1, (10)

where En(λ)(Em(λ)) are the instantaneous eigenenergies and
the dot stands for time derivative.

FAQUAD imposes a constant c, so Eq. (10) becomes a
differential equation for λ(t ). The value of c is determined
by the boundary conditions λ(0) and λ(t f ). Equation (10)
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FIG. 2. Preparation of Fock states |n〉 and superposition states (|0〉 + eiϕ |n〉)/
√

2 using FAQUAD. The different columns show the results
for the different values of n. Upper row: fidelity of the stated evolved by FAQUAD from the nth excited of the double well with respect
to |n〉, the nth Fock state of the harmonic trap. Lower row: fidelity of the state evolved from the ground state with respect to |0〉 using the
FAQUAD trap deformation designed to get |n〉. α0 = −4.7 pN/m, α f = −2α0 = 9.4 pN/m, β0 = 0.052 N/m3, β f = 0, M(9Be+) = 9.012
a.u., ε = 1 pN/m, and κ = 100/(α0 − α f ) = −7.092 m/pN.

implies that the control parameter evolves more slowly when
the Hamiltonian changes rapidly with the control parameter
and/or near avoided crossings.

We eliminate one degree of freedom in Eq. (1) by taking
α as the master control parameter (α = λ) and making β =
β(α). Equation (10) has to be solved with the boundary
conditions for α and β. To choose β(α) we consider that
the largest possible values of β should hold while α changes
sign so that the levels in the intermediate quartic well are not
too close. A simple choice is to keep β ≈ β0 constant until
α > 0 increases and the quadratic part dominates. Then we
can let β drop to zero without any significant effect. While β

is constant the energy difference between the wells in units of
the instantaneous motional quantum

Nq = γ D/(h̄�) = γ
√

M/(2β )/h̄, (11)

FIG. 3. Fidelity vs final time for the creation of Fock states using
a linear ramp of the control parameter α: triangles, n = 20; solid red
line, n = 50 and dashed blue line n = 100. Same parameters as in
Fig. 2.

is constant. We choose for β the form

β(α) = a + b S[κ (α − ε)], (12)

where S(x) = (1 + e−x )−1 is the (sigmoid) logistic function.
ε and κ set the position and the width of the region where
the parameter β ramps from its initial to the final value. We
choose ε > 0 so that β ≈ β0 around α = 0. A larger κ implies
a narrower jump. When κ � max{(|α0| + ε)−1, (|α f | − ε)−1}
the ramp of β is narrow enough so that when α goes to α0

(α f ) β goes asymptotically to a (a + b) and then the boundary
conditions demand that a = −b = β0.

We choose α0 = −4.7 pN/m, α f = 2|α0| = 9.4 pN/m,
β0 = 0.052 N/m3, and 9Be+ ions in the numerical simula-
tions, so �0 = 2π × 5.6 MHz and D0 = 13.45 μm. For the
ground state of the highest energy well to be the nth excited
state of the full Hamiltonian, the bias is chosen as γ = (n −
0.5)h̄�0/D0. Wilson et al. [37] implemented α0 values in this
range and β0 values five times smaller. The necessary increase
may be achieved, keeping the same trap geometry, by a 3/4
reduction of effective trap size accompanied by electrode
cooling or surface treatment to avoid heating [20,38,39], and
a feasible slight increase by 1.2 of applied voltages [40], or,
alternatively, by a change in the geometry with the same sizes
and voltages [41]. These α0 and β0 imply a resolution for γ in
the sub zN range to select a specific n, for which calibrations
have been described [42,43]. The stability with respect to
small errors in γ is analyzed in the Appendix. Spurious, slow
drifts in this constant force were identified as a main technical
issue to implement double barriers [40,44], but they may be
compensated [40].

Avoided level crossings occur at α < 0, near α = 0 in a
critical region where the small bias condition fails and the
double well becomes a single quartic well. The gap between
the eigenstates near α = 0 is approximately proportional to
β1/3 [45]. Thus, at α ≈ 0, β should be as large as possible
within experimental constraints.
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FIG. 4. Scheme to prepare superpositions of the ground state and
a Fock state of the harmonic oscillator, (|0〉 + eiϕ |n〉)/

√
2. (a) Split-

ting of the ground state; (b) Biasing; (c) Merging the two wells into
a harmonic trap. The shaded wave functions are the ideal initial and
target states.

In our multilevel scenario we modify Eq. (10) to [30]

c = h̄λ̇
∑
m 	=n

∣∣∣∣
〈n(λ)|dH/dλ|m(λ)〉

[En(λ) − Em(λ)]2

∣∣∣∣, (13)

taking only the four closest eigenstates (two from below and
two from above) of the relevant state in the sum. Note the
shorthand notation |n〉 ≡ |n(λ f )〉 for the eigenstates of the
final harmonic oscillator.

IV. RESULTS

We have numerically solved the time-dependent
Schrödinger equation driven by Eq. (1). We compare the
performance of the protocols designed using FAQUAD with
a linear ramp of the control parameter α(t ), using the same
β(α) as for FAQUAD.

The upper row of Fig. 2 shows the results of the
multiplexing step [(c) in Fig. 1] for different n. The fidelity is
Fn = |〈n|ψF

n 〉|, where |ψF
n 〉 is the final state after FAQUAD

evolution. The fidelity if α(t ) follows a linear ramp is depicted
in Fig. 3. FAQUAD attains fidelities above F = 0.9 for final
times of less than 100 μs, while the linear ramp needs
evolution times up to 50 ms for similar fidelities. In Fig. 2
(upper panels) the maximum fidelities for similar final times
decrease and the width of the fidelity oscillations increases
for larger n. Both effects can be mitigated using a local
adiabatic approach, see the final discussion. Nevertheless,
for the studied final times, fidelities above F = 0.9 for
n = 100 can be reached for specific values of t f . In Ref. [7]
a table shows the final times required to create each Fock
state by combining Rabi pulses. For n = 4 only 38 μs are
needed, but for n = 100 the total time grows to 335 μs, even
though higher order sidebands were applied. In comparison,
even if the times needed are orders of magnitude larger, the

FIG. 5. Fidelities after performing the multiplexing process us-
ing FAQUAD (solid blue lines) and LA method: (a) n = 4 and (b)
n = 50. Same parameters as in Fig. 2.

remarkable stability of the fidelity curve with respect to n
is noteworthy for the linear ramp in Fig. 3. This stability of
a trap deformation method also holds, although somewhat
weakened, in the upper edge of the fidelity curve using
FAQUAD, which is experimentally accessible since time
resolutions of 20 ns have been demonstrated [25].

The explanation for the decreasing fidelities as the process
aims at higher Fock states is that the nearest energy levels
get closer, and transitions among more and more levels occur
making the interference pattern, inherent in FAQUAD [28],
more complex.

V. PREPARING SUPERPOSITIONS

The protocols studied so far also allow us to prepare
states |ψϕ〉 = (|0〉 + eiϕ |n〉)/

√
2 up to a relative phase ϕ. A

modification of the sequence in Fig. 1 leads to superposition
states, see Fig. 4. The success of the protocol [step (c)] is
measured with the fidelity Fn to reach |n〉 starting in the nth
excited state of the double well, and the fidelity F0(n) to reach
|0〉 starting in the ground state while using the deformation
devised to reach |n〉. (The average (F0(n) + Fn)/2 is the
maximal fidelity with respect to the states labeled by ϕ).
The upper row of Fig. 2 pictures Fn for n = 4, 20, 50, 100
and the lower panels the corresponding F0(n). The F0(n) are
remarkably close to the Fn, which makes superpositions |ψϕ〉
feasible with high fidelity.

In Ref. [7] these superpositions were created via Rabi
pulses for measuring deviations from a nominal trap fre-
quency. The maximum sensitivity was reached for the super-
position of the ground and the n = 12 states.

VI. DISCUSSION

We have proposed to prepare highly excited Fock states
and superpositions with the ground state in trapped ions using
deformations between double and single wells. Since no Rabi
pulses are involved, these protocols can be applied to different
atomic species or particles.

FIG. 6. Change of the fidelity against variations of the bias term
with respect to the ideal value for the Fock-state preparation pro-
tocols in the main text: n = 4, solid black line; n = 20, dot-dashed
blue line; n = 50, dashed red line; n = 100, dotted green line. Same
parameters as in Fig. 2 of the main text.
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TABLE I. Evolution times at fidelity maxima and fidelity errors around them for different errors in γ . Same parameters as in Fig. 2 of the
main text.

F (γ ) − F (γn)

n t f (μs) F (γn) σn (zN−2) δγ = 0.001 zN δγ = 0.01 zN δγ = 0.1 zN

4 149.60 0.9928 −16.2 −8.1 × 10−6 −8.1 × 10−4 −8.1 × 10−2

20 147.90 0.9697 −20.9 −1.0 × 10−5 −1.0 × 10−3 −1.0 × 10−1

50 149.89 0.9334 −19.1 −9.6 × 10−6 −9.6 × 10−4 −9.6 × 10−2

100 148.90 0.9150 −30.7 −1.5 × 10−5 −1.5 × 10−3 −1.5 × 10−1

A FAQUAD approach which distributes diabatic transi-
tions homogeneously through all the process provides a sig-
nificant speedup with respect to a linear ramp of the control
parameter. Methods similar in spirit to FAQUAD may also
be applied [17]. The local adiabatic (LA) method [46] only
uses the instantaneous energy gap between the eigenstates to
modulate the rate of change of the control parameter. Adapted
to our multilevel scenario, we set

cLA = h̄λ̇LA

∑
m 	=n

[En(λ) − Em(λ)]−2, (14)

as a constant given by the boundary conditions, and
parametrize β(α) as before. We compare the performance of
FAQUAD and LA in Fig. 5. For small n FAQUAD outper-
forms LA, but LA is more stable as n increases, due to a lesser
role of quantum interferences [29].

This paper demonstrates the potential of trap deformations
to control motional states. Future work could be to find
protocols for ion chains, to make full use of the dimensionality
of the parameter space [47], reduced here to one for simplicity,
or to look for smooth, doable functional forms for the time
dependence of the trap increasing the minimal gap, combined
with numerical optimization of the deformation.

ACKNOWLEDGMENTS

We acknowledge discussions with J. Alonso. This
work was supported by the Basque Country Govern-
ment (Grant No. IT986-16) and PGC2018-101355-B-I00
(MCIU/AEI/FEDER,UE). M.P. acknowledges support from
the Singapore Ministry of Education, Singapore Academic
Research Fund Tier-II (MOE2018-T2-2-142). M.A.S. ac-
knowledges support by the Basque Government predoctoral
program (Grant No. PRE-2019-2-0234).

APPENDIX: STABILITY OF THE PROTOCOL WITH
RESPECT TO ERRORS IN THE BIAS TERM

The fixed (bias) force γ has to be set with enough precision
to discriminate among different n values.

As explained in the main text, to produce the Fock state
number n we choose γ = γn ≡ (n − 1/2)h̄�0/D0. If the bias
force has an error δγ with respect to γn, the error in the Fock
state number (treated as a continuous variable) is

�n = D0δγ /h̄�0 = 1

h̄

√
M/2βδγ . (A1)

We need �n < 1, which gives an upper bound for δγ < �γ ≡
h̄
√

2β

M . For β = 0.052 N/m3 and beryllium ions, �γ = 0.278
zN. Forces can be measured and calibrated with this precision
[42,43,48–50].

To analyze how an error in the bias with respect to γn could
deteriorate the fidelity of the STA-accelerated multiplexing
process, we have made simulations for the values of n in the
main text, n = 4, 20, 50, 100. The final time t f for each n is
chosen at the maximum fidelity below 150 μs in Fig. 2 of the
main text. Detailed information of the final times and fidelities
can be found in Table I. Figure 6 shows the fidelities, normal-
ized to one when γ = γn. Two interesting features are (i) all
curves are quite flat in the interval |γ − γn| � h̄�0/2D0, and
(ii) neither the flatness nor the actual value of the maximum
fidelity, see the third column in Table I, deteriorate too rapidly
when increasing n.

The fidelity depends on a small error δγ as

F (γ ) = F (γn + δγ )

= F (γn) + δγ
∂F
∂γ

∣∣∣∣
γ=γn

+ 1

2
δγ 2 ∂2F

∂γ 2

∣∣∣∣
γ=γn

. (A2)

We may disregard the linear term at a peak of the fidelity
(i.e., for a process time for which ∂F

∂γ
|γ=γn

= 0) or also when
averaging over unbiased deviations, i.e., assuming that δγ

may be treated as an unbiased random number with zero
mean. In both cases the quadratic coefficient σn = ∂2F

∂γ 2 |γ=γn

measures the flatness of the fidelity and gives a measure of
robustness. Table I gives σn, as well as F (γ ) − F (γn) for bias
errors spanning different orders of magnitude around a fidelity
peak.
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