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Quantum reservoir engineering provides a versatile framework for quantum state preparation and control, with
improved robustness to decoherence. However, established methods for dissipative state preparation typically
rely on resolving resonances, limiting the target state fidelity due to a competition between the stabilization
mechanism and uncontrolled dissipation. We propose a new framework for engineering dissipation that combines
the advantages of static dispersive couplings with strong parametric driving and show how it can realize high
fidelity and fast entanglement stabilization devoid of such constraints. In addition, the phase sensitivity of
parametric couplings allows arbitrary state preparation and continuous control of the stabilized state within
a fixed parity manifold. The proposed protocol is readily accessible with the state-of-the-art superconducting
qubit technology and holds promise for fast preparation of large entangled resource states.
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I. INTRODUCTION

Quantum state preparation and preservation are the corner-
stones of any quantum information platform. Standard meth-
ods of state preparation involve a set of unitary operations
(or gates) on individual and multiple qubits to achieve a
desired entangled state of the system. Such methods typically
require multiple tightly synchronized pulse sequences and
ancilla qubits, and complex algorithms to avoid unwanted
interactions and contain the quantum information within the
desired subspace. The prepared state also remains sensitive to
environmental decoherence, which reduces the pure quantum
state into a classical mixture and ultimately limits the power
to harness quantum effects. Recent years have seen an emer-
gence of an alternative approach embracing the environment
instead of hiding it [1,2]. The basic idea relies on engineer-
ing suitable interactions with the environment that steer the
reduced system towards a desired target state [3,4]. Besides
engineering states inherently robust to dissipation, such dis-
sipative state preparation precludes the need for any active
control of the system and is relatively immune to initialization
errors. Also, certain quantum operations become feasible only
through dissipation; for instance, nonlocal interactions are
essential for the stabilization of multi-partite entangled states
such as the three-qubit GHZ state [5,6]. This has led to interest
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in dissipative preparation techniques being adopted in a gamut
of quantum information platforms such as cavity QED [7,8],
trapped ions [9–11], superconducting qubits [12,13], Rydberg
atoms [14,15], atomic ensembles [16], and NV centers [17].
Though they offer a powerful approach to protecting quantum
information, almost all dissipative state preparation schemes
exhibit a tradeoff between target fidelity and stabilization
time; thus accurate state preparation necessarily requires long
times.

In this paper, we present a novel paradigm for engineering
dissipation using number-selective, strong parametric driving
free of such constraints. The framework of parametrically
engineered dissipation proposed here constitutes a significant
addition to the parametric quantum toolbox, which is being
wielded in a wide variety of applications, such as entangling
gates [18–20], dynamical correction of qubit errors [21], non-
reciprocal scattering [22], and synthetic magnetic fields [23],
holonomic gates for continuous-variable quantum information
[24] and even quantum annealing [25].

We demonstrate that this platform enables robust, high
fidelity entanglement generation and control in a circuit-QED
setup [26] by describing a scheme for stabilization of Bell
states in a dispersively and parametrically coupled qubit-
resonator system. In contrast to usual dissipation-engineering
schemes which rely on resonant driving, our scheme exhibits
concurrent scaling between the fidelity and speed of stabi-
lization protocol achieving preparation of Bell-states with
fidelities in excess of 99% in a few 100 ns. It also lever-
ages several technical and operational advantages offered by
parametric driving, such as easy implementation relying on
continuous-wave (CW) drives alone, strong coupling even in
the nonresonant regimes unlike the strong-dispersive circuit-
QED [27], and in situ tunability of coupling phases. In partic-
ular, the phase tunability of the couplings translates directly
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FIG. 1. (a) Block diagram of a system of qubits with pairwise parametric and dispersive couplings to a resonator acting as an engineered
environment. (b) Frequency landscape showing the various parametric mixing processes between the qubits and the resonator, and the
respective pumps. Solid and dashed vertical arrows indicate the lines in qubit-resonator spectra and their conjugates, respectively. The
dispersive shifts due to static couplings (ḡ jr) are indicated in red arrows. The parametric couplings (g12(t ), gjr (t )) are shown as lines
mixing different frequencies across qubit-resonator axes; the processes with the lines crossing zero represent two-photon excitation processes,
while those confined to mixing between positive (or negative) frequencies represent excitation-preserving hopping. Parametrically driven
number-sensitive qubit-qubit interactions are shown with purple lines, while qubit-resonator interactions are shown with blue lines. (c) Circuit
implementation of the Bell state stabilization protocol consisting of two superconducting transmon qubits and a microwave resonator coupled
in a T-configuration to a dc-SQUID, driven via an external flux line. The linear inductance of the SQUID corresponding to the static flux bias
(�dc) mediates a dispersive coupling, while the fast flux modulation (�p) implements parametric driving through the SQUID nonlinearity.

to in situ control of the target state within a fixed parity
manifold.

II. PARAMETRICALLY ENGINEERED DISSIPATION

Our proposed framework for quantum state engineering
consists of a system of qubits coupled to reservoir modes
using a combination of pairwise parametric and dispersive
couplings. Figure 1(a) schematically represents a two-qubit
Bell state stabilization scheme within this framework. The
system is described by a generic Hamiltonian of the form

H = ωra†a +
2∑

j=1

(
ω j

2
Zj + g̃ jr (t )XjXr

)
+ g̃12(t )X1X2, (1)

where Xj = σ j + σ
†
j Xr = (a + a†). In addition to the usual

static dispersive coupling, parametric modulation via a
continuous-wave pump is employed such that

g̃12(t ) = g+
12 cos(ω+

12t + φ+
12) + g−

12 cos(ω−
12t + φ−

12), (2a)

g̃ jr (t ) = ḡ jr + g±
jr cos(ω±

jrt + φ±
jr ). (2b)

Different coupling terms can be activated in the system-
environment Hamiltonian by choosing the modulation fre-
quencies as either the sum ω+

jr = ω j + ωr or difference

ω−
jr = ω j − ωr of the resonance frequencies of the qubits and

resonator. In addition leveraging the splitting of the qubit
spectrum due to strong dispersive couplings, selective qubit-
qubit couplings can be activated depending on the number of
excitations in the resonator. The scheme is designed such that
the qubit-qubit drives couple states of the same parity, while
the qubit-resonator drives mix the different parity manifolds.
In conjunction with resonator decay [denoted κ in Fig. 1(a)],
this pumping scheme is capable of stabilizing any maximally
entangled two-qubit state of a fixed parity depending on the
choice of drive frequencies.

For instance, Fig. 1(b) shows the pump frequencies

ω+
12(n) = ω1 + ω2 − 2n(χ1 + χ2), (3a)

ω−
12(n) = ω1 − ω2 − 2n(χ1 − χ2), (3b)

ω−
1r = ω1 − ωr − χ1 ± χ2, (3c)

ω+
2r = ω2 + ωr − χ2 ± χ1. (3d)

for n = 1 desired for preparing even-parity Bell states. For
this choice of pumps the two-photon excitation of the qubits
is active only when there is one-photon in the resonator, while
qubit-qubit hopping is activated when the resonator is in its
ground state. This is evident on moving into a rotating frame
defined with respect to the number-dependent frequencies,
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ω j (n) = ω j − 2χ jra†a,

U (n) = exp

[
−i

(
ω1(n)

2
Z1 + ω2(n)

2
Z2 + ωra†a

)
t

]
, (4)

which leads to an effective Hamiltonian of the form (for
details, see Appendix A),

Heven
eff = g−

12eiφ−
12 (1 − 〈a†a〉)σ1σ

†
2 + g+

12eiφ+
12〈a†a〉σ1σ2

+ (g−
1reiφ−

1r σ1 + g+
2reiφ+

2r σ
†
2 )a† + H.c. (5)

in the subspace truncated at lowest two levels of the resonator.
Similarly, for preparing odd-parity states, choosing modu-
lation frequencies ω+

12(0), ω−
12(1), ω−

1r , and ω+
2r leads to an

interaction of the form

Hodd
eff = g+

12eiφ+
12 (1 − 〈a†a〉)σ1σ2 + g−

12eiφ−
12〈a†a〉σ1σ

†
2

+ (g+
1reiφ+

1r σ
†
1 + g+

2reiφ+
2r σ

†
2 )a† + H.c. (6)

It is worthwhile to highlight here the features of the
Hamiltonians presented in Eqs. (5) and (6) that distinguish
them from typical state preparation protocols. (i) As de-
scribed above, the form of each of the coupling terms is
uniquely set by the choice of frequency of the pump mediating
the coupling. (ii) Additionally, the dispersive qubit-resonator
couplings lead to a selective activation of the qubit-qubit
couplings contingent on the photon occupation in the res-
onator. (iii) By virtue of the couplings being parametric, their
strengths and phases are tunable through the amplitudes and
phases of the pumps. This freedom of coupling parameters,
combined with a decay on the resonator, provides a conve-
nient method for realizing different parametrically engineered
collapse operators cp. Though the choice of ω jk and φ jk , we
engineer the target state to be a null ket (dark state) of both
the system Hamiltonian and jump operators, ensuring that
the target state is the unique fixed point (steady-state) of the
system dynamics [1].

Figure 1(c) shows a circuit-QED implementation of our
proposed implementation, consisting of two superconducting
transmon qubits and a microwave LC resonator coupled via
a SQUID-based tunable inductance. The microwave resonator
coupled to an external superconducting transmission line via
a coupling capacitor acts as an engineered bath to the qubits.
For a discussion of the static and parametric coupling rates
accessible with our proposed implementation, as well as a
discussion of the effect of the coupler design on qubit deco-
herence, see Appendix B.

A. Stabilization mechanism

We now describe how the above functionalities may be
exploited to dissipatively stabilize any maximally entangled
two-qubit state. The generic coupling map in Fig. 2 describes
the stabilization mechanism for all four Bell states, with an
appropriate relabeling of states and optimal choice of pump
phases as stated in Table I. For the purposes of illustration,
we describe the mechanism for the specific case of even-
parity Bell state preparation, implemented using the effective
interaction Hamiltonian of Eq. (5). Assume that the two qubits
have been stabilized into |�−〉 = (|gg〉 − |ee〉)/

√
2. Under a

bit flip, the parity of the state changes leading to a jump to

FIG. 2. Coupling diagram for two-qubit entanglement stabiliza-
tion. Thick black arrows denote resonant interactions, while dotted
gray arrows denote off-resonant couplings. Wavy arrows depict
photon decay from the resonator. The target state (highlighted with
the colored box) and the complementary state (phase-flipped but
same parity) are denoted with Greek letters |ξ〉, |ξ̄〉, respectively.
The states in the opposite parity manifold are denoted with |C〉, |C̄〉,
respectively.

the odd parity manifold spanned by {|ge〉, |eg〉} ⊗ |0〉. Each of
these odd-parity states is coherently coupled to the even-parity
state |�+, 1〉, either directly using the qubit-resonator drives
(for |eg〉) or through a combination of qubit-qubit and qubit-
resonator drives (for |ge〉), while exciting the resonator. The
remaining qubit-qubit drive g−

12 pumps the population from
|�+, 1〉 to |�−, 1〉, which then decays down to the target state
|�−, 0〉 as the resonator loses the photons at rate κ . Any pop-
ulation that enters the state |�−, 0〉 remains unaffected by the
qubit-qubit drive and the qubit-resonator drive, since |�−〉 is
a dark state of both the qubit Hamiltonian and the engineered
collapse operator cp = σ1 + σ

†
2 . A phase flip on a qubit moves

the population to |�+〉; this state strongly couples to the odd-
parity state |ge, 1〉 through the qubit-resonator interaction. The
excitation of the resonator induces a dispersive shift of the
qubit frequency making the g+

12 drive off-resonant for this
state; hence the dominant exit channel is the resonator decay
which brings back the population to odd-parity manifold with
no photons in the resonator. This is then repumped to |�−, 0〉
as described for the case of qubit decay. It is worthwhile to
note that the mechanism works for any arbitrary initial state
including maximally mixed states of the two qubits.

B. Continuous-wave coherent control

The phases of the parametric couplings are determined by
the phases of the pumps mediating the respective interactions.
This provides a unique knob to implement rotations in the
two-qubit stabilized subspace. For example, Table I shows that
when stabilizing an even-parity state (|gg〉 − eiψ |ee〉)/

√
2,

varying the qubit-qubit and qubit-resonator coupling phases

TABLE I. State vectors, pump phases, and respective paramet-
rically engineered collapse operators for arbitrary maximally entan-
gled states of even or odd parity.

√
2|ξ〉 |C〉 φ+

12 φ−
12 φ1r φ2r cp

|gg〉 − eiψ |ee〉 |eg〉 π/2 − ψ 0 0 ψ σ1 + eiψσ †
2

|ge〉 − eiψ |eg〉 |gg〉 0 π/2 − ψ 0 ψ σ1 + eiψσ2
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together as

ψ = φ2r = π/2 − φ+
12, (7)

allows the target state to be continuously tuned.

III. PERFORMANCE ANALYSIS

The dynamics of the full qubits-resonator system can be
described using a Liouvillian as ρ̇(t ) = Lρ(t ), where

L = −i[Heff , •] + κ

2
D[a] •

+
∑
j=1,2

(
γ

j
1

2
D[σ j] • +γ

j
φ

2
D[Zj]•

)
(8)

with D[o]• = 2o • o† − {o†o, •} being the usual Lindblad su-
peroperators describing Markovian decay dynamics for the
two qubits and the resonator. Here κ denotes the bare res-
onance linewidth of the resonator, while (γ j

1 , γ
j

φ ) denote
the qubit relaxation and dephasing rates respectively. We
note that use of a local Markovian dissipator in Eq. (8),
describing the dominant decay through the resonator acting
as an engineered bath for qubits, is motivated by the dis-
persive circuit-QED regime considered here, γ

j
1 � κ, g jk �

 jr . The first inequality ensures that the density of states
of the resonator appears flat (frequency-independent) over
qubit response times, while the second inequality ensures that
transitions between widely separated frequencies remain off-
resonant in the presence of interaction-induced energy-level
splittings. While strong parametric driving introduces addi-
tional nonlocal channels of dissipation, the associated rates
are sufficiently small such that their effect on the overall sta-
bilization dynamics can be ignored, as shown in Appendix C.
These corrections can become important in the presence of
colored noise or ultrastrong qubit-resonator coupling [28].
In these scenarios, the rotating-wave approximation breaks
down, leading to unphysical predictions [29]. In such cases,
the master equation would need to be derived in the dressed
basis of the qubit-resonator system in order to identify the
correct frequency-dependent dissipation rates [30].

At any instant in time during the operation of the stabiliza-
tion protocol, the error to the target state is

ε(t ) = 1 − Tr[ρ(t )Ires ⊗ |ξ 〉〈ξ |]. (9)

where ρ(t ) is the density operator describing the state of the
full qubit-resonator system. This error can be decomposed
into a static component (ε∞) and a dynamical component (ε̃)
as

ε(t ) ≈ ε∞ + ε̃ exp (−t/τ ), (10)

where the dynamical error decays exponentially to zero as
t → ∞ with some characteristic stabilization time τ , leaving
only the steady-state error ε∞. Both ε∞ and τ may be accu-
rately determined directly from the Liouvillian as

ε∞ = 1 − Tr(ρssIres ⊗ |ξ 〉〈ξ |), (11a)

τ = −1
L = −Re[λ1]−1, (11b)

where ρss is the steady-state density matrix, defined by Lρss =
0, and λ1 is the lowest lying nonzero eigenvalue of the Liouvil-

lian [1]. We have confirmed that this method of calculating the
performance metrics is in excellent agreement with numerical
simulations of the master equation, with relative errors on the
order of 10−6 for both ε∞ and τ .

A. Steady-state optimization

Figure 3(a) shows the results of a multi-parameter opti-
mization of the steady-state error calculated from the Liou-
villian. Here, for simplicity of presentation, we have assumed
symmetric qubit-qubit couplings g±

12 = g and qubit-resonator
couplings g±

jr = gr . As evident, a salient feature of our scheme
is the simultaneous reduction in steady-state error, ε∞, and
preparation time, τ , scaling as 1/g when κ = 2gr = (3/2)g.

To understand this unique property, we perform an ana-
lytical calculation of the steady-state error and stabilization
time using a Liouvillian truncated to include the lowest two
resonator levels. Assuming that the mixing of different states
(off-diagonal elements of ρss) due to qubit decays can be
ignored, as γ � (g, gr, κ ), we can obtain expressions for
ε∞ by performing expansion in the relevant small parameter
γ /max{κ, g}. To first order the steady-state error in the κ-
dominated (or strong dissipation) and g-dominated (or weak
dissipation) regimes is found to be

ε∞ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
12.6

(γ1

κ

)
; κ 
 g

22.4

(
1

C

)
; κ � g,

(12)

where we have considered the optimal ratio between qubit-
qubit and qubit-resonator coherent couplings, gr = (3/4)g.
Here, C = (4g2/κγ1) denotes the cooperativity of the system.
Minimizing the total error as the sum of two contributions
leads to an optimality condition for the ratio κ/g = (3/2),
with the minimum error that scales inversely with parametric
coupling strength g

εmin
∞ ≈ 16.8

(
γ1

g

)
. (13)

This optimal ratio between dissipative and coherent couplings
is in excellent agreement with that obtained using full numer-
ical optimization, as shown in Fig. 3(b).

Detailed numerical studies also show that the stabilization
fidelity is robust to imperfections. Fidelities in excess of 99%
are achievable for as large as 50% deviations from optimal
values of gr or κ , or for asymmetries in the qubit-qubit cou-
plings g+

12 �= g−
12. We find that the performance of the scheme

however, is more sensitive to asymmetries in the parametric
qubit-resonator couplings g1r �= g2r as this introduces a spu-
rious coherent coupling out of the target state. Such spurious
couplings may also arise due to imbalance in qubit detunings;
specifically, maximum steady-state fidelities are achieved for
odd-parity states when δ1 = δ2, and for even-parity states
when δ1 = −δ2. For a detailed discussion of the robustness
of the scheme, see Appendix D.

An analytical calculation of stabilization time τ is more
complicated since it is derived from the spectral gap of
the Liouvillian, which requires a large matrix inversion. For
instance, even for a rather conservative system comprising
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FIG. 3. (a) Numerical estimates of the steady-state error and convergence rate for the scheme depicted in Fig. 2, calculated as a function
of the parametric coupling strength g. The black lines show the results for optimal parameters, κ = 2gr = (3/2)g, with each of the colored
dots indicating the value of g for which (gr, κ ) are optimal. The solid lines are calculated for T1 = 100 μs, T2 = 200 μs (“best case”), while
the dashed lines are calculated for T1 = 10 μs, T2 = 10 μs (“worst case”). The qubit decoherence rates affect the target fidelity, but not the
convergence time to target state. (b) Analytical estimates of the total steady-state error, denoted by ε∞, and lifetime of the state |C, 0〉 decaying
into |ξ, 0〉, denoted by τ̃ . Each plot also shows the result calculated in the limit κ 
 g (κ-dominated) and in the limit κ � g (g-dominated), for
a fixed ratio gr/g = 3/4.

two qubits and a resonator truncated at two levels, an exact
calculation involves diagonalization of a 64 × 64 Liouvillian.
Nonetheless, an analytical estimate and qualitative scaling
with parameters can be obtained by identifying a mini-
mal decoupled subspace including the target state, and self-
consistently solving for the populations in different states
spanning the subspace. The states {|C, 0〉, |ξ̄ , 1〉, |ξ, 1〉, |ξ, 0〉}
form such a subspace as seen in Fig. 2, in which we can write
the rate of preparation of the target state |ξ, 0〉 as

Ṗ|ξ,0〉(t ) = �C,0P|C,0〉 + �ξ̄,1P|ξ̄ ,1〉 + �ξ,1P|ξ,1〉, (14)

where P|ψ〉 is the population in state |ψ〉 and �|ψ〉 is the
decay rate of |ψ〉 into the target state |ξ, 0〉. Following the
same procedure as for the calculation of steady-state error,
we obtain the expressions for � in the decay- and coupling-
dominated regimes as

�C,0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.49

(
g2

κ

)
; κ 
 g

κ

2
; κ � g,

(15)

calculated assuming gr = (3/4)g. The above expressions lead
to a net preparation rate,

τ̃−1 = �eff = (
�−1

C,0|κ�g + �−1
C,0|κ
g

)−1

≈ κg2

2(g2 + κ2)
. (16)

The analytical estimate of preparation rate in Eq. (16) serves
as an upper bound for the exact result obtained from the
Liouvillian gap, i.e. �eff � Re[L]. This is because the total
convergence rate is determined by a series of processes that
shuffle excitations between multiple decoupled subspaces. It
is also worth noting that, to leading order, qubit decays do not
affect the convergence time of the scheme as also confirmed
by numerical optimization.

If we apply the optimality condition κ/g = (3/2) as found
numerically and in the above analysis of the steady-state
error, we find that the preparation time τ scales with 1/g,
in tandem with ε∞ as expected from our numerical analysis.
This concurrent scaling may be understood by noting that in
the absence of qubit decoherence (γ1 = 0), ε∞ = 0 exactly,
independent of g as expected from Eq. (13) and verified
numerically. Local dissipation on the qubits introduces an
error channel out of the target state |ξ 〉. The population in the
target state will be static when this outflow due to decoherence
is exactly balanced by the inflow due to the engineered dissi-
pation. Thus, if the engineered dissipation rate is increased
(reducing the stabilization time by increasing g), the steady-
state error decreases consistently with the reduced ratio of
the decoherence and preparation rates and converges to ε∞ ∼
γ1/�eff . Such simultaneous reduction of stabilization error
and preparation time is a generic property of any dissipative
stabilization scheme where the target state is the unique dark
state of both the system Hamiltonian and jump operators. In
usual dissipative protocols, since the target state is an approx-
imate dark state of the drive Hamiltonian, increasing the drive
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FIG. 4. Continuous rotations in the stabilized manifold of max-
imally entangled even-parity states. (a) Steady-state fidelities cal-
culated from the Liouvillian, as a function of the target state
phase ψ . (b) Tomograms of ρss for ψ = kπ/2. The opacity and
direction of the arrows indicates the magnitude and phase of
the matrix elements respectively. All calculations were done for
T1 = 100 μs, T2 = 200 μs, g = 2π × 50 MHz, and with optimal
values for the other parameters κopt = 2gopt

r = (3/2)g.

strength introduces additional drive-dependent error channels
and forces a compromise between fidelity and speed. Thus
typical schemes operate in either the κ-dominated regime
[31] [decreasing ε∞, increasing τ ; dashed-black curves in
Fig. 3(b)] or the g-dominated regime [32] [increasing ε∞,
decreasing τ ; dotted-black curves in Fig. 3(b)], and are con-
strained to maintain the product ε∞τ constant. We note that
the preceding discussions of the performance of the scheme do
not make any assumption about the target state |ξ 〉 as defined
in Table I. Hence the steady-state error and preparation time
are independent of the choice of |ξ 〉, as selected by the relative
phases of the unitary and dissipative parametric couplings.
Figure 4 demonstrates this by showing that stabilization of
any maximally entangled state of even parity yields the same
steady-state error. Further, such tuning of the target state
preserves the purity and population in each parity manifold.

B. Counter-rotating terms

The analysis in previous sections considers only the res-
onant Hamiltonian obtained under the rotating wave approx-
imation. Figure 5 shows the performance metrics for even-
parity Bell state stabilization in the presence of the dominant
off-resonant terms, not captured by Eqs. (5) and (6). The
essential physics of these terms can be captured by including
a χ -dependent coherent leakage out of the target state in the
zero-photon manifold,

HCR ≈ geiφ±
12
(
e−i2�χ t |ξ̄ , 0〉〈ξ, 0|) + H.c., (17)

where �χ = χ1 ± χ2. The phase on the prefactor and the sign
in the definition of �χ is determined by the pump frequencies;
when preparing an even parity Bell state + is selected, and −
for odd.

As is clear from Fig. 5, the scaling of ε∞ in the presence of
χ -dependent leakage qualitatively differs from that presented
in Fig. 3 which was calculated using the resonant Hamiltonian
[Eq. (5)]. This is because the effect of the leakage term does

FIG. 5. Scaling of steady-state error for even-parity Bell state
preparation, calculated via master equation simulations includ-
ing the counter-rotating terms, with χ1,2 = 2π × 10 MHz, T1 =
100 μs, and T2 = 200 μs. The gray region corresponds to the pa-
rameter regime where counter-rotating terms induce a fidelity vs.
speed tradeoff. The downturn of the curve in the region of large
�χ/g is due to g becoming comparable to γ1. The dashed line the
steady-state error calculated with Eq. (13). (Inset) Time tε taken to
reach a given fidelity threshold, for the same parameters. When the
threshold is near the maximum fidelity for a given set of parameters,
it will be crossed at a point where the static and dynamical errors are
comparable. This changes the scaling of tε with g, as indicated by the
dotted portions of the curves where g 
 gopt or g � γ .

not saturate with increasing g. Therefore, in contrast to the
resonant case where it is only necessary to optimize gr and
κ , introduction of the leakage necessitates setting the qubit-
qubit coupling strength g to some optimal value gopt as well,
found numerically for a given �χ . Thus the parameter space
can now be split into two qualitatively different regimes of
operation depending on the ratio gopt/g. When gopt/g 
 1
the leakage term has little effect and the scaling behavior
of the resonant Hamiltonian is recovered, where ε∞ and τ

both scale as 1/g assuming gr and κ scale optimally with
g. When gopt/g � 1, the achievable steady-state fidelity from
the resonant Hamiltonian saturates and the scaling of ε∞ is
dominated by the increasingly strong leakage term. In this
regime, the ratio ε/τ is no longer constant. These two regimes
are demarcated in Fig. 5.

Though χ -mediated leakage constitutes an additional
source of error inherent to the approach of using number-
selective parametric driving, detailed numerical simulations
show that the effect of the resultant off-resonant terms can be
mitigated and fidelity can be recovered, either by employing
sufficiently large dispersive shifts as shown in Fig. 5 or by the
application of optimal control techniques. We plan to study
this in detail in a future work.

IV. CONCLUSIONS

In summary, we have proposed a new paradigm for dissi-
pation engineering that relies on strong parametric coupling
working in conjunction with dispersive interactions. This
allows the realization of number-selective parametric driving,
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which we employ here to illustrate the scope of this frame-
work by constructing a novel Bell-state stabilization protocol
with no inherent tradeoff between fidelity and stabilization
rate. This property is enabled by the interplay of both dis-
persive and parametric interactions, that allow realization of
a target state which is a dark state of both the engineered
collapse operator and the drive Hamiltonian. In stark contrast
to the usual dissipative state preparation protocols—where
parasitic couplings out of the target state impose a hierarchy
of coupling rates, and low error can be achieved only by
driving the system slower than the effective linewidth of
the dressed states to maintain resonant driving [33,34]—our
scheme allows parametric drive strengths comparable to decay
linewidths permitting a simultaneous optimization of decay-
dominated and coupling-dominated error channels.

Further, the modular nature of this framework suggests
natural extensions to multipartite entanglement preparation.
Such considerations become increasingly crucial as dissipa-
tive engineering protocols are extended to larger quantum
systems, where the speed of state transfer needs to beat the
decoherence rate due to correlated noise [35]. Parametrically
engineered dissipation also opens possibilities for dissipation-
mediated quantum control in the stabilized state space, by
exploiting the phase and amplitude tunability of the target
state dynamics.

Additionally, our scheme offers distinct operational advan-
tages over the previously considered schemes for entangle-
ment stabilization in circuit-QED-like platforms. Since there
is no direct driving of the bath resonator, the size of excitations
in the resonator, n̄ = 〈a†a〉, remains small. This is a favorable
situation from the point of view of avoiding measurement-

induced dephasing of the qubits due to photon number fluc-
tuations, which grows as �m ∼ n̄κ [36]. Further, our scheme
employs no photon-selectivity for shuttling excitations across
the resonator ladder unlike the usual dispersively coupled
schemes [31]. Driving number-selective transitions usually
places stringent requirements on matching the dispersive
shifts, |χ | � χ2/κ

√
n̄, which ceases to be a constraint

for parametrically driven qubit-resonator transitions. Finally,
since our scheme has no direct qubit driving, there are no
associated Stark shifts and thus no power-dependent pump
detuning is necessary.
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APPENDIX A: EFFECTIVE HAMILTONIAN DERIVATION

In order to construct the effective Hamiltonians introduced
in Eqs. (5) and (6), we first perform a Schrieffer-Wolff trans-
formation on the dispersive part of the Hamiltonian to diag-
onalize the dispersive coupling between the qubits and res-
onator. Using the convention Z|g〉 = +|g〉 and Z|e〉 = −|e〉,
the Hamiltonian becomes

H̃ = ω1 + 2χ1a†a

2
Z1 + ω2 + 2χ2a†a

2
Z2 + ωra†a +

(
g̃12(t ) − g1rg2r

1r
− g1rg2r

2r

)
X1X2

+
(

g+
1rei(ω+

1r t+φ+
1r ) + g−

1rei(ω−
1r t+φ−

1r ) + c.c.
)

X1Xr +
(

g+
2rei(ω+

2r t+φ+
2r ) + g−

2rei(ω−
2r t+φ−

2r ) + c.c.
)

X2Xr, (A1)

with dispersive shifts χ j ≡ g2
jr/ jr where  jr ≡ ωr − ω j . We then move into the interaction frame defined by the bare cavity

frequency and dressed qubit frequencies via the unitary U = Uf U1U2 with commuting factors

Uf = exp

[
i

(
ω1

2
Z1 + ω2

2
Z2 + ωra†a

)
t

]
, (A2a)

U1 = exp[iχ1a†aZ1t], (A2b)

U2 = exp[iχ2a†aZ2t]. (A2c)

In this interaction frame, Eq. (A1) becomes

H̃I =
(

g+
12ei(ω+

12t+φ+
12 ) + g−

12ei(ω−
12t+φ−

12 ) − g1rg2r

1r
− g1rg2r

2r

)

×
∞∑

n=0

[
e−i[ω1+ω2−2n(χ1+χ2 )]t |g, g, n〉〈e, e, n| + e−i[ω1−ω2−2n(χ1−χ2 )]t |g, e, n〉〈e, g, n|]

+
(

g+
1rei(ω+

1r t+φ+
1r ) + g−

1rei(ω−
1r t+φ−

1r )
)

×
∞∑

n=0

∑
q2∈{g,e}

√
n + 1

[
e−i[ω1+ωr−χ1(2n+1)+χ2〈q2|Z2|q2〉]t |g, q2, n〉〈e, q2, n + 1|

+e−i[ω1−ωr−χ1(2n+1)−χ2〈q2|Z2|q2〉]t |g, q2, n + 1〉〈e, q2, n|
]
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+
(

g+
2rei(ω+

2r t+φ+
2r ) + g−

2rei(ω−
2r t+φ−

2r )
)

×
∞∑

n=0

∑
q1∈{g,e}

√
n + 1

[
e−i[ω2+ωr−χ2(2n+1)+χ1〈q1|Z1|q1〉]t |q1, g, n〉〈q1, e, n + 1|

+e−i[ω2−ωr−χ2(2n+1)−χ1〈q1|Z1|q1〉]t |q1, g, n + 1〉〈q1, e, n|
]

+ H.c., (A3)

where we have written the Hamiltonian in Dirac notation using the basis states |q1, q2, n〉 ≡ |q1〉 ⊗ |q2〉 ⊗ |n〉 defined by the
qubit polarizations q1,2 and the resonator excitation number n.

Section II states the frequencies necessary to target any maximally entangled state of a fixed parity. Using the frequencies
required to stabilize an odd-parity state, the Hamiltonian becomes

H̃I = g+
12eiφ+

12
[|g, g, 0〉〈e, e, 0| + e2i(χ1+χ2 )t |g, g, 1〉〈e, e, 1|]

+ g−
12eiφ−

12
[
e−2i(χ1−χ2 )t |g, e, 0〉〈e, g, 0| + |g, e, 1〉〈e, g, 1| + e+2i(χ1−χ2 )t |g, e, 2〉〈e, g, 2|]

+ g+
2reiφ+

2r
[|g, g, 0〉〈g, e, 1| + |e, g, 0〉〈e, e, 1| + e−2iχ1t |g, g, 0〉〈g, e, 1| + e+2iχ1t |e, g, 0〉〈e, e, 1|]

+ g+
1reiφ+

1r
[|g, g, 0〉〈e, g, 1| + |g, e, 0〉〈e, e, 1| + e−2iχ2t |g, g, 0〉〈e, g, 1| + e+2iχ2t |g, e, 0〉〈e, e, 1|] + H.c., (A4)

where we have kept only the static and the dominant counter-rotating terms. The static part of this Hamiltonian, with the resonator
truncated to its lowest two energy levels, gives the effective Hamiltonian, stated earlier in Eq. (6),

Hodd
eff = g+

12eiφ+
12 (1 − 〈a†a〉)σ1σ2 + g−

12eiφ−
12〈a†a〉σ1σ

†
2 + (g+

1reiφ+
1r σ

†
1 + g+

2reiφ+
2r σ

†
2 )a† + H.c., (A5)

where we have again expressed the Hamiltonian in terms of
canonical operators in this truncated space.

APPENDIX B: PARAMETRIC COUPLER DESIGN

In our proposed circuit-QED implementation [Fig. 1(c)],
the tunable parametric coupling is realized through modu-
lation of the SQUID inductance with an external flux line
according to Lsq = �0/(2π Ic cos(π�/�0)), where Ic is the
critical current of the Josephson junctions, � is the flux
threading the squid loop and �0 is the magnetic flux quantum.
This leads to a static coupling rate gjr between the qubit j and
the resonator as [21,37]

g jr (�) ≈ Lsq(�)

2
√

LrL j

√
ω jωr, (B1)

where Lj and ω j denote the inductance and plasma frequency
of the jth transmon, respectively, while Lr and ωr denote the
inductance and frequency of the resonator, respectively. We
see that the coupling rate is proportional to the participation
ratio between the SQUID and qubit/resonator inductance. For
small flux modulation amplitudes, the parametric coupling
rate resulting from a flux drive �(t ) = δ� jr cos(ωp jt + φp j )
is given by g jr = (∂g jr/∂�)δ� jr . Figure 6(a) shows a simu-
lation of the qubit-qubit and qubit-resonator coupling rates as
a function of flux, for a typical set of circuit-QED parameters.
The static coupling rates can be easily tuned over more than
100 MHz, for a flux modulation within half-a-period of flux
quantum. In the coupler design presented here, Lsq � Lj

to protect the qubits against flux noise from the SQUID.
Further, in this architecture the self-resonance frequency of
the coupler can be designed to be much higher (∼20-40 GHz)
than qubit and resonator frequencies of interest for typical
specific capacitances associated with aluminum films.

1. Coupler-induced qubit decoherence

For the theoretical results presented in this paper, we
considered an ideal parametric coupler which induces no addi-
tional decay channel on the qubit subsystem. Here we present
some empirical estimates of qubit decoherence induced due
to coupler architecture presented in Fig. 1(c). We first es-
timate qubit relaxation due to modification of the effective
input impedance, seen by the qubit circuit, by the input flux
line. The resultant lifetime T1 j of qubit j limited by coupler
impedance can be expressed as

T1 j = Lj

�{Zin[ω j]} , (B2)

where �{Zin[ω j]} is the environment impedance seen by the
qubit j at its resonant frequency. As a first approximation,
we can assume that the flux line is a transmission line with
characteristic impedance Z0 = 50 �, that terminates into an
inductance L0 sharing a mutual inductance M with the SQUID
loop. We can then compute Zin as

Zin[ω] = iω(Lsq − M ) + iωM(iω(L0 − M ) + Z0)

iωL0 + Z0
, (B3)

where Lsq denotes the inductance of the SQUID loop. There-
fore the qubit lifetime in the limit Lj 
 L0, Lsq is

T1 j = Lj (ω2
j L

2
0 + Z2

0 )

ω2
0M2Z0

. (B4)

For typical values of the parameters in circuit-QED pa-
rameters, Lj = 20 nH, ω j = 2π × 5 GHz, L0 = 0.1 nH, M =
2 pH, we obtain the estimated T1 j ≈ 240 μs. In general we
expect that the environment impedance might be complex
and modified by resonances in the control line, which could
further limit qubit lifetime via Purcell decay. This can be
mitigated by placing a notch filter centered at the qubit
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FIG. 6. (a) Simulation results for qubit-resonator and qubit-qubit static and parametric coupling rates, as a function of the flux
through the SQUID loop for the circuit introduced in Fig. 1(c). The simulation parameters were EJ1/EC1 = 20, EJ2/EC2 = 30, Lr=5 nH,
ω1 = 2π × 4 GHz, ω2 = 2π × 6 GHz, ωr = 2π × 10 GHz, and δ� = 0.1�0. (b) Circuit schematic showing the inductive coupling of the
qubit to the flux line, mediated through the coupler, and series LCR circuit obtained using the effective input impedance seen by the qubit due
to the flux coupling line.

frequencies into the coupler flux line [21]. Designing such a
filter should be straightforward as long as the frequencies of
the parametric pumps are well separated from the qubit and
resonator frequencies.

The flux noise seen by the coupler can also lead to fre-
quency jitter in the qubit, leading to additional dephasing. To
estimate this, we consider 1/ f -type flux noise spectrum

S��[ω j] = A2

ω j
(2π × 1 Hz), (B5)

for which the dephasing time can be estimated as T −1
2 j ≈ ω j ,

where

ω j =
∣∣∣∣∂ω j

∂�

∣∣∣∣�

= ω j

2(Lj + Lsq(�))

(
∂Lsq(�)

∂�

)
�

≈
(πω j

2

) Lsq(�)

Lj + Lsq(�)
tan

(
π�

�0

)
sec

(
π�

�0

)
�, (B6)

with average flux fluctuation

� =
(∫ ωmax

ωmin

dω S��[ω]

)1/2

. (B7)

The above expression is logarithmic in the upper and lower
cutoff frequencies, with the latter typically set by the measure-
ment bandwidth and ensuring the convergence of the integral
[38]. For typical flux noise amplitudes, A = 1 − 2 μ�0, and
circuit parameters [see Fig. 6(a)], this gives an estimated
T ∗

2 j � 50 μs. A gradiometric design for the coupler can be
used to further insulate the junction from the flux noise due
to coupling inductance.

APPENDIX C: JUSTIFICATION FOR THE MASTER
EQUATION

Having constructed an effective Hamiltonian describing
the evolution of the system and bath, we now outline the
justification behind the full master equation presented as
Eq. (8). Since κ 
 γ1,2, our analysis will quantify the effect

of the dominant dissipation channel (resonator decay) on the
system of two qubits in the presence of strong parametric
coupling between the qubits and the resonator. To this end,
considering a bosonic environment for the resonator we can
write

HS = ω1

2
Z1 + ω2

2
Z2 + ωra†a

+ g̃12(t )X1X2 + g̃1r (t )X1Xr + g̃2r (t )X2Xr,

HE =
∑

α

ναr†
αrα,

HSE =
∑

α

μr
αr†

αa + H.c. (C1)

We first diagonalize the static dispersive coupling by perform-
ing a Schrieffer-Wolff Transformation. To leading order in the
parameter g jr/ jr , this transforms the system-environment
Hamiltonian as

H̃SE =
∑

α

μr
αr†

α

⎛⎝a −
∑
j=1,2

ḡ jr (t )

 jr
σ j

⎞⎠ + H.c. (C2)

Next, moving into a rotating frame for both the system and
environment gives,

H̃SE ,I =
∑

α

μr
αr†

αaei(να−ωr−2
∑

j=1,2 χ j〈σ Z
j 〉)t

−
∑

α

∑
j=1,2

μr
α

ḡ jr

 jr
r†
ασ je

i(να−ω j−2〈a†a〉χ j )t , (C3)

with qubit frequencies incorporating the corresponding static
dispersive shifts alone, χ j = ḡ2

jr/ jr . Reintroducing the para-
metric interaction as a time-dependent perturbation on the
mixing coefficient, the above interaction can be rewritten in
the form

H̃SE ,I = R(t )�†(t ) +
∑
j=1,2

Qj (t )�†(t ) + H.c. (C4)
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where

R(t ) = ae−iω′
r t (C5a)

Q(t ) =
(

g̃ jr (t )

 jr

)
σ je

−iω′
j t (C5b)

�(t ) =
∑

α

μr∗
α rαe−iναt . (C5c)

with ω′
r = ωr + 2

∑
j=1,2〈σ Z

j 〉χ j and ω′
j = ω j + 2〈a†a〉χ j .

Note that we have ignored the inertial term that arises if
one performs a full time-dependent Schrieffer-Wolff trans-
formation which leads to additional dispersive shifts due to
parametric interactions between the qubits and resonator; this
approximation is valid in the RWA regime [39], |g jr | � χ <

ḡ jr �  jr (white region in Fig. 5), required to maintain the
concurrent scaling of target fidelity and stabilization rate.

Assuming Markovian evolution and taking the zero-
temperature limit for the environment [40], leads to the fol-
lowing terms in the master equation:

ρ̇I (t ) = (
aρI (t )a† − a†aρI (t )

) ∫ t

0
dt ′e−iω′

r (t ′−t )〈�(t )�†(t ′)〉

+
∑
j=1,2

(
ḡ jr

 jr

)2

(σ jρI (t )σ †
j − σ

†
j σ jρI (t ))

×
∫ t

0
dt ′e−iω′

j (t
′−t )〈�(t )�†(t ′)〉

+
∑
j=1,2

∣∣∣∣ g jr

 jr

∣∣∣∣2

(σ jρI (t )σ †
j − σ

†
j σ jρI (t ))

×
∫ t

0
dt ′(e−i(ω′

j+ω jr )(t ′−t ) + e−i(ω′
j−ω jr )(t ′−t ) )〈�(t )�†(t ′)〉

+ H.c. (C6)

Here we have decomposed the qubit-resonator interaction
into two parts, one corresponding to the static qubit-resonator
coupling and the other due to the time-varying parametric
part g jr (t ) = g jrei(ω jr t+φ jr ) + H.c. Introducing a continuous
spectral density of states for the environment,

〈�(t )�†(t ′)〉 =
∫ ∞

0
dν e−iν(t−t ′ )ρ(ν)|κ (ν)|2, (C7)

and using it in Eq. (C6), we obtain

ρ̇I (t ) = −i[,ρI (t )] + κD[a]ρI (t )

+
∑
j=1,2

κ

(
ḡ jr

 jr

)2

D[σ j]ρI (t )

+
∑
j=1,2

κ ′
∣∣∣∣ g jr

 jr

∣∣∣∣2

D[σ j]ρI (t ). (C8)

Here we have used∫ t

0
dt ′e−i(ω−ν)(t−t ′ ) = πδ(ω − ν) + iP

(
1

ω − ν

)
, (C9)

with the corresponding decay rates

κ (ω) = 2πρ(ω)|μr (ω)|2, (C10a)

κ ′(ω) = 2πρ(ω ± ωp)|μr (ω ± ωp)|2, (C10b)

and Lamb shift (usually absorbed by redefining bare reso-
nance frequencies)

 = P

2π

∫ ∞

0
dν

κ (ω)

ω − ν
. (C11)

If the decay rate is calculated for the resonator, the corre-
sponding density of states needs to be calculated at the res-
onator frequency ω′

r , while for the induced decay on the qubit
the spectral density of the environment near ω′

j is relevant. As
is evident from Eq. (C8), the parametric coupling contributes
towards qubit decoherence with a term almost identical to that
due to the dispersive-coupling induced Purcell decay, except
that the relevant environmental modes that contribute are
shifted by ±ωp. Depending on the choice of pump frequen-
cies, only one of the up/down-converted noise terms maybe
relevant; for instance, for the qubit-resonator pump frequen-
cies stated in Appendix A, only the ω′

j + ω jr contributes to-
wards parametrically induced spontaneous emission. Further,
under the assumption that the environment spectrum is white,
κ ≈ κ ′, leading to a simple modification of the Purcell decay
now including the contribution due to parametric coupling.
Our numerical simulations show that including these nonlocal
dissipation channels do not fundamentally alter the scaling be-
havior of the scheme. Furthermore the primary effect remains
the resonator-induced Purcell decay due to static dispersive
coupling, which can be mitigated in experiments using a
Purcell filter [41].

Doing a similar analysis for the qubit-environment cou-
pling under Schrieffer-Wolff transformation,

H̃SE =
∑
j=1,2

∑
α

μ
q
α, jq

†
α, j

(
σ j + ḡ jr (t )

 jr
aZ j

)
+ H.c. (C12)

leads to the following damping superoperators:∑
j=1,2

γD[σ j] • +γ

(
ḡ jr

 jr

)2

D[aZj] • +γ ′
∣∣∣∣ g jr

 jr

∣∣∣∣2

D[aZj] • .

(C13)
As before, the additional dissipators are weighted by a factor
proportional to |gjr/| � 1 and the primary difference due to
parametric coupling is the frequency at which environmental
noise is sampled: while γ corresponds to noise at respective
resonant frequencies, γ ′ is determined by noise at the qubit
frequency shifted by ±ωp.

1. Qubit and resonator heating

Usually terms of type r†
αa†, q†

α, jσ
†
j in the system-

environment interaction correspond to negative frequency
terms in the environment spectrum, which have zero spectral
weight and hence do not contribute towards spontaneous
emission. However, in the presence of parametric driving, the
environmental modes down to −ω jr are accessible, leading to
environment-mediated excitations of the qubit and resonator
even at zero temperature. These processes lead to superopera-
tors of the form∑

j=1,2

κ ′
∣∣∣∣ g jr

 jr

∣∣∣∣2

D[σ †
j ]•,

∑
j=1,2

γ ′
∣∣∣∣ g jr

 jr

∣∣∣∣2

D[a†] • . (C14)
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FIG. 7. Time-domain master equation simulations showing the
preparation of an even-parity Bell state, with g = (4/3)gr =
(2/3)κ = 2π × 50 MHz and T1 = T2 = 10 μs. The solid curve is
calculated using Eq. (8), which incorporates only local dissipation.
The dashed curve additionally includes the nonlocal dissipation
induced by the static couplings alone, with the dominant effect
being the Purcell decay of the qubits. The dotted line extends this
calculation to include parametrically induced nonlocal dissipation,
dominated by qubit heating and additional Purcell decay.

Nonetheless, in the regime of interest, such environment-
induced heating of the system and the effect of the addi-
tional damping superoperators due to parametric couplings in
Eqs. (C8) and (C13) remain negligible as shown in Fig. 7,
and hence are neglected in the analysis presented in Sec. III.
We note that in experiments these effects should be smaller
still, as our calculations assuming a white noise spectrum
overestimate the decay rates.

APPENDIX D: ROBUSTNESS TO IMPERFECTIONS AND
ASYMMETRIES

Numerical simulations show that the scheme is robust to
imperfections, with minimal performance loss occurring for

as large as 50% deviations from optimal values of gr or κ as
shown in Fig. 8(a). The scheme remains similarly robust in
the presence of large asymmetries in the qubit-qubit couplings
g+

12 �= g−
12. In fact, such an asymmetry can provide slightly

improved performance when g−
12 > g+

12. However, asymme-
tries in the qubit-resonator couplings g1r �= g2r have a much
larger negative impact on the achievable fidelities, as shown
in Fig. 8(b). This is to be expected, as these couplings are
used exclusively to engineer the collapse operator acting on
the two-qubit subspace. Thus any asymmetry in the coupling
strengths changes the form of the engineered system collapse
operator in such a way that the target state |ξ 〉 is no longer
a dark state. Explicitly, asymmetric qubit-resonator coupling
strengths lead to a coherent coupling between the target state
|ξ, 0〉 and |C̄, 1〉. Since the parametric coupling strengths can
be precisely matched through the amplitude of the pumps, in
practice this is not a significant limitation.

The effect of qubit detunings δ1,2 on the achievable fideli-
ties is shown in Fig. 8(c). When these detunings are nonzero,
there may be spurious coupling introduced between the target
state |ξ 〉 and |ξ̄〉. This coupling is introduced if either δ1 +
δ2 �= 0 or δ1 − δ2 �= 0, when stabilizing an even- or odd-parity
state, respectively. It is, therefore, natural to parametrize the
qubit detunings in terms of the sum and difference δ1 ± δ2.
The protocol is sensitive to the parameter which leads to the
spurious coupling, and mostly insensitive to the conjugate
parameter. This is again not a limitation of the scheme,
given the precise frequency control available to experiments.
Further, the scheme is weakly sensitive to resonator detuning,
though it demonstrates a slight improvement of steady-state
fidelity with some amount of detuning 0 < |r | < gr . This
is because detuning the resonator reduces the Rabi contrast
between the states |C, 0〉 and |ξ̄ , 1〉, which ultimately leads
to a slightly increased stabilization rate and thus steady-state
fidelity.

FIG. 8. (a) Steady-state error as a function of the deviation of the resonator linewidth κ and qubit-resonator coupling strength gr from
their respective optimal values, κopt = 2gopt

r = (3/2)g with g = 2π × 50 MHz, T1 = 100 μs, and T2 = 200 μs. (b) Steady-state error when
preparing |S〉 with asymmetric qubit-resonator couplings, calculated with the same optimal values and decoherence rates. Asymmetry in the
qubit-resonator couplings has a detrimental effect on the achievable fidelity. This can be remedied by leveraging the tunable strength of the
parametric couplings. (c) Steady-state error in the presence of qubit detunings, for the same parameter values. When δ1 − δ2 �= 0, there is
spurious coupling between |S〉 and |T 〉 which limits the achievable fidelity. The scheme is mostly insensitive to δ1 + δ2 �= 0 when stabilizing
an odd-parity state. When stabilizing an even-parity state, the sum of δ1 and δ2 leads to spurious coupling rather than the difference.
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