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Information propagation in time through allosteric signaling
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Naively, one expects the information communicated by an enzyme downstream within a signaling network, in
which the enzyme is embedded, to grow monotonically with the enzyme’s rate of product formation. However,
here we observe that this does not necessarily hold true for allosterically regulated enzymes, often observed
in signaling networks. In particular, we find that the mutual information between the catalytic sites of an
allosterically regulated enzyme and a receiver protein downstream in the signaling pathway depends on the
transition kinetics between the different allosterically regulated states of the enzyme and their respective rates of
product formation. Surprisingly, our work implies that allosteric down-regulation of an enzyme’s rate of product
formation may not only be used as a way to silence itself, as one would normally expect. Rather, down-regulation
may also be used to increase the information communicated by this enzyme to a receiver protein downstream in
a signaling pathway.

DOI: 10.1103/PhysRevResearch.2.023367

I. INTRODUCTION

Despite the fact that only a small fraction of a cell is
composed of proteins (e.g., proteins constitute 17% of E.
Coli [1]), proteins not only mediate the key processes in
cells, but they also give rise to spatiotemporal signaling to
control a cell’s response to its local environment underlying
all critical decision-making [2] such as a cell’s development
and metabolism [3], motility [4], immunity, and cell-death
(apoptosis) [5].

These spatiotemporally coordinated events are often
achieved by proteins exhibiting allostery—a phenomenon by
which the binding of a molecule at one site of a protein
changes the binding affinity or catalytic activity at another dis-
tant site. Several models of allostery have previously been ex-
plored to study how allosteric interactions within one enzyme
(i.e., proteins that act as catalysts) modulate its activity [6–8].
However, allostery goes beyond just remote modulation. It
also provides “circuit components” from which nature builds
up complex signaling networks. Here we employ an informa-
tion theoretic framework to quantify how allostery propagates
through protein signaling pathways in order, downstream, to
modulate cellular response.
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Information theory has already been proven to be useful
in studying various biological phenomena such as modeling
protein interaction networks [9–11], evolution [12–14], and
single molecule experiments [15,16]. Moreover, it has also
been instrumental in studying the effect of allostery on the
transfer of information between the allosteric regulator and
the catalytic site of allosteric proteins, particularly enzymes
[17,18]. However, these studies primarily explored the ther-
modynamics of substrate binding through allostery, focusing
solely on the concentration of products generated. On the
other hand, the activity of the receiver protein varies in time
according to the availability and on/off binding of the product
produced by the enzyme. Therefore, information conveyed
is encoded not only in the total concentration of the enzy-
matic product generated by “sender enzymes,” but also in
its time-varying activity. Here, we apply information theory
to quantify the role of allostery in a sender enzyme while
it communicates with a receiver protein (a protein to which
product molecules may bind).

To apply information theory, we first consider a simple
master equation model capturing the essence of allostery in
the arrival of products at the receiver protein. Next, this model
is simplified to a two-state model that is studied in a discrete
time domain with the help of hidden Markov models (HMMs)
[19,20]. We compute the probability of observing product
arrival events accounting for all possible latent allosteric
states (“hidden trajectories”) of the sender enzyme. We then
calculate the mutual information (MI) [21] over the joint
distribution of the state of the sender enzyme and the state
of the receiver protein. The joint distribution encodes both
the allosterically induced state-switching transitions and the
product formations by the sender enzyme’s catalytic site.

Our work illustrates how allostery directly impacts the
transfer of information within signaling pathways. It shows
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FIG. 1. Schematic diagram of the model of an allosterically reg-
ulated sender enzyme. It shows EAX , a sender enzyme, with catalytic
site X interacting with substrates S to make product P and allosteric
regulator site A, which can interact with the substrates to change the
state of the sender enzyme to EAX with catalytic site X ∗. The catalytic
site X ∗ can then also interact with the substrate to make products P,
however with different rate constants. The products generated then
bind to a receiver protein Y downstream in the signaling pathway.

that the communication by a sender enzyme in a signal-
ing pathway is not merely modulated by the number of
products generated, but also significantly depends on the time
signature of product arrivals at other receiver proteins present
downstream. The analysis also suggests a broader role for
allostery: a way to increase the information communicated
within signaling pathways even, counterintuitively, via down-
regulation.

II. MODEL

We start with a minimal model of a sender enzyme with
an allosteric regulator site (Fig. 1) inspired by the KNF
(Koshland-Nmethy-Filmer) model of protein allosteric regu-
lation as described in Refs. [8]. The model features a sender
enzyme, EAX , which functions as a sender of information
to another protein downstream in the signaling pathway (a
receiver protein) in the form of products. It has a catalytic
site X that can bind or unbind to a substrate S to make
complex EAXS , with rate constants kX+ and kX−, respectively.
In addition, the sender enzyme also contains of an allosteric
regulator site A. The sender enzyme with the bound complex
at the catalytic site subsequently degrades to generate product,

P, with a rate constant of dp releasing its catalytic site X back
to its original unbound form.

When the allosteric regulator site A reversibly binds to
substrate, it creates a complex EASX with the rate constants
kA+ and kA−, respectively; see Fig. 1(a). The bound complex
at the allosteric regulator can exploit the sender enzyme’s
network of interactions to influence the activity of the catalytic
site [see Fig. 1(b)]. This allosteric interaction occurs between
a bound allosteric regulator site and an unbound catalytic
site with a rate constant of hp. The modified catalytic site
(X ∗) now performs its functions with different activity such
that its rate constants for binding and unbinding with the
substrates change to kX ∗+ and kX ∗−, respectively. Moreover,
the rate constant of the degradation of the complex at X ∗ with
substrate to create product also changes to rp; see Fig. 1(c).
It should be noted that these changes are only localized to
the catalytic site, whereas the allosteric regulator does not
show any changes in its dynamics of interaction, i.e., the
rate constants of binding and unbinding of substrate at the
allosteric regulator site do not change as the catalytic site
alters its state.

Finally, the catalytic site (X ) after being allosterically
modified to (X ∗) can relax back to its original state in a process
with a rate constant of sp. This process can occur regardless
of the state of the allosteric regulator (i.e., whether it is bound
or unbound); see Fig. 1(d).

The products P produced in processes (a) and (c) in Fig. 1
can interact with the receiver protein Y downstream in the
signaling pathway with a rate constant of kY . This protein
acts as a receiver for the signal generated by the sender
enzyme in the signaling pathway in the form of products.
During the interaction of product P with the receiver Y , a
binding event signifies a successful transfer of signal from
the allosterically regulated sender enzyme, E , to the receiver
protein, Y .

For illustrative purposes, the reactions described in the pro-
cesses (a)–(d) in Fig. 1 can be simulated in a straightforward
fashion using the Gillespie algorithm [22]. Here, we simulate
the product arrival events described in Fig. 1 with the help
of a stochastic simulation for a sender enzyme in a system
with a fixed large number of substrates. In the case of an
allosterically up-regulated sender enzyme (i.e., when the rate
constant/s kX ∗+ or/and dp is/are greater than rate constant/s
kX ∗+ or/and rp), we observed “bursts” of higher rates of prod-
uct formation events in the midst of a lower rate of product
formation; see Fig. 2. On the other hand, without any allosteric
regulation, the waiting times between product arrivals are
approximately exponentially distributed (as expected). Put
differently, the ratio of the mean squared to the variance in the
waiting times between product arrival events, which is ≈1.00,
for the choice of parameters specified in the caption of Fig. 2,
as expected for exponentially distributed waiting times. This
ratio strongly deviates from unity (≈17.40) in the presence of
up-allosteric regulation in the sender enzyme; see Fig. 2.

Moreover, the stochastic simulations are also able to dis-
tinguish the variation of product formation rates of sender
enzymes with the amount of substrate present in the presence
of allosteric regulation, and in its absence (see Fig. 1 in the
Supplemental Material [23]). Analogous results are observed
in the presence of down-regulation in sender enzymes. In
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FIG. 2. Time series of product arrivals stochastically simulated
using Gillespie’s algorithm from coupled chemical reactions shown
in Fig. 1 with an allosterically regulated (a) and unregulated
(b) protein. The product arrivals are represented by vertical
lines. The model with allostery exhibits a “bursty behavior.”
This behavior is not observed in the absence of allostery.
Parameter values used are kX+ = 50 s−1, kX− = 25 s−1, dp =
0.9 s−1, kA+ = 50 s−1, kA− = 25 s−1, kX∗+ = 75 s−1, kX∗− =
25 s−1, rp = 50 s−1, sp = 70 s−1, hp = 50 s−1 for (a) and all the
same except hp = 0 s−1 for (b). For both the simulations we have an
enzyme present in an excess of substrate (50 molecules).

addition, our stochastic simulations also suggests that the
model is able to replicate a “bursty” product formation in
the presence of both K-type (i.e., when allosteric regulation
manifests itself by modulating the catalytic sites’ binding
affinity with the substrate, Fig. 2 of the Supplemental Material
[23]) and V -type (i.e., when allosteric regulation affects the
rate by which the bound complex of the catalytic site reduces
to give products, Fig. 3 of the Supplemental Material [23])
allosteric regulations.

The results of stochastic simulation suggest that in the
presence of allosteric up/down regulation (usually referred
to as positive/negative cooperativity), the time of arrival of
products exhibits a more complicated behavior as the cat-
alytic site can exist in more than one type of state. Next,
the products generated in bursts may bind to the receiver
protein downstream transmitting the signal. Due to the bursty
product formation, the amount of information encoded in
the up-signal, propagated by the binding events between the
products and the receiver protein, is a complicated function
that depends on the time-dependent interaction between the

allosteric regulator site and the catalytic site of the sender
enzyme.

To study the information encoded in the bursts of products
in allosterically regulated sender enzymes, the model in Fig. 1
can be further simplified under the condition of detailed
balance in steps (a) and (c) in Fig. 1 as shown in the section
below.

A. Coupled chemical reactions for allosteric regulation reduce
to a two-state system

As the system reaches detailed balance, i.e., when the
forward and backward reaction of complex formation between
substrate and the sender enzyme are equal, the concentrations
of bound complexes do not change with time. Therefore, for
reactions in step (a) in Fig. 1, when the rate of formation of
[EAXS ] (and [EASXS ]) and its rate of degradation are equal,

d
[
EAXS

]
dt

= kX+[EAX ]eq[S]eq − kX−
[
EAXS eq

] = 0, (1)

d
[
EASXS

]
dt

= kX+
[
EASX

]
eq[S]eq − kX−

[
EASXS eq

] = 0, (2)

respectively. Here, EAXS represents the sender enzyme E with
the unbound allosteric site A and the catalytic site X bound to
a substrate, and the subscript “eq” stands for the concentration
of the corresponding biochemical species in detailed balance.
Hence, we can now write[

EAXS

]
eq

[EAX ]eq[S]eq
= kX+

kX−
,

[
EASXS

]
eq[

EASX
]

eq[S]eq
= kX+

kX−
. (3)

Similarly, when the rate of formation of the bound allosteric
site [EASX ] (and [EASXS ]) and its rate of degradation are equal,
we can write

[EASX ]eq

[EAX ]eq[S]eq
= kA+

kA−
,

[EASXS ]eq

[EAXS ]eq[S]eq
= kA+

kA−
. (4)

Likewise, for reaction (c) in Fig. 1 when then rate of formation
of complex between the catalytic site in its alternate state (X ∗)
and the substrate, i.e., [EAX ∗

S
] (and [EASX ∗

S
]), and its rate of

degradation are equal, we can write[
EAX ∗

S

]
eq

[EAX ∗ ]eq[S]eq
= kX ∗+

kX ∗−
,

[
EASX ∗

S

]
eq[

EASX ∗
]

eq[S]eq
= kX ∗+

kX ∗−
. (5)

From hereon, for simplicity and clarity, we would refer
to the sender enzymes with its unbound catalytic site in
its original state (X ) as R and the sender enzyme with its
unbound catalytic in its alternate state (X ∗) as T . Therefore,
RS and T S would represent their bound forms, respectively. In
addition, given the initial concentration of the sender enzyme,
[E ]initial, mass balance implies an additional condition on the
concentrations of the chemical species as shown below:

[E ]initial = [EAX ]eq + [
EAXS

]
eq + [

EASX
]

eq + [
EASXS

]
eq

+ [EAX ∗ ]eq + [
EAX ∗

S

]
eq + [

EASX ∗
]

eq + [
EASX ∗

S

]
eq,

[E ]initial = [R]eq + [RS]eq + [T ]eq + [T S]eq. (6)

Combining Eq. (6) with Eqs. (3), (4), and (5) with the
condition that substrate is present in excess, i.e., [S]eq ≈
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[S]initial, we can reduce the model to a two-state model as
shown below:

R + S
kX+

↼−−−−⇁
kX−

RS
dp−−→ P + R, (7)

T + S
kX∗−

↼−−−−−−⇁
kX∗+

T S
rp−−→ P + T . (8)

Due to the detailed balance in reaction (7), the rate of forma-
tion of RS and its degradation will be equal, i.e.,

d[RS]eq

dt
= kX+[R]eq[S]eq = kX−[RS]eq. (9)

Therefore,

[RS]eq = kX+
kX−

[R]eq[S]eq. (10)

Also, the rate of production formation from step (a) in Fig. 1
can be expressed using reaction (7) and Eq. (10) as

d[P]

dt
= dP[RS]eq, (11)

d[P]

dt
= kX+dP

kX−
[R]eq[S]eq, (12)

d[P]

dt
= kR[R]eq[S]eq, (13)

where kR can be treated as the effective forward rate for the
production of products in reaction (7). Following a similar
logic, reactions (7) and (8) can be expressed in the two-state
system as

R + S
kR−−→ P + R, (14)

T + S
kr−−→ P + T, (15)

where kR = kX+
kX−

dp and kT = kX∗+
kX∗−

rp are the effective product
formation rate constants for the generation of products from
the sender enzyme in the two states (R and T , respectively). In
addition, as shown in Fig. 1, the switching between the states
of the sender enzyme is facilitated by processes (b) and (d).

B. Hidden Markov model representation of the coupled
chemical reactions

This model can be further simplified with the help of
HMMs. In the language of HMMs, the state of the sender
enzyme can be represented by a variable (s) that can take
any value between 1 (for state R) and 2 (for state T ). Further
on, in order to represent the state of the sender enzyme as a
Markov chain, we discretize time into intervals of δt . The time
interval δt is selected to be small enough such that only one or
no product can be produced in any time interval regardless
of the state of the sender enzyme. This choice of small δt
also ensures that the sender enzyme retains its state during
δt . This approximation is also backed by several studies that
suggest that allostery manifests itself on timescales varying
from the order of 10 ps to several nanoseconds [24]. As a
result, timescales pertaining to the rates of transitions between
the states of sender enzyme (i.e., R to T and T to R) are several

FIG. 3. Graphical model describing a two-state system of a
sender enzyme with Poissonian emission and a receiver protein.
Here the observable, ni, is the number of products produced by a
catalytic site at time level i in the hidden state si. �i−1→i represents
the transition matrix of the states between time steps i − 1 to i, and
yi shows the status of the receiver protein at time interval i.

orders slower than the timescales involved in the formation of
products in a given state (see Fig. 3).

Therefore, the probability distribution of the states of the
sender enzyme during time interval i [P(si)] can be expressed
as a function of the probability distribution of states during the
time interval i − 1 and the dynamics of the catalytic site and
the allosteric site in the sender enzyme as [25]

P(si|si−1) = �i−1→i, (16)

where, �i−1→i represents the transition matrix whose elements
describe the probability of transition to a state si at time
interval i given the state of the sender enzyme at time interval
i − 1. For a sender enzyme in state 1 (si = 1), the probability
of remaining in state 1, P1→1, is proportional to [R]eq[S]eqkR

from Eq. (14), whereas the probability for switching its state
from state 1 to 2, P1→2, will be proportional to hp times the
probability of having a bound allosteric site, Fig. 1(b), i.e.,
hp

[EAX ]eq[S]eqkA+
kA−

. On the other hand, if the sender enzyme is in
state 2, the probability to remain in the state P2→2 is propor-
tional to [T ]eq[S]eqkT and the probability to switch, P2→1, is
proportional to sp from Fig. 1(d). Using these, the transition
probabilities can be explicitly calculated using appropriate
normalization conditions as

P1→1 = [R]eq[S]eqkR

[R]eq[S]eqkR + hp
[EAX ]eq[S]eqkA+

kA−

,

P1→2 =
hp

[EAX ]eq[S]eqkA+
kA−

[R]eq[S]eqkR + hp
[EAX ]eq[S]eqkA+

kA−

,

P2→1 = sp

[T ]eq[S]eqkT + sp
,

P2→2 = [T ]eq[S]eqkT

[T ]eq[S]eqkT + sp
. (17)

Moreover, once the detailed balance is achieved in steps (a)
and (c) in Fig. 1, the dynamics of the above described process
becomes independent in time. Therefore, �i+1→i = �: ∀ i ∈
1, 2, . . . , M for M time steps, where M → ∞.
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The HMM model in Fig. 3 describes the dynamics of a
catalytic site existing in state si at time step i and produces
products ni as described by the Poisson process given below:

P(ni|si ) = e−λsi λsi
ni

ni!
, (18)

where λsi is the average number of products generated by the
sender enzyme in state si at time interval i. This parameter
is closely related to the rate constants for chemical processes
described in Fig. 1:

λsi =
{

dp[RS]eqδt if si = 1,

rp[T S]eqδt if si = 2.
(19)

Here, [RS]eq and [T S]eq are the number of bound complexes
between the substrate and the catalytic site in states 1 and
2, respectively, when detailed balance exists in steps (a) and
(c) in Fig. 1. It should be noted that here we have used a
number of bound complexes as opposed to the traditional use
of concentration. This change is also reflected in the units of
the rate constants. Therefore, using this HMM framework, the
probability of generating ni products during time interval i can
be written as

P(ni ) =
2∑

si=1

P(ni|si )P(si ). (20)

Finally, we must also describe how ni changes the state of
the receiver protein. As we select a time interval for the event
to occur, at most one product can be produced in any time
interval by the catalytic site. Consistent with assumptions
inherent to the Gillespie simulation, we assume that diffusion
occurs on timescales vastly exceeding the rate of any chemical
reaction (including the product production rate). The product
can then either bind to the receiver protein or disappear, by
diffusing to a sink (such as an off-pathway, receiver), but it
does not accumulate. Hence, the probability of the state of the
receiver protein downstream in the signaling pathway whether
the receiver protein is bound to the product at time interval i
or not) can be given as

P(yi = 1|ni ) =
{

0 if ni = 0,
pY if ni = 1 (21)

or

P(yi = 0|ni ) =
{

1 if ni = 0,
1 − pY if ni = 1, (22)

where the state variable yi reflects a binding event at the
receiver protein during time interval i such that yi = 1 for
a successful binding event and yi = 0 otherwise. Here, pY

is a real number less than 1, which depicts the probability
of activation of the receiver in the presence of the product.
Moreover, for simplicity, the dynamics of the receiver are not
included in the model. Hence, at the beginning of each time
interval, the receiver is assumed to be in the refreshed state
waiting to receive a new product. The probabilities shown
above describe the dynamics of the model, which will be
used for calculating the amount of information encoded by the
sender enzyme while communicating with the receiver protein
downstream in the signaling pathway.

Therefore, at time interval i, the products generated by
the sender enzyme, which acts as a sender of a message,

are received by another receiver protein downstream in the
signaling pathway, which encodes the information onto the yi.

III. RESULTS AND DISCUSSION

In the preceding section, we reduced the dynamical model
of allosteric regulation of a sender enzyme to a simplified two-
state model that can be represented by an HMM in discrete
time. The model consists of a sender enzyme with a catalytic
site and an allosteric regulator site. The sender enzyme binds
with substrate, which leads to the generation of products. The
sender enzyme can exist in two different states as R (when the
catalytic site exists as X ) and T (when the catalytic site exists
as X ∗). The two states differ in their dynamics of substrate
binding and the rate of product formation by the catalytic site.

The sender enzyme communicates with a receiver protein
downstream in the signaling pathway with the help of prod-
ucts generated in time. The binding of the product with the
receiver protein represents a successful reception of the signal.
Finally, we can express the dynamics of switching of states
of the sender protein as a function of allosteric interaction
between the catalytic site and the allosteric regulator.

Now, exploiting tools from information theory, we define
the amount of information conveyed by the sender enzyme
to the receiver protein downstream at time interval i as the
mutual information (MI) [21] between them,

MI =
2∑

si=1

1∑
yi=0

P(si, yi ) ln
P(si, yi )

P(si )P(yi )
, (23)

where P(si, yi ) represents the joint probability distribution
between si and yi at time interval i. The MI can be computed
for any i (see the Supplemental Material for more details [23]).
Here we choose a large value of i, i = 500, to ensure that the
detailed balance is achieved in steps (a) and (c) in Fig. 1 and
that the MI no longer varies with i.

In the model, the modulation of the information conveyed
through product arrivals can be achieved by two different
mechanisms: (i) by only changing the average number of
products generated by the sender enzyme in the state R or T ,
and (ii) by altering the switching probabilities between these
two states.

We first investigated the effect of varying the product
formation rate of the first state R, λ1, while keeping the
product formation rate of the second state T and the switching
probabilities between states constant, Fig. 4. First, as a sanity
check, we observe that without any allosteric regulation, i.e.,
when the second T state is never visited by the sender enzyme
[setting the transition probability of the sender enzyme from
state R to T (P1→2) to zero], the MI between the state of the
sender enzyme and the binding events at the receiver protein
is zero. This is an expected result, as in this case the sender
protein is restricted to a single state, and alternate states can no
longer influence the binding of product at the receiver protein.
Therefore, no information is conveyed by the products from
the sender enzyme to the receiver protein, regardless of the
rate of product formation by the sender.

Next, when λ1 < λ2, i.e., in the case of up-regulation, the
MI between the sender enzyme and the receiver protein is
higher, in contrast to the case when allosteric regulation is
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FIG. 4. Effect of allostery, as captured by λ1, on the information
communicated by the sender enzyme. With allosteric up-regulation,
i.e., when λ1 < λ2, the time series of product arrivals encodes a
larger amount of information. The dotted line represents the value
of λ1 for which λ1 = λ2 and where the benefit of allostery on the
MI vanishes. With allosteric down-regulation, i.e., when λ1 > λ2,
the sender enzyme still communicates more information than in the
absence of allostery. For the case of the allosteric sender enzyme,
we used λ2 = 2 × 10−4, and the transition probability of the sender
enzyme from state R to T , P1→2 and vice versa, P2→1 as 0.2 and for
the case of nonallosteric sender enzyme, P1→2 = 0.

absent (i.e., when P1→2 = 0). However, as λ1 increases and
comes closer to the value of λ2, the difference between the
product formation rates in the two states of the sender enzyme
decreases and so does the MI until it drops down to zero when
λ1 = λ2. This observation is counterintuitive as it suggests
that the MI between the sender enzyme and the receiver
protein decreases with an increase in the average rate of
product formation. Equally counterintuitively, the information
communicated by the sender to the receiver rises once again
when λ1 > λ2, i.e., for the case of down-regulation.

Second, we analyzed the variation of the information trans-
mitted with allosteric regulation by varying the probability
of switching of the state of the sender enzyme from R to T ,
i.e., P1→2, while holding other parameters (i.e., λ1, λ2, and
P2→1) fixed, Fig. 5. As a sanity check, we first observed the
amount of information conveyed in the absence of allosteric
regulation, i.e., when λ1 = λ2. As expected (similar to the
case observed above), the signal no longer carries any MI
when the effect of allostery is absent, and it is also insensitive
to the value of P1→2. This implies that the binding events at
the receiver protein would be independent of the state of the
sender enzyme, and as a result there is no MI between them.
On the other hand, for up- and down-regulated proteins, the
sender enzyme conveys minimum information while being
restricted to only one state (i.e., when P1→2 = 0). However,
as P1→2 grows, with up-regulation the sender enzyme is able
to access a state with higher average production and therefore
conveys a larger amount of information to the receiver pro-
tein. However, unexpectedly, with down-regulation the sender
enzyme is still able to transmit a larger amount of information
for a range of switching probabilities. This counterintuitive
observation illustrates once more that information transmitted

FIG. 5. Effect of changing the switching probability from state R
to T , P1→2 on the information communicated by the sender enzyme
for different types of allosteric regulations. We observe that without
any allosteric regulation, the information encoded in the product time
series does not vary with switching probabilities. However, with
up-regulation, i.e., when λ1(1 × 10−4) < λ2(4 × 10−4), the sender
enzyme communicates more information as the probability of it
switching to an up-regulated state increases. Counterintuitively, a
down-regulated sender enzyme, i.e., when λ1(4 × 10−4) > λ2(1 ×
10−4), is still able to communicate a larger amount of information
for a wide range of switching probabilities. For all plots, we fix the
transition probability from state T to R, P2→1 to 0.08.

is not a mere function of the amount of product available to
the receiver protein but also depends on the switching kinetics
between the allosteric states of the sender enzyme.

IV. CONCLUSION

Here we investigated a minimal model of allostery and
quantified the information communicated by the catalytic site
of an allosterically regulated sender enzyme to another re-
ceiver protein further down in the signaling pathway through
time-varying product formation rates. Our choice of a two-
state model is a matter of convenience; our formalism readily
generalizes to more complex kinetic models. More impor-
tantly, we found that an allosterically regulated enzyme may
convey a larger amount of information as compared to an
enzyme with no allosteric regulation by decreasing its net
rate of product formation. This suggests that allostery may
provide the means to control the information encoded in
the time of arrival of products in a way that goes beyond
the energetically demanding “more product, better signal”
exploitative paradigm. That is, allostery may provide “lower
signal but more information.” The possibility of parame-
ter fine-tuning to communicate more information is espe-
cially relevant given allostery’s key role in protein evolu-
tion [26–28]. It opens the possibility that nature may fine-
tune allosteric parameters (including switching rates between
states as well as production rates) to adapt/evolve its sig-
naling pathways in response to external stimuli warranting
exploratory (high information/low signal) or exploitative (low
information/high signal) strategies [29].
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