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Violation of the viscosity/entropy bound in translationally invariant non-Fermi liquids
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Shear viscosity is an important characterization of how a many-body system behaves like a fluid. Here we
study the shear viscosity of a strongly interacting solvable model in two spatial dimensions, consisting of coupled
Sachdev-Ye-Kitaev (SYK) islands. As the temperature is lowered, the model exhibits a crossover from an
incoherent metal with local criticality to a marginal Fermi liquid. We find that while the shear viscosity to entropy
density ratio satisfies the Kovtun-Son-Starinets (KSS) bound in the marginal Fermi liquid regime, it can strongly
violate the KSS bound within a finite and robust temperature range in the incoherent metal regime, implying
nearly perfect fluidity of the incoherent metal with local criticality. To the best of our knowledge, it provides the
first translationally invariant example violating the KSS bound with known gauge-gravity correspondence.
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I. INTRODUCTION

Fluid mechanics is among the oldest and the most fun-
damental subjects in physics. A generic many-body system
with globally conserved quantities, such as mass, energy, and
momentum, will exhibit fluidity if the local thermalization
time scale is much less than the relaxation time scale of the
conserved quantities. As a result, universal properties of a
fluid can provide extremely useful insights in understanding
correlated many-body systems with complicated interactions
between their constitutes, like ultracold Fermi gases in the
unitary regime and quark-gluon plasma (QGP) produced in
relativistic heavy-ion collisions, where no control parameter
exists [1]. More recently, owing to the advances of experimen-
tal techniques, quantum fluid behaviors are also witnessed in
correlated electrons in lattice systems [2–4]. Interestingly, the
theory of fluids also receives a boost from the development of
holographic principles [5,6]. A fundamental characterization
of fluids is the shear viscosity that measures the resistance
of a fluid to shear stress. Since viscosity generates entropy
and causes dissipation, a good fluid should have small shear
viscosity. However, the viscosity cannot be arbitrarily small.
Namely, like the uncertainty principle, the fundamental laws
of nature put a lower bound on the ratio of shear viscosity
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to entropy. Based on the AdS/CFT correspondence, Kovtun,
Son, and Starintes conjectured a lower bound (KSS bound)
on the ratio of shear viscosity to entropy in strongly coupled
nonquasiparticle systems [7], i.e., η/S � 1/4π , where η and
S refer to shear viscosity and entropy density, respectively.

The closer the ratio, η/S , of a many-body system is to the
KSS bound, the better it behaves as a perfect fluid. Thus it is
of great interest and importance to explore scarce examples
that saturate, or even violate the bound. Among holographic
systems, the KSS bound is obeyed in Einstein gravity with
both rotational and translational symmetries, while a weaker
bound [8–14] is obeyed in higher-derivative gravity theory.
When rotational symmetry is broken, like the anisotropic
black branes [15–17], certain component of shear viscosity
tensor may violate the KSS bound in a parametric manner
which was recently illustrated in an anisotropic Dirac fluid
[18]. Moreover, the black brane solution for Gauss-Bonnet
massive gravity and Rastall AdS massive gravity show viola-
tion of KSS bound [19]. For isotropic black branes with linear
axion fields, the KSS bound can also be violated; but shear
viscosity does not have a hydrodynamic interpretation since
momentum is no longer conserved [20–26].

For many-body systems, the minimal of the ratio η/S
normally occurs at the fixed point exhibiting emergent con-
formal symmetry, where the quasiparticle description often
invalidates. When the fixed point locates at zero temperature,
the ratio should be a universal number associated with the
universality class of the fixed point. Such examples include
the electron fluid in graphene [27], the Luttinger-Abrikosov-
Beneslavskii phase in three dimensional quadratic band touch-
ing semimetal [28], and Ising nematic quantum critical point
in 2D metals [29]. However, if the fixed point locates at finite
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FIG. 1. (a) A cartoon of the model. The red and blue dots
represent the conduction electrons, c and f fermions, respectively.
The black dotted lines and orange dashed lines indicate the inter-
actions between between f and c fermions and self-interaction of
f fermions, respectively. (b) A schematic plot of the ratio η/S as
a function of temperature. There are three regimes, marginal Fermi
liquid (MFL), IM (incoherent), and semiclassical regime, exhibiting
different behaviors. The ratio violates the KSS bound indicated by
the dashed line in the IM regime.

temperature, the ratio shows a nonuniversal behavior as a
function of temperature. The well-studied unitary quantum
gases and the QGP fall into this class [30–34]. In unitary quan-
tum gases, the minimal of the ratio occurs at an intermediate
temperature range associated with the superfluid transition,
providing possible examples violating the KSS bound [35],
while at the zero-temperature limit the gapless Goldstone
modes lead to a divergent ratio.

Recently, Patel et al. [36] and Chowdhury et al. [37] con-
structed a 2D strongly correlated solvable model, consisting
of coupled Sachdev-Ye-Kitaev (SYK) islands as shown in
Fig. 1(a). This model is of great interest due to the fact that
the SYK model is believed to have a gravity dual [38–44]
with maximal chaos [45], and that though the model exhibits
marginal Fermi liquid (MFL) with well-defined quasiparticle
at low temperature, it exhibits an intermediate-temperature
incoherent metal (IM) regime where the quasiparticle descrip-
tion invalidates. Here, we consider a translationally invariant
version of such model [37], and evaluate the shear viscosity
by using the Kubo formula at large-N limit. As indicated in
Fig. 1(b), in the MFL regime with T < Tinc, we find η/S ∝
T −2; the ratio obeys a KSS-like bound and diverges at zero-
temperature limit. For T > Tcl where the system can be treated
classically, we have η/S ∝ T 3/2 [46]. Thus the ratio nec-
essarily exhibits a minimal in the intermediate temperature.
Interestingly, the ratio can strongly violate the KSS bound
in a robust temperature range of the IM regime, not only
implying a nearly perfect fluidity of the coupled local critical
SYK models, but also providing the first translationally and
rotationally invariant example violating the KSS bound with
known gauge-gravity correspondence.

II. THE MODEL

We consider a 2D lattice model with M flavors of con-
duction fermions cri, i = 1,. . ., M, and N flavors of va-
lence fermions fr j, j=1,. . . ,N , on each site r, as shown in

Fig. 1(a):

H = −
∑
rr′

M∑
i=1

(trr′c†
ricr′i + H.c.) +

∑
r

[
−μc

M∑
i=1

c†
ricri

− μ f

N∑
i=1

f †
ri fri +

N∑
i, j=1

M∑
k,l=1

gi jkl

NM1/2
f †
ri fr jc

†
rkcrl

+
N∑

i, j,k,l=1

Ji jkl

N3/2
f †
ri f †

r j frk frl

⎤
⎦, (1)

where trr′ is the hopping amplitude of c fermions between
sites r and r′, and μi (i = c, f ) denote the chemical poten-
tial of c and f fermions, respectively. The local interaction
strength gi jkl and Ji jkl are random numbers which satisfies
〈〈Ji jkl Jlki j〉〉 = J2

8 and 〈〈gi jkl glki j〉〉 = g2 and all other 〈〈. . . 〉〉
are vanishing. Here, 〈〈. . . 〉〉 means disorder average. Note
that the coupling constants gi jkl and Ji jkl on different sites
not only have the same distribution, but are identical in
each realization. In the following, we choose the hopping
amplitude to be a function depending on |r − r′|, for instance,
trr′ = tδr′,r+êi , where êi is the primitive lattice vector. As a
result, the Hamiltonian is translationally invariant. If g = 0,
the model can be viewed as two independent subsystems: the
conducting c fermions with a hopping trr′ , and the local f
fermions with SYK interaction at each site. Finite g > 0 will
couple the two subsystems, as illustrated in Fig. 1(a). They
interact through a random exchange with effective strength g,
similar to the Kondo lattice model [47–49].

We consider large N and M limit, while keep their
ratio, M/N , fixed. The Green’s functions are given
by Ref. [37], Gc(k, iω) = [iωn − εk + μc − �c f (k, iωn)]−1

and G f (k, iωn) = [iωn + μ f − �′
c f (k, iωn) − � f (k, iωn)]−1,

where k and ωn denote momentum and Matsubara fre-
quency, �c f , �′

c f , and � f refer to self-energies from the
coupling between c and f fermions and self-interaction of f
fermions, respectively. Local critical f fermion propagator,
i.e., G f (k, iωn) = G f (iωn), is always a consistent solution
to saddle-point equations (Appendix A). Especially, in the
limit M/N = 0, the saddle-point equations of f fermions are
identical to the zero-dimensional complex SYK model with
the following conformal-limit solutions [50]:

G f (τ ) = −π
1
4 cosh

1
4 (2πE )

J
1
2

√
1 + e−4πE

(
T

sin(πT τ )

) 1
2

e−2πET τ ,

where E is a parameter controlling the particle-hole asymme-
try, and τ ∈ [0, β] is the imaginary time.

Now, moving to the propagator of c fermion, we will follow
Ref. [36] closely. Though the model in Ref. [36] breaks trans-
lational symmetry by the locally independent disorder, we
show in the Appendix A that at M/N � 1, both models have
the same saddle-point solutions. The translational symmetry
and the resulting momentum conservation equation are also
shown in the Appendix B. In the limit g2 	 tJ , there exists a
crossover temperature, Tinc ∼ t2J

g2 , between the MFL regime in
the lower temperature and the IM regime in higher tempera-
ture. When T � Tinc, the hopping term between conduction
electrons dominates, and the self-energy of the c fermion
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yields (Appendix A)

�MFL
c f (iωn) = ig2T

2Jt cosh1/2(2πE )π3/2

[
ωn

T
ln

(
2πTeγE −1

J

)

+ ωn

T
ψ

(
− iωn

2πT

)
+ π

]
, (2)

where ψ is the digamma function, and γE = 0.577 is the
Euler-Mascheroni constant. The self-energy shows that the
c fermions exhibit a MFL behavior. Indeed, in this regime,
the model a linear-in-T resistivity as well as a T ln T entropy
density [36,51], i.e., SMFL ∼ g2M

Jt2 (T + T ln J
T ).

On the other hand, when T > Tinc, the interacting term
between the conduction and the valence band electrons dom-
inates. Since the interacting term is local, the c fermion
propagator will also exhibit local critical behavior (Appendix
A). The c-fermion self-energy reads (Appendix A)

�IM
c f (iωn) = iT

1
2 g2�

1
2 ν

1
2 (0)(−1)

1
4 (1 + e4πEc )

1
2 e2πE

π
1
4 J

1
2 2

3
2 (i + e2πEc ) cosh

1
4 (2πE )

× �
(

3
4 + iEc + ωn

2πT

)
�

(
1
4 + iEc + ωn

2πT

) , (3)

where � denotes Gamma function, and Ec is a parameters
related to the conduction band filling. At small μ f /J, μc/g

limit, E � − μ f /J

π1/4
√

2
and Ec � −π1/4 cosh1/4(2πE )μc/g [36].

The form of self-energy indicates the quasiparticle does not
exist, and the conduction electrons enter the IM regime. As
Green’s functions of both c and f fermions are local SYK-
type [36], the entropy density scales as SIM ∼ M JT

g2 + N T
J ,

where the first and second terms come from c and f fermions,
respectively [36].

III. SHEAR VISCOSITY

The shear viscosity is usually evaluated via the Kubo
formula η = limω→0

1
ω

ImGxy,xy
R (ω, 0), where Gxy,xy

R is the
retarded Green function of xy component of the energy-
momentum tensor, i.e.,

iGxy,xy
R (ω, p) =

∫
dtdxei(ωt−p·x)θ (t )〈[Txy(t, x), Txy(0, 0)]〉.

where θ (t ) denotes the step function such that θ (t ) = 1 for
t � 0 and zero otherwise, and [. . . ] is commutator. In the
following, we consider the isotropic dispersion εk = k2

2m − �
2

with −�/2 � ε � �/2. Generalization to other dispersions
is straightforward, and won’t change our results qualita-
tively. Note that the lattice constant has been taken to be 1,
so momentum k becomes dimensionless, and we have the
relations m ∼ 1

t ∼ 1
�

∼ ν(0), where ν(0) denotes the den-
sity of states at Fermi level. For the isotropic dispersion,
the density of state is a constant, ν(ε) ≡ ∫

k 2πδ(ε − εk ) =
ν(0),

∫
k ≡ ∫

d2k
(2π )2 , irrespective of the energy. The tensor Txy

of c fermions is given by Txy(p) = ∑
i

∫
k c†

ki�0(p; k)ck+p,i +
H.c., where cki = ∫

dxcxieik·x, and �0(p; k) = (kx+ px
2 )(ky+ py

2 )
m

for the isotropic dispersion.

= + +

FIG. 2. The ladder diagram shows the self-consistent equation
for shear viscosity vertex. The black and red solid lines represent
Green’s function of c fermions and f fermions, respectively. The
dashed line represents disorder average and the shaded vertex rep-
resents full vertex.

As shown in Fig. 2, to the leading nontrivial order in large-
N limit, the self-consistent equation for the full vertex � is

�(p; q) = �0(p; q) + 1

N

∑
i

∫
q′
F (i)(p; q, q′)�(p; q′), (4)

where
∫

k ≡ ∫
k0

∫
k,

∫
k0

≡ T
∑

ωn
and F (i) is represented in the

second and third diagrams in Fig. 2, i.e.,

F (1) = −g2
∫

k
G f (q − q′ + k)G f (q′ − q − k)Gc(q′)

× Gc(p + q′).

Because we are interested in the uniform case, i.e., p = 0,∫
q′
F (1)(0, p0; q, q′)�(0, p0; q′)

= −g2
∫

k,q′
0

G f (q − q′ + k)G f (q′ − q − k)

×
∫

q′
Gc(q′, q′

0)Gc(q′, p0 + q′
0)�(0, p0; q′), (5)

Equation (5) vanishes since it is odd in q′
x (or q′

y). Owing to
the same reason, we find that F (2) on the right-hand side in
Fig. 2 also vanishes. Therefore the vertex corrections vanish,
�(0, p0; q) = �0(0; q) = qxqy

m . Thus, to leading order in 1/N ,
the shear viscosity is given by the sum over the set of ladder
diagrams shown in Fig. 3, and the spectral representation of
shear viscosity is (Appendix C)

η = M

4π

∫ +∞

−∞
dω

(
−∂nF (ω)

∂ω

) ∫ +∞

−∞
dε�xy(ε)Ac(ω, ε)2,

(6)

where nF (ω) = 1/(eβω + 1) is the Fermi-Dirac distribution,
Ac(ω, ε) = −2Im[Gc(iωn → ω + i0+, ε)] denotes the spec-
tral function, and �xy(ε) = ∫

d2k
(2π )2 ( kxky

m )2δ(ε − εk ) is the
transport density of states for shear viscosity.

= + O 1
N2

)

FIG. 3. The Feynman diagram for the calculation of 〈TxyTxy〉 at
leading order in 1/N , where the vertex correction vanishes. The black
lines represent Green’s function of c fermions.
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IV. SHEAR VISCOSITY IN MFL REGIME

In the MFL regime, the Fermi surface is well defined and
the leading temperature-dependence contribution to viscosity
comes from the states near Fermi surface, ε = 0. This allows
us to approximate �xy(ε) by the value at Fermi surface, i.e.,

�xy(ε) ≈ k4
F

16πm2 ν(0), and to extend the range of the integral of
ε to infinity (Appendix D). Finally, we have

ηMFL(T ) = Mν(0)

64m2T

∫ ∞

−∞

dω

2π
sech2

( ω

2T

) 1∣∣��MFL
c f (ω)

∣∣
≈ 0.0300627

Mt2J

g2T
cosh

1
2 (2πE ). (7)

Dividing the viscosity by the entropy density contributed by
c fermions, SMFL

c ∼ g2M
Jt2 T ln J

T , the shear viscosity to entropy
ratio at low temperature scales as

ηMFL

SMFL
c

∼ cosh
1
2 (2πE )

J2t4

g4T 2 ln
(

J
T

) . (8)

Since T � Tinc in MFL regime, the ratio is larger than a
constant, ηMFL/SMFL

c 	 1/ ln(J/Tinc) = 1/2 ln(g/t ). At zero
temperature limit, ηMFL/SMFL

c diverges, as shown in Fig. 1(b).
For the system with (marginally) well-defined quasiparti-

cle, the shear viscosity is actually proportional to the lifetime
of quasiparticle, as indicated in Eq. (7). The quasiparticle
lifetime in the MFL is τ ∝ T −1, which leads the scaling form
of shear viscosity η ∝ T −1 (up to logarithmic corrections).
Note that for Fermi liquid, the quasiparticle lifetime, ∝T −2,
leads to the well-known result η ∝ T −2. More concretely, the
inverse lifetime of c fermions in the MFL regime is [36]

γ = g2T

π
1
2 tJ cosh

1
2 (2πE )

. (9)

Then we can estimate the viscosity to be

ηMFL ≈ εγ −1 ∼ Mt2J

g2T
cosh

1
2 (2πE ), (10)

where ε is the energy density which scales as ε ∼ Mt , agree-
ing with the result in Eq. (7).

V. SHEAR VISCOSITY IN IM REGIME

In the IM regime, the c fermions exhibit local critical
behavior, and there is no notion of Fermi surface. Thus, in
contrast to the case of MFL, we should calculate �xy(ε) in the
full spectrum instead of approximating it at the Fermi surface
(Appendix E), �xy(ε) = m

4π
(ε + �

2 )
2
θ ( �

2 − |ε|). A technical
advantage occurs owing to the local critical form of c-fermion
propagator in the IM regime, namely, the spectral function is
independent of ε, Ac

IM(ω, ε) = Ac
IM(ω). As a result, the shear

viscosity splits into two independent integrations,

ηIM = M

16πT

∫
dε�xy(ε)

∫
dω sech2

( ω

2T

)
Ac

IM(ω)2,

(11)

both of which can be evaluated directly (Appendix E), and the
final result is

ηIM(T ) = Mπ
1
2

24

�2J

g2T

cosh
1
2 (2πE )

cosh(2πEc)
. (12)

In the IM regime, the entropy density corresponds to c
fermions is given by S IM

c ∼ M JT
g2 , so the ratio between shear

viscosity and entropy density is given by

ηIM

S IM
c

∼ cosh
1
2 (2πE )

cosh(2πEc)

�2

T 2
. (13)

If � � J , there exists a robust temperature window in the
IM regime, i.e., � � T � min(J, g2/J ), such that the KSS
bound is strongly violated!

In fact, the scaling form of the shear viscosity obtained
in the IM regime, η ∝ T −1, is a universal property for local
critical systems. In local critical regime, the local interaction
dominates over hoppings, and in turn dictates the scaling
dimension of fermions. The most generic local interaction
allowed by U(1) symmetry is of quartic order. Thus the
local critical freedoms, i.e., the c fermions in our case, have
scaling dimension 1/4, and consequently the spectral weight
A ∝ T −1/2. Furthermore, the local criticality also renders the
vertex correction vanishing, and leads to the spectral represen-
tation of shear viscosity, as shown in Eq. (6). These reasons
lead to the scaling form of shear viscosity η ∝ T −1. Note that
though the scaling form is the same in the MFL regime, the
origins behind them are different, i.e., the shear viscosity is
determined by quasiparticle lifetime in the MFL as discussed
before. The essential point for the violation of the KSS bound
is that the scaling form in the IM regime can survive in an
intermediate-temperature range, which lead to a robust energy
window violating the bound, as indicated in Fig. 1(b). In the
discrete translationally symmetric system considered here, the
only process that can relax the momentum is electron-electron
umklapp scattering. However, the c-fermion density can be
tuned small enough to suppress the umklapp process at low
energy and long distances, so that the system is essentially
momentum-preserving and hydrodynamics emerges in both
the MFL and the IM regimes [52]. It calls for further experi-
ments to establish whether or not the electron fluids in strange
metals are in the hydrodynamic regime.

VI. DISCUSSION AND CONCLUSIONS

Though a similar violation of the KSS bound is also re-
ported in unitary quantum gases by dynamic mean field theory
calculation [35], the SYK model has a better holographic
interpretation [39,42] and analytical controllability than the
model used in Ref. [35]. Thus our calculations provide the
first translationally invariant example violating the KSS bound
with known gauge-gravity correspondence. Moreover, as in-
dicated in Refs. [37,53], we also expect that the model in
this paper has a description of semiholography: f fermions
form the bulk geometry while c fermions live on the boundary.
From this point of view, the η/Sc we calculate here is different
from the one calculated in those full-holographic models,
where the entropy is black hole entropy. To compare our
result with those full-holographic results, one should replace
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the Sc in η/Sc by the entropy density of the whole system
consisted of both f fermions and c fermions. Since S f ∝ N 	
Sc ∝ M, we have η/S f ∝ M/N → 0, at the M/N � 1 limit.
Here, the KSS bound is violated trivially, since the entropy
density comes from an immobile contribution, S f , with U(1)
symmetry at each site.

In conclusion, we investigated the shear viscosity in a
translationally invariant, strongly correlated solvable model
[36,37]. By using Kubo formula, we obtained the interesting
behaviors of shear viscosity as a function of temperature.
In the MFL regimes, the shear viscosity is related to the
quasiparticle lifetime; in the IM regimes, the result is more
general and can be inferred from local criticality. As shown
in Fig. 1(b), we further find an interesting robust temperature
range in the IM regime where the ratio of shear viscosity to
entropy density, η/S , can strongly violate the KSS bound. To
the best of our knowledge, it is the first time that the perfect
fluidity behaviors are discovered in the coupled local critical
SYK models in an intermediate-temperature range. We be-
lieve that our results could shed new light to understanding
shear viscosity of strongly correlated systems.
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APPENDIX A: SADDLE-POINT SOLUTIONS

Summing the relevant Feynman diagrams in the large-N
limit [37], the saddle-point equations are given by

Gc(k, iω) = 1

iωn − εk + μc − �c f (k, iωn)
, (A1)

G f (k, iωn) = 1

iωn + μ − �′
c f (k, iωn) − � f (k, iωn)

, (A2)

�c f (k, iωn) = −g2
∫

k′
Gc(k′, iωn′ )� f (k + k′, iωn + iωn′ ),

(A3)

�′
c f (k, iωn) = −M

N
g2

∫
k′

G f (k′, iωn′ )�c(k + k′, iωn + iωn′ ),

(A4)

� f (k, iωn) = −J2
∫

k′
G f (k′, iωn′ )� f (k + k′, iωn + iωn′ ),

(A5)

� f (q, i�n) =
∫

k
G f (k, iωn)G f (q + k, i�n + iωn),

(A6)

�c(q, i�n) =
∫

k
Gc(k, iωn)Gc(q + k, i�n + iωn), (A7)

where k and ωn denote momentum and Matsubara frequency,
Gi, i = c, f refers to Green’s function of c and f fermion,
respectively, and

∫
k ≡ ∫

k0

∫
k,

∫
k0

≡ T
∑

ωn
,
∫

k ≡ ∫
d2k

(2π )2 . It
is easy to check from the saddle-point equations that local
critical f fermion propagator, i.e., G f (k, iωn) = G f (iωn), is
always a consistent solution to the saddle-point equations.
Indeed, at the M/N → 0 limit, the f fermion propagator is
[50]

G f (τ ) = −π
1
4 cosh

1
4 (2πE )

J
1
2

√
1 + e−4πE

(
T

sin(πT τ )

) 1
2

e−2πET τ , (A8)

where E is a parameter controlling the particle-hole asymme-
try, and τ ∈ [0, β] is the imaginary time. For finite M/N , a
local critical form of f fermion propagator is still consistent
with the full saddle-point equations. Moreover, according to
Refs. [36,37], finite M/N correction is subleading. Thus we
assume the local critical solution holds at a small but finite
M/N , and focus on the case M/N � 0.

Moving to the c fermion propagators, we will follow
Ref. [36] closely. The self-energy of c fermion is given by
Eq. (A3). Since G f is local critical, we can see from Eqs. (A3)
and (A6) that �c f is also independent of momentum,
i.e., �c f (k, iωn) = �c f (iωn), and consequently �c f (τ ) =
−g2Gc(τ )G f (τ )G f (−τ ), with Gc(τ ) ≡ T

∑
ωn

Gc(iωn)
and Gc(iωn) ≡ ∫

k Gc(k, iωn). Then with the assumption
sgn(Im[�c f (iωn)]) = −sgn(ωn), and in the limit of
infinite bandwidth � → ∞ (i.e., bandwidth is the largest
energy scale), Gc(iωn) ≈ ν(0)

∫ +∞
−∞

dε
2π

1
iωn−ε−�c f (k,iωn ) =

− i
2ν(0)sgn(ωn), and Gc(τ ) = − ν(0)T

2 sin(πT τ ) , where ν(0) is the
density of state at Fermi level. The self-energy of the c
fermion yields [36]

�MFL
c f (iωn) = ig2T

2Jt cosh1/2(2πE )π3/2

[
ωn

T
ln

(
2πTeγE −1

J

)

+ ωn

T
ψ

(
− iωn

2πT

)
+ π

]
, (A9)

where ψ is the digamma function, and γE = 0.577 is the
Euler-Mascheroni constant. The self-energy indicate that in
the large bandwidth limit, the c fermions exhibit a MFL
behavior.

On the other hand, in the limit where |iωn + μc −
�c(iωn)| 	 �, one can find local critical solutions of SYK
type for both c and f fermions [36] at conformal limit.
Namely, the f fermion propagator is still given by Eq. (A8),
while the c fermion will enter the IM regime, whose
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propagator reads [36]

Gc(iωn) ≈ 1

2π (μc − �c f (iωn))
, (A10)

where the self-energy is given by

�c f (iωn) = iT
1
2 g2�

1
2 ν

1
2 (0)(−1)

1
4 (1 + e4πEc )

1
2 e2πE

π
1
4 J

1
2 2

3
2 (i + e2πEc ) cosh

1
4 (2πE )

× �
(

3
4 + iEc + ωn

2πT

)
�

(
1
4 + iEc + ωn

2πT

) , (A11)

where E � − μ/J
π1/4

√
2

and Ec � −π1/4 cosh1/4(2πE )μc

g at small
μ f /J, μc/g limit. Note Eq. (A10) is only valid provided
T 	 Tinc and g2 	 �J .

APPENDIX B: SYMMETRY AND NOETHER CURRENTS

In the following, we use Lagrangian formalism to define
the energy-momentum tensor in the long-wavelength limit.
The Lagrangian density of our model is given by

L =
∑

l

c†
l (x)

(
∂τ − ∇2

2m
− μc

)
cl (x)

+
∑

n

f †
n (x)(∂τ − μ f ) fn(x)

+
∑

i, j,k,l

gi jkl

NM1/2
f †
i (x) f j (x)c†

k (x)cl (x)

+
∑

i, j,k,l

Ji jkl

N3/2
fi(x)† f j (x)† fk (x) fl (x). (B1)

The Lagrangian L is invariant under the translational symme-
try �x → �x + �a, τ → τ + a0. Following the standard Noether
procedure, one obtains the energy-momentum tensor

Tμν = ∂L
∂∂μψ

∂νψ − δμνL, (B2)

from which we can get the momentum operator Pi ≡ T0i

Pi(x) = −i
∑

l

c†
l (x)∂icl (x), (B3)

which is conserved due to the translational symmetry. Note
that the immobile f -fermions do not contribute to the total
momentum. More importantly, the stress tensor used to eval-
uate the shear viscosity is given by

Txy(x) = − 1

m

∑
l

c†
l (x)∂x∂ycl (x). (B4)

Indeed, the interacting part of the Lagrangian density does
not show up in the stress tensor. Only the diagonal part is

modified,

Txx(x) = − 1

m

∑
l

c†
l (x)∂2

x cl (x) − L(x) (B5)

= −
∑

l

c†
l (x)

(
∂τ − −∂2

x + ∂2
y

2m
− μc

)
cl (x)

−
∑

n

f †
n (x)(∂τ − μ f ) fn(x) − LI , (B6)

where the last term is the interacting part.

APPENDIX C: THE DERIVATION OF SHEAR VISCOSITY
IN TERMS OF SPECTRAL FUNCTION

We prove that the shear viscosity defined via the Kubo
formula

η = lim
ω→0

1

ω
ImGR

xy,xy(ω, 0),

GR
xy,xy(ω, 0) = −i

∫
dtd�xeiωtθ (t )〈[Txy(t, �x), Txy(0, 0)]〉,

(C1)

is equivalent to (6) in terms of spectral functions.
The xy component of the uniform energy-momentum ten-

sor for c fermions is given by

Txy =
∫

d2k
(2π )2

c†
ki

kxky

m
cki. (C2)

To obtain the retarded Green function, we first use the imagi-
nary time formula. In the tree level, we have

Gxy,xy(i�, 0) = −MT
∑
ωn

∫
d2k

(2π )2

(
kxky

m

)2

× Gc(iωn, k)Gc(iωn + i�n, k). (C3)

Using the spectral representation, G(z) = ∫
dω
2π

Ac (ω)
z−ω

, one is
able to sum over Matsubara frequencies and continue to real
frequency

ImT
∑
ωn

G(iωn)G(iωn + � + iδ)

= −1

2

∫
dω′

2π
Ac(ω′)Ac(ω′ + �)

× [nF (ω′) − nF (ω′ + �)]. (C4)

We obtain the imaginary part of the retarded Green function

ImGR
xy,xy(�, 0)

= M

2

∫
d2k

(2π )2

(
kxky

m

)2 ∫
dω

2π
Ac(ω, k)Ac(ω + �, k)

× [nF (ω) − nF (ω + i�)]. (C5)

The shear viscosity is then given by

η = M

2

∫ ∞

−∞

dω

2π

(
− ∂nF

∂ω

) ∫ ∞

−∞
dε�xy(ε)Ac(ω, ε)2, (C6)

where �xy(ε) ≡ ∫
d2k

(2π )2 ( kxky

m )2
δ(ε − εk ).
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APPENDIX D: SHEAR VISCOSITY IN MARGINAL
FERMI LIQUID

In MFL regime, the well-defined Fermi surface allows us to
approximate the density of states ν(ε) at energy ε by density
of states at Fermi surface ν(0). Then we have

�xy(ε) = m2v4
F

∫
d2k

(2π )2
cos2 θ sin2 θδ(ε − εk )

≈ m2v4
F

16π
ν(0) ≈ ν(0)

16πm2
, (D1)

where in the last step, we use the relation vF ∼ 1/m in the
isotropic dispersion. The shear viscosity is given by

ηMFL = M

16πT

∫
dω sech2

( ω

2T

) ∫
dε�xy(ε)Ac

MFL(ω, ε)2

= M

16πT

m2v4
F

16π
ν(0)

∫
dω sech2

( ω

2T

) ∫
dεAc

MFL(ω, ε)2

= Mm2v4
F ν(0)

128πT

∫
dω

sech2
(

ω
2T

)∣∣��MFL
c f (ω)

∣∣
≈ 0.0300627

Mt2J

g2T
cosh

1
2 (2πE ), (D2)

where in the last line, we have used the relation vF ∼ 1
m ∼

1
ν(0) ∼ t in the isotropic dispersion.

APPENDIX E: SHEAR VISCOSITY IN
INCOHERENT METAL

For the dispersion relation εk = k2

2m − �
2 with bandwidth

εk ∈ [−�
2 , �

2 ], we have

�xy(ε) =
∫

d2k
(2π )2

(
kxky

m

)2

δ(ε − εk )

= 1

(2πm)2

∫
dθ cos2 θ sin2 θ

∫
dkk5δ(ε − εk )

= m

4π

(
ε + �

2

)2

θ

(
�

2
− |ε|

)
, (E1)

where θ (x) is the unit step function. One can also find �xy

using Fourier transform [35,54], which exactly gives the same
result. The spectral function of c fermion in IM region is given
by [36]

Ac(ω, ε) = Ac(ω)

= −2�
[

ei 3π
4 π1/4J1/2 cosh1/4(2πE )(i + e2πEc )

gT 1/2
√

1 + e4πEc

× �
(

1
4 − i βω−2πEc

2π

)
�

(
3
4 − i βω−2πEc

2π

)]
, (E2)

which is independent of ε as a result of local criticality. Then
the shear viscosity is given by

η = M

16πT

∫
dε�xy(ε)

∫
dω sech2

(
βω

2

)
Ac(ω)2

= M

16πT

�2

12π

8π5/2J cosh1/2(2πE )

g2 cosh(2πEc)

= Mπ1/2

24

�2J

g2T

cosh1/2(2πE )

cosh(2πEc)
, (E3)

where we have used
∫

dε�xy(ε) = �2

12π
, and∫

dω sech2

(
βω

2

)
Ac(ω)2

= 16π5/2J cosh1/2(2πE )

g2T

1

2 cosh(2πEc)

×
∫

dω

(
sech(βω − 2πEc)

�
(

3
4 + i βω−2πEc

2π

)
�

(
3
4 − i βω−2πEc

2π

)
)2

= 8π5/2J cosh1/2(2πE )

g2 cosh(2πEc)

∫
dx

(
sech(x)

�
(

3
4 + i x

2π

)
�

(
3
4 −i x

2π

)
)2

= 8π5/2J cosh1/2(2πE )

g2 cosh(2πEc)
. (E4)

APPENDIX F: THERMAL DIFFUSION CONSTANT

We calculate the thermal diffusion coefficient in both
regimes by using the results given in Ref. [36]. The thermal
diffusivity can be given by Einstein’s relation

D = κ0

cV
, (F1)

where κ0 is the “closed-circuit” thermal conductivity and cV

is the specific heat.
In MFL regime, from Ref. [36], we have κMFL

0 ∼ MJt2/g2

and cMFL
V ∼ M(g2/t2)(T/J ) ln(J/T ), where we have set E =

0 in the following calculations. The thermal diffusion constant
scales as

DMFL ∼ J2t4

g4T ln
(

J
T

) . (F2)

Note that as T → 0, the thermal diffusion constant becomes
divergent same as the shear viscosity. Since T � Tinc, we
conclude that DMFL

κ 	 t2

g2 J 1
ln(g/t ) .

Similarly, in the IM regime, one has κ IM
0 ∼ MJ�2/g2 and

cIM
V ∼ MJT/g2 [36]. The thermal diffusion constant scales as

DIM ∼ π5/2�2

64T
. (F3)

Due to the IM existing only at temperature above Tinc, we
always have DIM � π5/2g2

64J . In the MFL regime, the thermal
diffusion has a 1/T dependence due to local criticality. It was
argued that the fast “Planckian” dissipation together with the
causality of diffusion results in an upper bound of diffusivity
[55]. The results found in this work strongly implies that
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the shear viscosity and the upper bound of diffusivity maybe
deeply connected.

APPENDIX G: RELATION TO THE DC CONDUCTIVITY

In MFL regime, similar to case of shear viscosity, the
inverse lifetime Eq. (9) also gives rise to the T −1 dependence
of DC conductivity. From [36], one has

σ MFL
DC ∼ M

mγ
∼ MJt2

T g2
. (G1)

From uncertainty principle, the metallic conductivity in 2D
is bounded below by the Mott-Ioffe-Regel (MIR) limit, and
σ = nτ/m ∼ (kF l )1/h̄ � 1/h̄, where l is the electronic mean
free path and the charge unit is omitted [56]. The conduc-
tivity obtained here can be lower than the MIR limit 1/h̄
numerically by tuning parameters, although the MFL is not
rigorously a bad metal.

In the IM regime, the DC conductivity reads

σ IM
DC ∼ M�2J

g2T

cosh1/2(2πE )

cosh(2πEc)
, (G2)

which shares the same scaling form with the shear viscosity
in Eq. (10). It is not surprising. Firstly, because of local
criticality, the spectral density is independent of momentum.
Secondly, the vertex of shear viscosity and conductivity has
the same scaling, which is 1/m ∼ t . The combination of above
two features completely determine the scaling form.

Both of shear viscosity and DC conductivity vanish when
T 	 Tinc due to the same scaling forms in Eqs. (10) and
(G2). To reach T 	 Tinc, one can consider the decouple limit
t → 0 while keeping other couplings and temperature fixed,
which agrees with the fact that transport coefficients die out.
Furthermore, the entropy Sc contributed by c-fermion keep
fixed under the decouple limit, which is equal to the entropy
of the SYK model with JIM = g2/J . From this point of view,
the violation of the KSS bound of η/Sc here shares the same
reason with the deviation from the MIR limit of σDC in the
incoherent metal regime.

These two bounds can be understood from the inverse
lifetime for the c fermions, Eq. (9). In the MFL regime
with temperature T � Tinc and t 	 g, J 	 T , the c-fermion
lifetime behaves as τh ∼ Tinc/(tT ) 	 1/t . However, in the
IM regime, due to local criticality, the universal Planckian
time τh ∼ 1/T give the temperature dependence of transport
coefficients.
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