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Longitudinal eccentricity decorrelations in heavy-ion collisions
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In heavy-ion collisions, the harmonic flow Vn of final-state particles is driven by the eccentricity vector En

that describes the shape of the initial fireball projected in the transverse plane. It was realized recently that the
structure and shape of the fireball, and consequently the En, fluctuate along pseudorapidity η in a single event,
En(η). This leads to eccentricity decorrelation between different η, driving the longitudinal flow decorrelations
observed in the experiments. Using a Glauber model with a parametrized longitudinal structure, we have
estimated the eccentricity decorrelations and related them to the measured flow decorrelation coefficients for
elliptic flow n = 2 and triangular flow n = 3. We investigated the dependence of eccentricity decorrelations on
the choice of collision system in terms of the size, asymmetry, and deformation of the nuclei. We found that these
nuclear geometry effects lead to significant and characteristic patterns on the eccentricity decorrelations, which
describe the measured ratios of the flow decorrelations between Xe+Xe and Pb+Pb collisions. These patterns
can be searched for using existing experimental data at the Relativistic Heavy-Ion Collider and the large Hadron
collider, and if confirmed, they will provide a means to improve our understanding of the initial state of the
heavy-ion collisions.
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I. INTRODUCTION

Heavy-ion collisions produce a quark-gluon plasma (QGP)
[1,2] whose space-time evolution is well described by rel-
ativistic viscous hydrodynamics [2–4]. The QGP expan-
sion converts the initial-state spatial anisotropies into final-
state momentum anisotropies. These are characterized by
Fourier expansion of azimuthal distribution of particle density,
dN/dφ ∝ 1 + 2

∑∞
n=1 vn cos n(φ − �n), where vn and �n

represent the amplitude and phase of the nth-order flow vector
Vn = vnein�n . The Vn reflects the hydrodynamic response of
the produced medium to the nth-order initial-state eccentricity
vector [5,6], denoted by En = εnein�ε

n . Due to event-by-event
density fluctuations in the initial state, the En and consequently
the Vn also fluctuate event to event. However, model calcula-
tions show that an approximate linear relation Vn ∝ En is valid
for n = 2 (elliptic flow) and 3 (triangular flow) within a fixed
centrality class, and the proportionality constant depends on
the transport properties of the QGP [6–11].

Most previous efforts assumed that En and Vn are boost
invariant within a single event. But recent studies [12,13]
show significant fluctuations of harmonic flow along the
longitudinal direction within the same event. These so-called
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“flow decorrelations” appear as differences in flow magni-
tude [vn(η1) �= vn(η2)] and its phase [�n(η1) �= �n(η2)] along
pseudorapidity (η). The origin can be attributed to the fact that
the number of particle production sources and their transverse
distribution fluctuates along η, which leads to longitudinal
decorrelation of the eccentricity vector in configuration space.
For example, the number of forward-going and backward-
going nucleon participants, NF

part and NB
part, are not the same

in a given event [14,15], and the corresponding eccentricity
vectors EF

n and EB
n would also be different. Since these par-

ticipants contribute differently to the final-state particles in
the forward and backward rapidity, the particle multiplicity
in the forward (backward) rapidity is more correlated with
NF

part (NB
part) (see Ref. [16] for a recent detailed study on this),

and similarly the eccentricity vector in the forward (backward)
rapidity is closer to EF

n (EB
n ) [17]. Hydrodynamic model sim-

ulations [15,18–22] show that the flow decorrelations reflect
mainly the longitudinal structure of the initial state, and are
insensitive to the viscosity of the QGP. Therefore, flow decor-
relations serve as a unique probe for the early-time dynamics
of the heavy-ion collisions.

The first measurement of flow decorrelations was per-
formed by the CMS Collaboration [12], followed by a more
detailed study by the ATLAS Collaboration [13] in Pb+Pb
collisions. Preliminary results have also been obtained at the
Relativistic Heavy-Ion Collider (RHIC) energies as well [23].
These results were described reasonably by several hydrody-
namic model simulations with a three-dimensional (3D) initial
condition based on the Lund-string picture [19,20]. Very
recently, ATLAS also measured the flow decorrelations in the
Xe+Xe system [24]. Compared with the Pb+Pb system, the
decorrelation signal is observed to be larger for v2, but smaller
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for v3. Current hydrodynamic models [25,26] reproduce the
vn in both systems but fail to describe simultaneously the
centrality dependence of the vn decorrelations, which implies
that the hydrodynamic models tuned to describe the transverse
dynamics may not have the correct initial-state geometry in
the longitudinal direction. However, in order to pin down
exactly how to improve the description of 3D initial-state
geometry, further systematic measurements and model studies
in different collision systems are required.

In this paper, we explore longitudinal decorrelations of the
initial-stage geometry using Glauber model simulations for
different collision systems. We study the qualitative trends of
the system size dependence in a symmetric collision system,
as well as the effects of the nuclear deformation and asym-
metric collision system. We found that the decorrelations are
sensitive to all these variations.

II. SETUP

The longitudinal flow decorrelations are studied with a
factorization ratio proposed by the CMS collaboration [12],

rn(η) = 〈Vn(−η)V ∗
n (ηr )〉

〈Vn(η)V ∗
n (ηr )〉

= 〈vn(−η)vn(ηr ) cos n[�n(−η) − �n(ηr )]〉
〈vn(η)vn(ηr ) cos n[�n(η) − �n(ηr )]〉

≈ 1 − 2Fnη, (1)

where ηr is a reference pseudorapidity range common to both
the numerator and the denominator, and the average is done
over events in a given centrality interval. Measurements show
that rn(η) is an approximately linear function close to unity,
and the slope parameter Fn characterizes the strength of the
decorrelation.

Since the flow vector and eccentricity vector are linearly
correlated, Vn ∝ En, the rn(η) can be directly related to the
initial eccentricity in spatial rapidity defined analogously to
Eq. (1):

rs
n(η) = 〈En(−η)E∗

n (ηr )〉
〈En(η)E∗

n (ηr )〉 . (2)

Hydrodynamic model calculations show that rn(η) ≈ rs
n(η)

[20], nearly independent of the value of shear viscosity in the
final state.

Following our previous work [17], the η dependence of
the eccentricity is estimated from the eccentricities of the
forward-going and backward-going quark participants EF

n and
EB

n ,

En(η) = En+ + fn(η)En−, En+ = EF
n + EB

n

2
En− = EF

n − EB
n

2
,

where fn(η) is an odd function that controls the relative mix-
ture of the eccentricity vectors for the forward- and backward-
going quark participants: fn(∞) = 1 and fn(−∞) = −1, and
En+ ≈ En is the eccentricity calculated using all participants.1

Note that the En± fluctuate event to event but are constants

1We find that εn+ is larger than εn by up to 20% in midcentral
collisions in a large system due to the difference in center-of-

within an event. Assuming fn(η) in each event is a slowly
varying function near midrapidity, Ref. [17] shows that

rs
n(η) ≈ 1 − 2ηanAn, an =

〈
∂ fn

∂η

∣∣∣∣
η=0

fn(ηr )

〉
,

An ≡
〈
ε2

n−
〉

〈
ε2

n+
〉 + 〈

ε2
n−

〉 ≈
〈
ε2

n−
〉

〈
ε2

n

〉 , (3)

where an is a constant that encodes information about the
fn(ηr ), and An controls the strength of the eccentricity decor-
relations.

In the linear response picture, the flow harmonics are
driven by the overall eccentricity:√〈

v2
n

〉 = κn

√〈
ε2

n

〉
, (4)

where we use the fact that harmonic flow can only be mea-
sured via the two-particle correlation method which corre-
sponds to 〈v2

n〉. The response coefficient κn captures the effects
of the viscous damping and depends mainly on the overall size
of the system (Npart or number of quark participants Nqp). With
a similar argument, we hypothesize that flow decorrelations
should be driven by eccentricity decorrelations,

Fn = κ ′
nAn. (5)

The coefficient κ ′
n ≈ an is controlled by the mixing function

fn(η), whose dependence on centrality is currently unknown.
Furthermore, although the influence of κn to An is expected to
largely cancel between the numerator and denominator, some
residual dependence could remain since the κn for εF

n and εB
n

can be different if NF
part �= NB

part in a given event.
In studying the system-size dependence, it is useful to

consider ratios of flow harmonics or flow decorrelations as
a function of Npart or Npart/2A where A is the atomic number,

vA+A
n

vB+B
n

= κA+A
n

κB+B
n

εA+A
n

εB+B
n

,
F A+A

n

F B+B
n

= κ ′A+A
n

κ ′B+B
n

AA+A
n

AB+B
n

, (6)

The Npart is a proxy for absolute system size while Npart/2A
can be considered as a measure for scaled system size or cen-
trality. When plotted as a function of Npart, the κn is expected
to cancel in the vn ratio and vA+A

n /vB+B
n ≈ εA+A

n /εB+B
n . In

contrast, for the same Npart/2A, the longitudinal structure of
the initial state is expected to have similar F-B asymmetry in
the number of sources and similar fn(η),2 and therefore the
Fn ratio is expected to approximately scale with the An ratio,
i.e., F A+A

n /F B+B
n ≈ AA+A

n /AB+B
n . Equation (6) and the above

arguments are the main assumptions used in this paper for our
predictions of the system-size dependence of the eccentricity
decorrelations.

The eccentricity and its decorrelations are calculated using
a standard quark Glauber model from Ref. [27]. Three quark
constituents are generated for each nucleon according to
the “mod” configuration [28], which ensures that the radial

mass locations for forward-going and backward-going nucleons (see
Ref. [15]).

2In the limit of many sources per nucleon or optical Glauber, the
F-B asymmetry should be a universal function of Npart/2A.
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TABLE I. A list of nuclei used in this study.

System U Pb Au Xe Zr Cu

Atomic number 238 208 197 129 96 63
R0 (fm) 6.81 6.62 6.38 5.42 5.08 4.20

distribution of the three constituents after recentering follows
the proton form factor ρproton(r) = e−r/r0 with r0 = 0.234 fm
[29]. The nucleons are assumed to have a hard core of 0.4 fm
in radii; their density distribution is given by the Woods-Saxon
profile,

ρ(r) = ρ0

1 + e(r−R0 )/a
, (7)

where ρ0 is the nucleon density, R0 is the nuclear radius, and
a = 0.55 fm is the skin depth. The value of the quark-quark
cross section is chosen to be σqq = 18 mb, which corresponds
to the nucleon-nucleon inelastic cross-section σnn = 68 mb at√

sNN = 5.02 TeV. For the study of system size dependence,
six spherical nuclei are considered (see Table I). The effects
of the deformation are considered for xenon and uranium,
denoted by Xed and Ud , according to

ρ(r, θ ) = ρ0

1 + e{r−R0[1+β2Y20(θ )+β4Y40(θ )]}/a
, (8)

where Y20 and Y40 are Legendre polynomials and β2 and β4

are deformation parameters. The deformation parameters are
chosen as β2 = 0.28 and β4 = 0.093 for Ud [30] and β2 =
0.162 and β4 = −0.003 for Xed [31,32].

The Glauber simulation is performed for various collision
systems to generate the positions of the participant nucleons
and quark constituents, which are used to calculate eccen-
tricity εn and eccentricity decorrelations An. The eccentricity
vector is calculated using the transverse positions of quarks as
En = −〈rneinφ〉/〈rn〉. Similarly, the EF

n and EB
n are calculated

using only the forward-going and backward-going quarks,
respectively, which are then used to obtain the An.

III. RESULT

The top panels of Fig. 1 show the ε2 calculated in different
collision systems. A clear hierarchy is observed when ε2

is plotted as a function of Npart. However, when plotted as
a function of Npart/2A, the ε2 values for different systems
nearly collapse on a common curve that simply reflects the
centrality-dependent shape of the elliptic geometry of the
overlap region. The bottom panels of Fig. 1 show the results
for ε3. The ε3 values from different systems overlap at the
small Npart region, but deviate from each other at larger Npart

values. This behavior suggests that although the ε3 is driven
by the random fluctuations of quark constituents, it results in
common ε3 values only when Npart is not too large. In the large
Npart region, the ε3 also depends on the size and the ε2 of the
overlap region (e.g., due to the anticorrelation between ε2 and
ε3 [33]).

The left panels of Fig. 2 show the results of eccentricity
decorrelations A2 and A3 as a function of Npart. The A2 values
are larger for small systems, while the opposite trend is
observed for the A3. This opposite system-size dependence

partN
0 100 200 300 400

2∈

0

0.2

0.4

0.6

(a)

/2ApartN
0 0.5 1

Pb+Pb

Au+Au
d+XedXe

Zr+Zr

Cu+Cu

(b)

partN
0 100 200 300 400

3∈

0

0.2

0.4

(c)

/2ApartN
0 0.5 1

(d)

FIG. 1. The Npart (left) or Npart/2A (right) dependence of ε2 (top)
and ε3 (bottom) for five different symmetric collision systems.

trend between A2 and A3 is much more obvious when they
are plotted as a function of Npart/2A in the right panels.

Recently, the ATLAS Collaboration has performed the
first measurement of the system-size dependence of flow
decorrelations for v2 and v3 [24]. We can check how well
the Glauber model describes the change between Xe+Xe and
Pb+Pb observed in the ATLAS data. The left panels of Fig. 3
show the Npart dependence of εn ratios and An ratios, and they
are compared with the vn ratios and Fn ratios, respectively,
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FIG. 2. The Npart (left) or Npart/2A (right) dependence of ec-
centricity decorrelations A2 (top) and A3 (bottom) for five different
symmetric collision systems.
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FIG. 3. The Npart (left) or Npart/2A (right) dependence of the εn

ratio and the An ratio between Xe+Xe and Pb+Pb collisions for n =
2 (top) and n = 3 (bottom). They are shown for data (solid symbols)
and the Glauber model (open symbols). They are compared also with
the hydrodynamic model predictions (lines) for the vn ratio [32] and
the Fn ratio [25,26].

from the data and hydrodynamic model predictions. The εn

ratios agree with the vn ratio very well (within 5%–10%),
and this is because the response coefficient κn depends only
on the overall size of the overlap region described by Npart,
and therefore cancels in the ratios. On the other hand, the An

ratios show qualitatively similar trends as the Fn ratios, but
are quantitatively different especially for n = 2. Note that the
hydrodynamic model predictions reproduce the vn ratios but
fail to describe the Fn ratios, implying the model does not have
the correct initial-state condition in the longitudinal direction.

The right panel of Fig. 3 shows the same ratios calculated
as a function of Npart/2A. It is clear that εn ratios do not
describe the vn ratios due to the fact that the κn do not cancel,
which leads to about a 10%–15% difference between the εn

ratio and the vn ratio for n = 2 and a 10%–25% difference
for n = 3. However, the An ratios, which are expected to be
relatively insensitive to κn, show an overall good agreement
with the Fn ratios. This agreement implies that the fn(η)
function controlling the mixing between forward-going and
backward-going sources is mostly a function of the centrality
percentile or the Npart/2A between different systems. This re-
sult also supports the opposite hierarchy between the system-
size dependence of A2 and the system-size dependence of A3

in Fig. 2.
The deformation of colliding nuclei is known to influence

the Npart dependence of εn and vn [34–36]. An interesting
question is whether the eccentricity decorrelations are also
affected. Figure 4 shows the εn ratios and An ratios for Xe
(top panels) and U (bottom panels) with and without defor-
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FIG. 4. The Npart dependence of the εn ratio and the An ratio for
n = 2 (left panels) and n = 3 (right panels) for Xe+Xe (top) or U+U
(bottom) between with and without nuclear deformation from the
Glauber model.

mation. In the case of Xe, the deformation influences the
ε2 and A2 in central collisions but in the opposite direction,
i.e., deformation increases the ε2 but reduces the A2. The
deformation has very little influence on the ε3 and A3. In
the case of U, the deformation increases ε2 over a broader
centrality range. The influence on A2 is a bit nontrivial: the
deformation has little effect in the midcentral and peripheral
collisions, but decreases the A2 in the ultracentral collisions.
The deformation increases the values of ε3 but decreases
the values of A3. These features can be searched for in the
experimental analyses, for example by comparing the Ru+Ru
and Zr+Zr at RHIC, which have the same atomic number but
different amounts of deformation [37].

Figure 5 shows our prediction of the eccentricity decor-
relations in asymmetric collision system Cu+Au, for which
the intrinsic asymmetry between the NF

part and NB
part should

also influence the behavior of εn and An. Since the overall
system size for Cu+Au is in between Zr+Zr and Xe+Xe, we
compare the εn and An among these three systems. The Npart

dependencies of An in the central Cu+Au region are distinctly
different from those in the Zr+Zr and Xe+Xe systems. This
is because over a wide range in the central collisions region,
all the nucleons from Cu participate in the collisions, while the
nucleon participants in Au still increase, resulting in a weak
dependence of both εn and An on the Npart.

IV. SUMMARY

We discussed the dependence of elliptic flow v2 and trian-
gular flow v3 and their longitudinal decorrelation coefficients
F2 and F3 on the choice of collision systems in terms of the
size, deformation, and asymmetry of the nuclei with atomic
number A. Hydrodynamic model simulation shows that the
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FIG. 5. The Npart dependence of ε2 (top left), ε3 (bottom left), A2

(top right), and A3 (bottom right) compared between the asymmetric
Cu+Au collision system and the symmetric Zr+Zr and Xe+Xe
systems.

harmonic flow is driven by the initial-state eccentricity,
εn vn ∝ εn, and the flow decorrelations are directly determined
by the eccentricity decorrelations in the longitudinal direction
An, Fn ≈ An. We estimate the values of εn and An in various
collision systems using a Monte Carlo quark Glauber model,
which assumes three constituent quarks for each nucleon in
determining the initial state, and the results are presented as
a function of the number of nucleon participants Npart or that
normalized by the total number of nucleons of the collision
systems Npart/2A.

We found that the A2 is larger for smaller collision systems,
while the opposite ordering is observed for the A3. The ratios
of εn or An between Xe+Xe and Pb+Pb are compared with
the ratios of vn or Fn measured by the ATLAS Collaboration
as a function of both Npart and Npart/2A. The εn ratios approx-
imately agree with the vn ratios as a function of Npart, while
the An ratios agree with the Fn ratios as a function of Npart/2A.
This behavior is consistent with our understanding that the
flow response coefficient κn = vn/εn depends on the overall

system size described by the Npart, while the coefficient for
flow decorrelations Fn/An might depend only on the overall
shape of the overlap region controlled by the Npart/2A. Current
hydrodynamic models fail to describe simultaneously the flow
decorrelations in Xe+Xe to Pb+Pb. This failure implies that
future investigations are needed on the shortcomings of the
initial longitudinal structure based on the Lund-string picture
of a multi-phase transport (AMPT) model, as well as on
the role of final-state longitudinal expansion for the flow
decorrelations.

We further compared the εn and An for Xe and U nuclei
with and without the effects of nuclear deformation. For the
modest deformation parameter β2 = 0.162 of Xe, the defor-
mation influences the ε2 and A2 only in ultracentral collisions.
For the large deformation parameter β2 = 0.28 of U, the
nuclear deformation influences both the n = 2 and n = 3 of
εn and An over a broad centrality range. The deformation
always increases the value of εn while it decreases the value
of An. These features might be searchable using the Zr+Zr
and Ru+Ru isobar data from the STAR Collaboration since Zr
and Ru are expected to have slightly different β2 values [37].
We also considered the Cu+Au asymmetric collision system,
which shows a Npart dependence of εn and An different from
symmetric systems in the central region.

This paper serves as an exploratory study of the possible
influence of various nuclear geometry effects on the harmonic
flow and longitudinal flow decorrelation in heavy-ion colli-
sions. More quantitative predictions would require coupling
the 3D initial condition with state-of-the-art hydrodynamic
model simulation. The final-state effects are expected to
significantly change the relation between the vn and εn in
a system-dependent manner, but they may not change too
much the relationship between the Fn and An as predicted
by our calculations. In addition, it would be important to
extend this study to small collision systems such as p+A and
pp collisions, where the eccentricity decorrelations should be
sensitive to the nature of subnucleonic fluctuations, which is
not yet modeled realistically in our framework.
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