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A core technology that has emerged from the artificial intelligence revolution is the recurrent neural network
(RNN). Its unique sequence-based architecture provides a tractable likelihood estimate with stable training
paradigms, a combination that has precipitated many spectacular advances in natural language processing and
neural machine translation. This architecture also makes a good candidate for a variational wave function,
where the RNN parameters are tuned to learn the approximate ground state of a quantum Hamiltonian. In
this paper, we demonstrate the ability of RNNs to represent several many-body wave functions, optimizing
the variational parameters using a stochastic approach. Among other attractive features of these variational wave
functions, their autoregressive nature allows for the efficient calculation of physical estimators by providing
independent samples. We demonstrate the effectiveness of RNN wave functions by calculating ground-state
energies, correlation functions, and entanglement entropies for several quantum spin models of interest to
condensed-matter physicists in one and two spatial dimensions.
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I. INTRODUCTION

The last decade has marked the start of a worldwide
artificial intelligence (AI) revolution, which is dramatically
affecting industry, science, and society. The source of the cur-
rent AI resurgence can largely be traced back to AlexNet [1],
one of the most influential breakthrough papers in computer
vision, which provided a dramatic quantitative improvement
in object recognition tasks and popularized the paradigm of
deep learning [2]. The concept of deep learning encompasses
a set of machine learning techniques where data are processed
through the composition of parametrized nonlinear layers,
each of which generates increasingly abstract representations
of the original data [2]. This paradigm has demonstrated an
unprecedented unifying power by making advances in areas as
diverse as image recognition [3], natural language processing
[4], drug discovery [5], self-driving cars [6], game play [7],
and more.

The striking performance of deep learning methods has
motivated researchers to use a machine learning perspective
to reexamine problems in the physical sciences, including
areas such as particle physics, cosmology, materials science,
quantum chemistry, and statistical physics [8]. The explo-
ration of machine learning techniques has been particularly
prominent in the field of quantum many-body physics, where
the task of elucidating the equilibrium and nonequilibrium
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properties of interacting many-particle systems remains at
the research frontier of quantum information and condensed-
matter physics. One of the first successful technology transfers
from machine learning into many-body physics involved the
use of neural network methods in a variational calculation
[9]. The variational principle is the theoretical bedrock behind
many of the most powerful numerical approaches to solving
many-body problems in quantum mechanics [10–12]. Modern
incarnations range from well-established techniques such as
variational Monte Carlo (VMC) [13] and tensor networks [14]
to variational quantum eigensolvers for quantum computation
[15]. The resurgence of interest in machine learning has
motivated a rich new playground for variational calculations
based on a neural network ansatz [9,16–19]. Simultaneous
to the computer vision revolution, a wide array of model
architectures and algorithmic advances have also emerged
in the context of natural language processing (NLP)—the
technology that enables computers to process and understand
human language. Some of the most important algorithmic
advances in NLP have been developed in the context of
sequence learning using recurrent neural networks (RNNs)
[20–24]. These have resulted in impressive results in speech
and text comprehension, as well as in state-of-the-art results in
neural machine translation. With RNNs and other algorithmic
and conceptual advances, algorithms are bringing machine
translation and speech recognition closer to the human level
with unprecedented success [23,25–27]. Here we explore
whether the power and scalability of NLP models such as
the RNN can be extended to applications in physical systems,
in particular to perform variational calculations to find the
low-energy states of quantum many-body Hamiltonians.

RNNs have already proven to be powerful tools within the
field of many-body physics. In Ref. [28], RNNs were applied
in the context of quantum state tomography and were found to
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be capable of representing a broad range of complex quantum
systems, including prototypical states in quantum information
and ground states of local spin models. Furthermore, RNNs
have established similarities to matrix product states (MPS)
and are capable of capturing entanglement properties of quan-
tum many-body systems [29]. To date, however, little effort
has been made to develop NLP technology for use together
with the variational principle. Here we investigate the power
of RNNs and their extensions for approximating the ground
state of strongly correlated local Hamiltonians. We demon-
strate how the variational principle can be combined with
RNNs to yield highly efficient ansatz wave functions. Our
proposal makes use of the autoregressive property [30–32]
of RNNs, which, unlike traditional VMC methods, allows for
sampling from the wave function. We variationally optimize
our RNNs to approximate ground states of various strongly
correlated quantum systems in one and two dimensions. We
find excellent agreement for local correlation functions and
entanglement entropy upon comparison with well-established
state-of-the-art approaches, while requiring only a fraction of
the variational parameters. Through extensive scaling stud-
ies, we show that the intrinsic bias of our ansatz can be
systematically reduced to yield highly accurate ground-state
approximations of large quantum systems.

II. CLASSICAL AND QUANTUM RECURRENT
NEURAL NETWORKS

A. RNNs for classical probability distributions

We consider probability distributions defined over a dis-
crete sample space, where a single configuration consists
of a list σ ≡ (σ1, σ2, . . . , σN ) of N variables σn, and σn ∈
{0, 1, . . . , dv − 1}. Here, the input dimension dv represents the
number of possible values that any given variable σn can take.
A central task in machine learning is to use a set of empirical
samples to infer probability distributions in cases where there
are strong correlations among the variables σn. We denote the
probability of a configuration σ by P(σ ) ≡ P(σ1, σ2, . . . , σN ),
and use the product rule for probabilities to express this
distribution as

P(σ ) = P(σ1)P(σ2|σ1) · · · P(σN |σN−1, . . . , σ2, σ1), (1)

where P(σi|σi−1, . . . , σ2, σ1) ≡ P(σi|σ<i ) is the conditional
distribution of σi given a configuration of all σ j with j < i.

Specifying every conditional probability P(σi|σ<i ) gives a
full characterization of any possible distribution P(σ ), but in
general such a representation grows exponentially with sys-
tem size N . Typically, real-world distributions are assumed to
endow enough structure on the problem to allow for accurate
approximate descriptions of P(σ ) that use far fewer resources
[33]. This assumption is also applicable in the context of
ground-state wave functions that arise in physical systems,
which we will discuss at length in this paper.

RNNs form a class of correlated probability distributions
of the form Eq. (1), where the P(σ ) are entirely specified
through the conditionals P(σi|σ<i ). The elementary building
block of an RNN is a recurrent cell, that has emerged in
different versions in the past [24]. In its simplest form, a
recurrent cell is a nonlinear function that maps the direct
sum (or concatenation) of an incoming hidden vector hn−1 of

dimension dh and an input vector σn−1 to an output hidden
vector hn of dimension dh such that

hn = f (W [hn−1; σn−1] + b), (2)

where f is a nonlinear activation function.
The parameters of this simple RNN (“vanilla” RNN) are

given by the weight matrix W ∈ Rdh×(dh+dv ), the bias vector
b ∈ Rdh , and the states h0 and σ0 that initialize the recursion.
In this paper, we fix h0 and σ0 to constant values. The vector
σn is a one-hot encoding of the input σn such that, e.g.,
σn = (1, 0), (0, 1) for σn = 0, 1 (respectively) when the input
dimension is 2. The computation of the full probability P(σ )
is carried out by sequentially computing the conditionals,
starting with P(σ1), as

P(σn|σn−1, . . . , σ1) = yn · σn,

where the right-hand side contains the usual scalar product
between vectors and

yn ≡ S(Uhn + c). (3)

Here, U ∈ Rdv×dh and c ∈ Rdv are weights and biases of a so-
called Softmax layer, and the Softmax activation function S is
given by

S(vn) = exp(vn)∑
i exp(vi )

.

In Eq. (3) yn = (y1
n, . . . , ydv

n ) is a dv-component vector of
positive, real numbers summing up to 1, i.e.,

‖yn‖1 = 1, (4)

and thus forms a probability distribution over the states σn.
Once the vectors yn have been specified, the full probability
P(σ ) is given by

P(σ ) =
N∏

n=1

yn · σn.

Note that P(σ ) is already properly normalized to unity such
that

‖P(σ )‖1 = 1. (5)

Sampling from an RNN probability distribution is achieved
in a similar sequential fashion. To generate a sample σ =
(σ1, . . . , σN ) consisting of a set of N configurations σn, one
first calculates the hidden state h1 and the probability y1
from the initial vectors h0 and σ0. A sample σ1 from the
probability distribution y1 is drawn, which is then fed as a
one-hot vector σ1 along with h1 back into the recurrent cell
to obtain y2, h2, and then σ2. The procedure is then iterated
until N configurations σn have been obtained as illustrated in
Fig. 1(c).

From Eqs. (2) and (3), it is evident that the hidden vector hn

encodes information about previous spin configurations σ<n.
For correlated probabilities, the history σ<n is relevant to the
prediction of the probabilities of the following σn. By passing
on hidden states in Eq. (3) between sites, the RNN is capable
of modeling strongly correlated distributions. Hereafter, we
shall call the dimension dh of the hidden state hn the number
of memory units. We emphasize that the weights W and U and
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FIG. 1. (a) Left-hand side: An RNN cell (green box) takes a
sequence of inputs {σn}, where at each step n the input σn−1 and
the vector hn−1 are fed in the RNN cell which generates a vector hn

called the hidden state of the RNN. hn is meant to encode the history
of the previous inputs σn′<n. Moreover, the hidden state hn is fed to
a fully connected layer with Softmax activation S (magenta circles)
to compute conditional probabilities. Right-hand side: The unrolled
version of the RNN layer on the left-hand side. (b) A deep RNN
model with Nl stacked single RNN cells (green blocks) followed
by a fully connected layer with activation function A (magenta
circle). Each single RNN cell at the �th layer has its corresponding
hidden state h�

n, which serves also as an input for the RNN cell at
the (� + 1)th layer. (c) A graphical representation of autoregressive
sampling of RNNs.

the biases b and c together comprise the variational parame-
ters of our ansatz wave function of the next section. These
parameters are typically shared among the different values
of n, giving rise to a highly compact parametrization of the
probability distribution. Once the dimension dh is specified,
the number of parameters in the ansatz is independent of the
system size N .

By construction, the model allows for an efficient estima-
tion of the normalized probability of a given configuration
σ. This construction is unlike energy-based models, which
require intractable calculations of the partition function, or
likelihood-free models such as generative adversarial net-
works that do not allow for an explicit estimation of prob-
abilities [33,34]. The sequential process of computing the
probability vectors yn is schematically depicted in Fig. 1(a).
Deep architectures can be obtained by stacking several RNN
cells as shown in Fig. 1(b) for a general activation function A
(not necessarily Softmax). As illustrated in Fig. 1(c), RNNs
have the autoregressive property, meaning that the condi-
tional probability P(σn|σ<n) depends only on configurations
σ1, . . . σn−1. We also note that the computational cost of
sampling a configuration σ1, . . . σN is linear in the length

N of the configuration. Another important property of the
normalized RNN probability distribution is that it can be used
to produce successive samples σ and σ′ that are independent.
Taking advantage of this property, the sampling procedure can
be parallelized.

In practice, training vanilla RNNs can be challenging, since
capturing long-distance correlations between the variables
σn tends to make the gradients either explode or vanish
[23,35–37]. Similar to MPS [38], long-distance correlations in
RNNs are suppressed exponentially [39] and extensions of the
vanilla RNN have been proposed [20,40] in order to improve
on this limitation. Two successful examples are the long short-
term memory (LSTM) unit [20] and the gated recurrent unit
(GRU) [40]. Unless stated otherwise, in this paper we use
the GRU [40] as the elementary cell in our (one-dimensional)
RNNs to study models in one and two spatial dimensions. The
details of the implementation can be found in Appendix A.

Furthermore, we explore the use of two-dimensional (2D)
vanilla RNNs [21], where information about the spatial lo-
cation of neighboring spins is exploited by the RNN ansatz.
The basic idea of 2D RNNs is to replace the single recurrent
connection in a standard RNN, as shown in Eq. (2), with
two recurrent connections that are passed to the neighboring
sites. Thus, at each point in the lattice the hidden layer of
the network receives both spin configuration inputs and the
hidden vectors from the neighboring sites, in a way that
respects the autoregressive property. We provide the details
of the implementation in Sec. III C and Appendix B.

B. RNN wave functions

The previous section focused exclusively on the efficient
parametrization of classical probability distributions P(σ ). In
contrast, quantum-mechanical wave functions are in general
a set of complex valued amplitudes ψ (σ), rather than con-
ventional probabilities. Before discussing how to modify the
RNN ansatz to represent complex wave functions, we note
that an important class of Stoquastic many-body Hamiltonians
has ground states |�〉 with real and positive amplitudes in the
standard product spin basis [41]. Thus, these ground states
have representations in terms of probability distributions:

|�〉 =
∑

σ

ψ (σ) |σ〉 =
∑

σ

√
P(σ ) |σ〉 . (6)

This property has been exploited extensively in wave function
representations using generative models such as restricted
Boltzmann machines [19]. For such wave functions, it is also
natural to try to approximate P(σ ) with a conventional RNN,
as illustrated in Fig. 2(a). For later reference we call this
architecture a positive recurrent neural network wave function
(pRNN wave function).

The generalization to the complex case starts by splitting
the wave function into an amplitude and phase φ(σ) [42] as

|�〉 =
∑

σ

exp[iφ(σ)]
√

P(σ ) |σ〉. (7)

As illustrated in Fig. 2(b), we use one RNN cell and a Softmax
layer to model the probability, together with a Softsign layer
(as defined below) to model the phase.
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FIG. 2. (a) pRNN wave function: A graphical representation of
the computation of positive amplitudes using one RNN cell along
with a Softmax layer (magenta circles) to compute the modulus
|ψ (σ )|2 = P(σ). (b) cRNN wave function: A graphical representa-
tion of the computation of complex amplitudes using one RNN cell
along with a Softmax layer (magenta circles) and a Softsign (SS)
layer (orange circles). The first computes the modulus |ψ (σ)|2 =
P(σ); the second computes the phase φ(σ) of ψ (σ).

In this parametrization, the first layer uses the Softmax activa-
tion function to get conditional probabilities Pn as

Pn = y(1)
n · σn, (8)

where

y(1)
n = S(U (1)hn + c(1) ), (9)

in a similar fashion to Eq. (3). The Softsign layer is used to
compute the phases as

φn = y(2)
n · σn, (10)

where

y(2)
n = π Softsign(U (2)hn + c(2) ). (11)

The Softsign function is defined as

Softsign(x) = x

1 + |x| ∈ (−1, 1).

Finally, the probability P(σ ) is obtained from the N individual
contributions Pn as

P(σ ) ≡ �N
n=1Pn, (12)

and, similarly, the phase φ(σ) is computed as

φ(σ) ≡
N∑

n=1

φn. (13)

Note that sampling from the square of the amplitudes P(σ )
is unaffected by the Softsign layer and is carried out, as de-
scribed above, using only the Softmax layer as in Fig. 1(c). For
later reference, we call this architecture a complex recurrent
neural network wave function (cRNN wave function), and,
hereafter, the term RNN wave function will refer to both
pRNN wave functions and cRNN wave functions. Details
about the dimensions of the variational parameters of RNN
wave functions can be found in Appendix A.

III. GROUND STATES WITH RNN WAVE FUNCTIONS

We focus our attention on the ground-state properties of
prototypical Hamiltonians in condensed-matter physics in-
cluding the one-dimensional (1D) and 2D transverse field
Ising model (TFIM), as well as the 1D J1-J2 model, both with
open boundary conditions. Their Hamiltonians are given by

ĤTFIM = −
∑
〈i, j〉

σ̂ z
i σ̂ z

j − h
∑

i

σ̂ x
i , (14)

where σ̂
(x,y,z)
i are Pauli matrices acting on site i, and

ĤJ1−J2 = J1

∑
〈i, j〉

Ŝi · Ŝ j + J2

∑
〈〈i, j〉〉

Ŝi · Ŝ j, (15)

where Ŝi is a spin-1/2 operator. Here, 〈i, j〉 and 〈〈i, j〉〉
denote nearest- and next-nearest-neighbor pairs, respectively.
Energies for the J1-J2 model are measured in units of J1 = 1
in the results that follow.

To train our models we use the variational principle,
where for a given problem Hamiltonian Ĥ , the optimiza-
tion strategy involves minimizing the expectation value Eλ =
〈�λ|Ĥ |�λ〉 � E0 with respect to the variational parameters
λ. Here, E0 is the exact ground-state energy of Ĥ . The
variational parameters λ are updated using variants of the
gradient descent algorithm with the objective of minimizing
Eλ = 〈�λ|Ĥ |�λ〉. We provide a detailed description of the
VMC scheme and the optimization strategy with which we
optimize our RNN wave functions in Appendix C.

Since the TFIM in Eq. (14) is Stoquastic, the ground state
is positive [41] and hence we use the pRNN wave function
ansatz. The J1-J2 model with positive couplings, on the other
hand, has a ground state endowed with a sign structure in the
computational z basis, and thus we use a cRNN wave function
ansatz.

In the following sections, we use 1D RNN wave functions
to approximate the ground-state problem of the 1D TFIM and
the 1D J1-J2 model, whereas we use both 1D and 2D pRNN
wave functions in the case of the 2D TFIM.

A. 1D transverse field Ising model

To demonstrate the power of our proposed method, we use
it to target the ground state of a TFIM in one dimension with
N = 1000 spins at the critical point h = 1 using a pRNN wave
function that has a single-layer RNN with 50 memory units.
In Fig. 3(a), we show the evolution of the relative error,

ε ≡ |ERNN − EDMRG|
|EDMRG| , (16)

and the energy variance per spin,

σ 2 ≡ 〈Ĥ2〉 − 〈Ĥ〉2

N
, (17)

as a function of the training step. EDMRG is the ground-state
energy as obtained from a density-matrix renormalization-
group (DMRG) calculation [43,44], and can be considered
exact in one dimension. We obtain very accurate results with
a modest number of parameters (≈8000, see Appendix A).
For comparison, the number of parameters of a restricted
Boltzmann machine (RBM) [9] with one layer scales as MN
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FIG. 3. Results for the pRNN wave function compared with
DMRG when targeting the ground state of a 1D TFIM at the critical
point. Our pRNN wave function has one layer with 50 units. (a) The
relative error ε and the energy variance per spin σ 2 against the num-
ber of training steps (i.e., gradient descent steps) for N = 1000 spins.
We use only 200 samples per gradient step, which are enough to
achieve convergence. (b) The two-point correlation function 〈Ŝ40Ŝn〉
along the x axis and z axis of the optimized pRNN wave function
for sites n > 40 using 106 samples. DMRG results are also shown
for comparison. (c) The Rényi entropy S2 against the relative size of
subregion A for system sizes N = 20 and 80. In both (b) and (c), the
error bars are smaller than the data points.

with M the number of hidden units and N the number of
physical spins. This scaling implies that the pRNN wave
function here has the same number of variational parameters
as an RBM with only eight hidden units.

While energies and variances give a quantitative indication
of the quality of a variational wave function, correlation

functions provide a more comprehensive characterization.
Indeed, correlation functions are at the heart of condensed-
matter theory since many experimental probes in condensed-
matter physics directly relate to measurements of correlation
functions. Examples include inelastic scattering, which probes
density-density correlation functions, and the Green’s func-
tion, out of which important thermodynamic properties of a
quantum system can be computed [45]. In Fig. 3(b) we com-
pare the RNN results for the two-point correlation functions
〈Ŝx

nŜx
m〉 and 〈Ŝz

nŜz
m〉 with DMRG. Here, we see consistency

between the RNN and the DMRG results.
Extracting entanglement entropy from many-body quan-

tum systems is a central theme in condensed-matter physics,
with entanglement entropy providing an additional window
into the structure of complex quantum states of matter beyond
what is seen from correlation functions. Of particular interest
is the family of Rényi entropies of order α of a reduced density
matrix ρ:

Sα (ρ) = 1

1 − α
log(Trρα ). (18)

Sα (ρ) encodes important nonlocal properties of quantum
many-body systems such as topological entanglement, and
contains information about universal properties of quantum
phases such as the central charge c [46,47]. Due to their
nonlocal character, extracting Rényi entropies from many-
body quantum systems is notoriously difficult. Here, we use
the so-called replica trick [48] to calculate the α = 2 Rényi
entropy S2(ρ) for RNN wave functions. The details of the
implementation can be found in Appendix E. In Fig. 3(c), we
show results for the Rényi entropy S2(ρ�) for two different
system sizes N = 20, 80 of the 1D TFIM. ρ� here is the
reduced density matrix on the first � sites of the spin chain,
obtained by tracing out all sites n ∈ [� + 1, L] such that

ρ� = Trn∈[�+1,L](|�〉 〈�|). (19)

Indeed, for both system sizes, Fig. 3(c) shows excellent agree-
ment between the pRNN wave function estimation and the
DMRG result. To improve the overall quality of the quantum
state, we have enforced the parity symmetry on our pRNN
wave function (see Appendix D 1), denoted by “Symmetric
RNN” in Fig. 3(c). We observe that the symmetric pRNN
wave function leads to a more accurate estimate of S2(ρ�) for
N = 80 sites.

B. 1D J1-J2 model

Moving beyond Stoquastic Hamiltonians, we now inves-
tigate the performance of RNN wave functions for a Hamil-
tonian the ground state of which has a sign structure in
the computational basis, specifically the J1-J2 model in one
dimension.

We use a variationally optimized deep cRNN wave func-
tion with three GRU layers, each with 100 memory units,
to approximate the ground state of the J1-J2 model. The
phase diagram of this model has been studied with DMRG
[49], where it was found that the model exhibits a quantum
phase transition at Jc

2 = 0.241 167 ± 0.000 005 [50,51] from
a critical Luttinger liquid phase for J2 � Jc

2 to a spontaneously
dimerized gapped valence bond state phase for J2 � Jc

2 .
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FIG. 4. The relative error (compared to DMRG) of the cRNN
wave function trained on the 1D J1-J2 model with N = 100 spins
for different values J2, both without a prior sign (represented by “No
Sign”) and with a prior Marshall sign as in Eq. (20) (represented by
“Marshall Sign”). We observe that applying a Marshall sign improves
the accuracy.

We impose U (1) spin symmetry in the cRNN wave func-
tion (see Appendix D2), and target the ground state at four
different points J2 = 0.0, 0.2, 0.5, 0.8. Note that at J2 = 0 the
Hamiltonian Eq. (15) can be made Stoquastic by a local uni-
tary transformation that rotates every other spin by π around
the z axis. The ground state can in this case be decomposed as
[52]

ψ (σ) = (−1)MA(σ)ψ̃ (σ), (20)

where MA(σ) is given by MA(σ) = ∑
i∈A σi with σi ∈ {0, 1}

[52] and ψ̃ (σ) is the positive amplitude of the wave function.
The set A comprises the sites belonging to the sublattice
of all even (or all odd) sites in the lattice. The prefactor
(−1)MA(σ) is known as the Marshall sign of the wave function
[52]. For J2 	= 0, this decomposition is no longer exact, and
ψ̃ (σ) acquires a nontrivial sign structure. For finite J2 the
decomposition in Eq. (20) can still be applied with the hope
that the sign structure of ψ (σ) remains close to the Marshall
sign [53].

In Fig. 4, we compare ground-state energies of the cRNN
wave function trained on the 1D J1-J2 model with N = 100
spins with and without applying a Marshall sign. For small
values of J2, we find a considerable improvement of the
energies when applying the Marshall sign on top of the cRNN
wave function. This observation highlights the importance of
considering a prior “sign ansatz” to achieve better results.
In the absence of a prior sign, the cRNN wave function can
still achieve accurate estimations of the ground-state energies,
showing that cRNN wave functions can recover some of
the unknown sign structure of the ground state. For J2 =
0.8, however, the improvement is less pronounced, which is
expected due to the emergence of a second sign structure
in the limit J2 → ∞ (when the system decouples into two
independent unfrustrated Heisenberg chains) [54,55], that is
widely different from the Marshall sign in Eq. (20). We omit
from Fig. 4 our results at the point J2 = 0.5. In this case,
the 1D J1-J2 model reduces to the Majumdar-Ghosh model,
where the ground state is a product state of spin singlets, and

we find agreement with the exact ground-state energy within
error bars when we apply an initial Marshall sign structure.
We provide a summary of the cRNN wave function’s obtained
values in Appendix F.

C. 2D transverse field Ising model

Understanding strongly correlated quantum many-body
systems in D > 1 spatial dimensions is one of the cen-
tral problems in condensed-matter physics. During the last
decade, numerical approaches such as tensor networks
[57–59], quantum Monte Carlo [13,60], and neural networks
[9] have moved to the forefront of research in this area.
Despite tremendous progress, however, solving correlated
quantum many-body systems even in two dimensions remains
a challenging problem. We now turn our attention to the
application of our RNN wave function approach to the 2D
quantum Ising model shown in Eq. (14) on a square lattice,
a paradigmatic example of a strongly correlated quantum
many-body system. This model has a quantum phase transi-
tion at a critical magnetic field hc ≈ 3.044 that separates a
magnetically ordered phase from a random paramagnet [61].

The simplest strategy for extending our approach to 2D
geometries is to simply treat them as folded 1D chains, similar
to the “snaking” approach used in 2D DMRG calculations
[see Fig. 5(a)]. While this approach works quite well, it has
the fundamental drawback that neighboring sites on the lattice
can become separated in the 1D geometry. As a consequence,
local correlations in the 2D lattice are mapped into nonlocal
correlations in the 1D geometry, which can increase the com-
plexity of the problem considerably. For example, 2D DMRG
calculations are typically restricted to 2D lattices with small
width Ly. This problem has led to the development of more
powerful tensor network algorithms for 2D quantum systems
such as projected entangled pair states (PEPS) [57].

An advantage of RNN wave functions is their flexibility
in how hidden vectors are passed between units. To obtain
an RNN wave function more suited to a 2D geometry, we
modify the simple 1D approach outlined above by allowing
hidden vectors to also be passed vertically, instead of only
horizontally, as described in Appendix B. This modification
is illustrated by the red arrows in Fig. 5(b). We refer to
this geometry in the following discussions as a 2D RNN.
We optimize the 2D pRNN wave function with a single-
layer 2D vanilla RNN cell that has 100 memory units (i.e.,
with ≈21 000 variational parameters) to approximate the
ground state of the 2D quantum Ising model at h = 2, 3, 4.
The training complexity of the 2D pRNN wave function
is only quadratic in the number of memory units dh (see
Appendix B), which is very inexpensive compared to, e.g.,
the expensive variational optimization of PEPS, which scales
as χ2D̃6 (where D̃ is the PEPS bond dimension and χ is the
bond dimension of the intermediate MPS) [62].

For comparison, we also optimize a deep 1D pRNN wave
function architecture with three layers of stacked GRU cells,
each with 100 memory units (i.e., with ≈152 000 variational
parameters) for the same values of the magnetic field h.
In Fig. 5(c) we compare the obtained ground-state energies
with results from 2D DMRG calculations (run on the same
1D geometry as for the 1D pRNN wave function) and the
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FIG. 5. (a) Autoregressive sampling path of 2D spin configurations using 1D RNN wave functions. The 2D configurations are generated
through raster scanning, such that in order to generate spin σi one has to condition on the spins that are previously generated. (b) Autoregressive
sampling path of 2D spin configurations using 2D RNN wave functions through a zigzag path, where each site receives two hidden states and
two spins from the horizontal and the vertical neighbors that were previously generated. For both panels (a) and (b), the digits and the green
dashed arrows indicate the sampling path, while the red arrows indicate how the hidden states are passed from one site to another. (c) A
comparison of the variational energy per spin between a 2D pRNN wave function (labeled as 2DRNN), 1D pRNN wave function (labeled as
1DRNN), PixelCNN wave function [56], and DMRG with bond dimension χ for the 2D TFIM on a system with Lx × Ly = 12 × 12 spins.
The shaded regions represent the error bars of each method. Note the broken y axis on the plots for h = 3 and 4, denoting a change in scale
between the upper and lower portions of the plots. These results show that 2D pRNN wave functions can achieve a performance comparable
to PixelCNN wave functions and DMRG with a large bond dimension, while requiring only a fraction of their variational parameters.

PixelCNN architecture [63] (with ≈800 000 variational
parameters and results are taken from Ref. [56]). For the
magnetic fields shown above and for large bond dimensions,
we obtain excellent agreement between all four methods.
This agreement is particularly remarkable given that the 2D
pRNN wave function uses only about 0.03% of the variational
parameters of the DMRG calculation with bond dimension
χ = 512, about 2.6% of the variational parameters of the
PixelCNN wave function used in Ref. [56], and about 14% of
the parameters used in the 1D pRNN architecture. A summary
of our results in tabular form can be found in Appendix F.

D. Scaling of resources

The optimization results of our RNN wave function
approach depend on several hyperparameters, including the
number of memory units, the number of recurrent layers
in deep architectures, and the number of samples used
to obtain the gradient during an optimization step (see

Appendix C). Here, we investigate how the optimized energy
and the energy variance per spin σ 2 [see Eq. (17)] depend
on these parameters. This energy variance per spin is an
indicator of the quality of the optimized wave function, with
exact eigenstates corresponding to σ 2 = 0. When targeting
eigenstates, deviations from this value can be used to assess
the quality of a variational wave function [13,64,65], as
previously done in the case of matrix product state based
techniques [66,67]. For variational approaches such as
DMRG, one typically expects a nonzero value of σ 2 that
decreases when one increases the number of parameters
(i.e., the expressivity) of the variational wave function. Since
the number of variational parameters is directly related to
the number of memory units of the pRNN wave function
(see Appendix A), we study here the scaling of σ 2 with the
number of memory units.

In Fig. 6, we present the dependence of σ 2 on the number
of memory units for the 1D and 2D critical TFIMs. Fig. 6(a)
shows results for σ 2 for a 1D critical TFIM on three system
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FIG. 6. The energy variance per spin against the number of
memory units of a 1D pRNN wave function trained at the critical
point of (a) the 1D TFIM and (b) the 2D TFIM. Both scalings show
that we can systematically reduce the bias in the estimation of the
ground-state energy.

sizes N = 20, 40, and 80, and Fig. 6(b) shows results for the
2D TFIM on 4 × 4, 5 × 5 and 6 × 6 square lattices. In all
cases, we used a single-layer 1D pRNN wave function and
500 samples during optimization to compute estimates of the
gradients. For each N we observe a systematic decrease of
σ 2 (i.e., an increase in quality of the wave function) as we
increase the number of memory units.

In Appendix G, we study the dependence of σ 2 on both
the number of samples and the number of layers in the pRNN
wave function for a critical 1D TFIM. We observe only a weak
dependence on both parameters. The weak dependence on the
number of samples suggests that optimizing the RNN wave
functions with noisy gradients does not significantly impact
the results of the optimization procedure, and yields accurate
estimations of the ground state and its energy. From the
weak dependence on the number of layers we conclude that
shallow RNNs with a sufficient number of memory units have
enough expressivity and that deep architectures do not seem
to be beneficial from an accuracy point of view. However,
deeper networks could have potential ramifications regarding
memory usage and training speed when it comes to training a
large number of variational parameters, as shallow RNNs with

a large number of memory units are equivalent in terms of
number of parameters to deep RNNs with a smaller number of
memory units. We also note that adding residual connections
between layers [68] and dilated connections between RNN
cells [69] to deep RNNs, which we leave for future investiga-
tions, might change our previous conclusions and make deep
RNNs more beneficial compared to shallow RNNs.

IV. CONCLUSIONS AND OUTLOOK

We have introduced recurrent neural network wave func-
tions, a variational ansatz for quantum many-body systems,
which we use to approximate ground-state energies, correla-
tion functions, and entanglement of many-body Hamiltonians
of interest to condensed-matter physics. We find that RNN
wave functions are competitive with state-of-the-art methods
such as DMRG and PixelCNN wave functions [56], per-
forming particularly well on the task of finding the ground
state of the transverse field Ising model in two dimensions.
By increasing the number of memory of units in the RNN,
the error in our results can be systematically reduced. We
have shown furthermore that we can accurately model ground
states endowed with a sign structure using a complex recurrent
neural network (cRNN) wave function ansatz. Here, accuracy
can be improved by introducing an ansatz sign structure and
by enforcing symmetries such as U (1) symmetry. The autore-
gressive nature of RNN wave functions makes it possible to
directly generate independent samples, in contrast to methods
based on Markov chain sampling, which are often plagued by
long autocorrelation times that affect the optimization and the
accurate estimation of correlation functions in a variational
ansatz. Thanks to weight sharing among lattice sites, RNN
wave functions provide very compact yet expressive represen-
tations of quantum states, while retaining the ability to easily
train with millions of variational parameters, as opposed to,
e.g., restricted Boltzmann machines [9]. We expect that future
work incorporating additional numerical techniques such as
attention [25,70] and higher-order optimization [13,71] will
make RNN wave functions a highly competitive tool for
simulating quantum many-body systems, with applications to
material science, quantum chemistry [72], quantum computa-
tion [73], and beyond.

Our code is made publicly available in Ref. [74]. The
hyperparameters we use are given in Appendix H.

Note added. Recently, a paper on recurrent neural network
wave functions [75] appeared after the publication of this
manuscript.
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APPENDIX A: GATED RECURRENT NEURAL
NETWORKS

We use the GRU model introduced in Ref. [40], which
processes the spin configurations σ as

un = sig(Wu[hn−1; σn−1] + bu),

rn = sig(Wr[hn−1; σn−1] + br ),
(A1)

h̃n = tanh(Wc[rn � hn−1; σn−1] + bc),

hn = (1 − un) � hn−1 + un � h̃n,

where sig and tanh represent the sigmoid and hyperbolic
tangent activation functions, respectively. Thus, the hidden
vector hn is updated through an interpolation between the
previous hidden state hn−1 and a candidate hidden state h̃n.
The update gate un decides to what extent the contents of the
hidden state are modified, and depends on how relevant the
input σn−1 is to the prediction (Softmax layer). The symbol
� denotes the pointwise (Hadamard) product. The reset gate
modeled by the vector rn is such that if the ith component rn

is close to zero it cancels out the ith component of the hidden
vector state hn−1, effectively making the GRU “forget” part of
the sequence that has already been encoded in the state vector
hn−1.

The weights matrices Wu,r,c and the bias vectors bu,r,c

parametrize the GRU and are optimized using energy mini-
mization as described in Appendix C. The GRU transforma-
tions in Eq. (A1) are depicted graphically in Fig. 7.

To take advantage of the GPU speed up, we use instead the
cuDNN variant of GRUs implemented in TENSORFLOW [76],
with

un = sig(Wu[hn−1; σn−1] + bu),

rn = sig(Wr[hn−1; σn−1] + br ),

h′
n = W (1)

c hn−1 + b(1)
c , (A2)

h̃n = tanh
(
W (2)

c σn−1 + rn � h′
n + b(2)

c

)
,

hn = (1 − un) � hn−1 + un � h̃n,

which differs slightly from the above implementation of tra-
ditional GRU cells [77].

FIG. 7. Graphical representation of the gated recurrent unit cell
described in Eq. (A1). The magenta circles/ellipses represent point-
wise operations such as vector addition or multiplication. The blue
rectangles represent neural network layers labeled by the nonlinear-
ity we use. Merging lines denote vector concatenation and forking
lines denote a copy operation. The sigmoid activation function is
represented by σ .

Provided that the dimensions of the hidden state hn−1

and input σn−1 are dh and dv , respectively, then the di-
mensions of the variational parameters of a GRU as in
Eq. (A2) are (1) dim(Wu,r ) = dh × (dh + dv ), (2) dim(bu,r ) =
dh, (3) dim(W (1)

c ) = dh × dh, (4) dim(W (2)
c ) = dh × dv , and

(5) dim(b(1,2)
c ) = dh. The new hidden state hn is fed into a

Softmax layer to infer conditional probabilities, such that

y(1)
n = Softmax(U (1)hn + c(1) ),

and also into a Softsign layer to infer the phases as

y(2)
n = π Softsign(U (2)hn + c(2) ).

We require the outputs y(1,2)
n to have dimension dv , so that

each element of y(1)
n represents the conditional probability of

sampling a value for the next spin σn ∈ {0, 1, . . . , dv − 1},
and that each element of y(2)

n corresponds to the phase of the
chosen spin σn. Thus, the dimensions of the parameters in-
troduced in the Softmax/Softsign layer are (1) dim(U (1,2)) =
dv × dh and (2) dim(c(1,2)) = dv . The same reasoning can be
also applied to determine the dimensions of the variational
parameters of 2D vanilla RNNs presented in Appendix B.

APPENDIX B: TWO-DIMENSIONAL RECURRENT
NEURAL NETWORK WAVE FUNCTIONS

Standard RNN architectures are inherently one dimen-
sional. However, most interesting quantum many-body sys-
tems live in higher dimensions. By taking inspiration from
Refs. [21,78], we generalize one-dimensional RNNs to multi-
dimensional RNN wave functions. In particular, we generalize
to 2D vanilla RNNs that are more suitable to simulating
two-dimensional square lattices than one-dimensional RNNs,
which map two-dimensional lattice configurations to one-
dimensional configurations and do not necessarily encode
spatial information about neighboring sites in a plausible
manner.

The main idea behind the implementation of 2D RNNs [21]
is to replace the single hidden state that is passed from one site
to another by two hidden states, with each one corresponding
to the state of a neighboring site (vertical and horizontal) and
hence respecting the 2D geometry of the problem. To do so,
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we change the one-dimensional recursion relation in Eq. (2)
to the two-dimensional recursion relation

hi, j = f(W (h)[hi−1, j ; σ i−1, j] + W (v)[hi, j−1; σ i, j−1] + b),
(B1)

where hi, j is the hidden state at site (i, j), W (v,h) are weight
matrices, and b is a bias. Here f is a nonlinear activation
function chosen to be equal to the exponential linear unit
(ELU) defined as

ELU(x) =
{

x, if x � 0,

exp(x) − 1, if x < 0.

The cost of computing a new hidden state hi, j is quadratic
in the size of the hidden state (number of memory units dh),
and the cost of computing the gradients with respect to the
variational parameters of the 2D RNN remains unchanged.
This property allows us to train 2D RNNs with a relatively
large dh.

To initialize the 2D RNN, we choose hi,0, σ i,0 and h0, j, σ0, j

to be null vectors. Once hi, j is computed, we apply the same
scheme as in Sec. II B to sample a spin σi, j . The scheme
for computing positive or complex amplitudes from Sec. II B
remains the same.

We note that generalization to higher dimensions, to other
lattices, as well as to other types of RNN architectures can
be done by taking inspiration from this scheme. For instance,
using LSTMs [20], GRUs [40], or transformers [25] instead of
vanilla RNNs in two dimensions is expected to make a signif-
icant improvement. We also expect that using multiplicative
interactions [79] might increase the expressiveness of 2D
RNNs as compared to the additive interactions in Eq. (B1).

APPENDIX C: VARIATIONAL MONTE CARLO AND
VARIANCE REDUCTION

The main goal of Variational Monte Carlo (VMC) is to
iteratively optimize an ansatz wave function to approximate,
e.g., ground states of local Hamiltonians. VMC starts from a
suitable trial wave function |�λ〉 that incorporates the vari-
ational degrees of freedom of the approach. |�λ〉 could be,
for example, an MPS wave function [80], in which case the
free parameters are the MPS matrices. Crucially, the ansatz
|�λ〉 has to allow for efficient sampling from the square of
the amplitudes of |�λ〉. In this paper, we choose RNN wave
functions, described in Sec. II B, to parametrize the trial wave
function |�λ〉 for a VMC optimization of ground states.

The aim of the VMC optimization is to minimize the
expectation value of the energy

E ≡ 〈�λ|Ĥ |�λ〉
〈�λ|�λ〉 (C1)

when given a family of states |�λ〉. This minimization is
carried out using the gradient descent method or any of its
variants. Since the RNN wave function is normalized such
that 〈�λ|�λ〉 = 1, the expectation value in Eq. (C1) can be

written as

E = 〈�λ|H |�λ〉 =
∑

σ

|ψλ(σ)|2
∑
σ′

Hσσ′
ψλ(σ′)
ψλ(σ)

≡
∑

σ

|ψλ(σ)|2Eloc(σ)

≈ 1

NS

∑
σ∼|ψλ(σ)|2

Eloc(σ), (C2)

which represents a sample average of the local energy Eloc(σ).
Denoting λi to be the real variational parameters of |�λ〉, the
gradients ∂λi E can be similarly written as

∂λi E =
∑

σ

|ψλ(σ)|2 ∂λiψ
∗
λ (σ)

ψ∗
λ (σ)

Eloc(σ) + c.c. (C3)

An optimization step consists of drawing NS samples
{σ (1), σ (2), . . . , σ (NS )} from |ψλ(σ)|2 autoregressively using
the RNN wave function, and then computing ∂λi E from
Eq. (C3) as

∂λi E ≈ 2

NS
Re

(
NS∑
i=1

∂λiψ
∗
λ (σ (i))

ψ∗
λ (σ (i))

Eloc(σ (i))

)
, (C4)

using automatic differentiation [81] and updating the parame-
ters (if using gradient descent) according to

λi ← λi − α∂λi E (C5)

with a small learning rate α. Instead of this simple gradient
descent rule, we use the ADAM optimizer [82] to implement
the gradient updates. We found that the latter gives better
results compared to the simple gradient descent optimization
shown in Eq. (C5) and without having to carefully tune the
learning rate α.

We note that the stochastic evaluation of the gradients in
Eq. (C4) tends to carry noise that increases their variances
[83,84]. Such high variances tend to slow down the conver-
gence to the ground-state energy. We propose to cure this
limitation by introducing a new term in Eq. (C4) that helps
reduce the variance of the gradients by approximating

∂λi E ≈ 2

NS
Re

{
NS∑
i=1

∂λiψ
∗
λ (σ (i))

ψ∗
λ (σ (i))

[Eloc(σ (i)) − E ]

}

= 2

NS
Re

{
NS∑
i=1

∂λi log ψ∗
λ (σ (i))[Eloc(σ (i)) − E ]

}
, (C6)

and we show below that this approximation does not introduce
a bias. This new term is useful for reducing the uncertainty in
the gradient estimation, as in the limit where Eloc(σ (i)) ≈ E
near convergence the variance of the gradients ∂λi E goes to
zero as opposed to the nonzero variance of the gradients
in Eq. (C4). As a consequence, a stable convergence to the
ground state is achieved as confirmed by our experiments.
This idea is similar in spirit to control variate methods in
Monte Carlo [83] and to baseline methods in reinforcement
learning [85].
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To show that the term we add in Eq. (C6) does not bias the
true gradients in Eq. (C3), it suffices to prove that

Re
{〈

∂λi log[ψ∗
λ (σ)]

〉
E

} = 0, (C7)

where 〈...〉 denotes the statistical average over the probability
distribution |ψλ|2. To prove this expression, we write ψλ(σ) =√

Pλ(σ) exp[iφλ(σ)], which implies that

log[ψ∗
λ (σ)] = 1

2 log [Pλ(σ)] − iφλ(σ),

and hence

Re
{〈

∂λi log[ψ∗
λ (σ)]

〉
E

}
= 1

2

〈
∂λi log[Pλ(σ)]

〉
Re(E ) + 〈

∂λiφλ(σ)
〉
Im(E ). (C8)

To show that 〈∂λi log [Pλ(σ)]〉 = 0 [85,86], we write〈
∂λi log[Pλ(σ)]

〉 =
∑

σ

Pλ(σ)∂λi log [Pλ(σ)]

=
∑

σ

Pλ(σ)
∂λi Pλ(σ)

Pλ(σ)

= ∂λi

∑
σ

Pλ(σ)

= ∂λi 1 = 0,

where the fact that the RNN wave function is normalized
justifies the transition from the third line to the fourth line.

From here, it suffices to show that 〈∂λiφλ(σ)〉Im(E ) =
0. Since the Hamiltonian Ĥ is Hermitian, the expectation
value E is real and hence Im(E ) = 0. We therefore arrive at
Eq. (C7).

APPENDIX D: IMPLEMENTING SYMMETRIES

1. Imposing discrete symmetries

Inspired by Refs. [32,56], we propose to implement dis-
crete symmetries in a similar fashion for RNN wave functions
without spoiling their autoregressive nature.

Assuming that a Hamiltonian Ĥ has a symmetry under
discrete transformations T , its ground state

|�G〉 =
∑

σ

ψG(σ) |σ〉

is an eigenvector of the symmetry transformation T . The
ground state transforms as ψG(T σ ) = ωT ψG(σ) where ωT
is an eigenvalue with module 1, that is independent of the
choice of σ. This expression implies that the transformation
T changes the ground state with only a global phase term that
does not affect the probability distribution, and changes the
sign structure with a global phase term. It is thus desirable
that the RNN wave function also has this symmetry.

To enforce a discrete symmetry {T } on an RNN wave
function |�λ〉, we propose the following scheme.

(1) Generate a sample σ autoregressively from the RNN
wave function.

(2) Sample with a probability 1/Card(G) a transformation
T from the symmetry transformation group G = {1, T1, ...}
that leaves the Hamiltonian Ĥ invariant, and apply the trans-
formation T to σ.

(3) Assign to the spin configuration σ̃ = T σ the amplitude
ψλ(σ̃) = √

Pλ(σ̃) exp[iφλ(σ̃)], such that

Pλ(σ̃) = 1

Card(G)

⎡
⎣∑

T̃ ∈G

Pλ(T̃ σ)

⎤
⎦,

φλ(σ̃) = Arg

⎧⎨
⎩ωT

∑
T̃ ∈G

exp[iφλ(T̃ σ )]

⎫⎬
⎭,

where Pλ(T̃ σ) is a probability generated by the Softmax layer
and φλ(T̃ σ ) is a phase generated by the Softsign layer, as
explained in Sec. II B.

If the ground state is positive [41], we use the same
algorithm but only symmetrize the probability Pλ, without
having to worry about symmetrizing the phase φλ.

For concreteness, we illustrate the algorithm above with
“symmetric RNNs” that have a built-in parity symmetry. We
use this architecture in Sec. III A to get a more accurate
estimate of the ground state of the 1D TFIM that also obeys
a parity symmetry. Indeed, symmetric RNNs show an im-
provement over ordinary pRNN wave functions on the task
of estimating the second Rényi entropy (see Appendix E).
Symmetric RNNs can be implemented using the following
procedure.

(1) Sample each configuration σ.
(2) Choose to apply or to not apply the parity transforma-

tion P̂ on σ with a probability 1/2.
(3) Assign to σ the probability:

P = [Pλ(σ) + Pλ(P̂σ)]

2
.

We also emphasize the possibility of carefully designing
RNN wave functions to impose discrete symmetries, without
using the symmetrization scheme above and which we leave
for future investigations.

2. Imposing zero magnetization

Since the ground state of the J1-J2 model has zero mag-
netization, i.e., a U (1) symmetry [52,87], it is helpful to
enforce this constraint on our RNN wave functions to get
accurate estimations of the ground-state energy. To do so,
we propose an efficient way to generate samples with zero
magnetization while maintaining the autoregressive property
of the RNN wave function. The procedure effectively applies
a projector PSz=0 to the original state, which restricts the
RNN wave function to the subspace of configurations with
zero magnetization. This procedure avoids generating a large
number of samples and discarding the ones that have nonzero
magnetization.

The condition of zero magnetization implies that the num-
ber of up spins should be equal to the number of down spins.
To satisfy this constraint, we utilize the following algorithm.

(1) Sample autoregressively the first half of the spin con-
figuration (σ1, σ2, ..., σN/2).

(2) At each step i > N/2, (i) generate the output of the
RNN wave function, yi = (ψdown

i , ψ
up
i ), where ψdown

i and ψ
up
i

are both nonzero and their modules squared sum to 1; and (ii)
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define the following amplitudes:

ai = ψdown
i × �

(
N

2
− Ndown(i)

)
,

bi = ψ
up
i × �

(
N

2
− Nup(i)

)
,

where

�(x) ≡
{

1, if x > 0 ,

0, if x � 0 ,

and

Ndown(i) = Card({ j /σ j = 0 and j < i}),

Nup(i) = Card({ j /σ j = 1 and j < i}).

In words, Nup(i)/Ndown(i) is the number of up/down spins
generated before step i.

(3) Sample σi from |ỹi|2, where

ỹi = 1√
a2

i + b2
i

(ai, bi ),

which is normalized, i.e., ||ỹi||2 = 1.
Using this algorithm, it is clear that the RNN wave function

generates a spin configuration that has the same number of up
spins and down spins, and hence a zero magnetization. In fact,
at each step i > N/2, the function � assigns a zero amplitude
for the next spin σi to be spin up if Nup(i) = N/2 or to be spin
down if Ndown(i) = N/2.

Interestingly enough, our scheme does not spoil the nor-
malization of the RNN wave function as the new conditional
probabilities |ỹi|2 are also normalized. We also note that this
algorithm preserves the autoregressive property of the original
RNN wave function and can also be parallelized. Moreover,
this scheme can be easily extended to the generation of
samples with a nonzero fixed magnetization, which is useful
when considering the problem of finding states that live in a
nonzero fixed magnetization sector.

APPENDIX E: RÉNYI ENTROPIES

Given a quantum system with a spatial bipartition (A, B),
one can write the RNN wave function |�λ〉 as

|�λ〉 =
∑
σA,σB

ψλ(σAσB) |σAσB〉,

where σA/B denotes the spin configuration that lives in the
partition A/B and σAσB stands for a concatenation of σA and
σB.

The α-Rényi entropy between region A and B is given by

Sα (A) = 1

1 − α
log

(
Trρα

A

)
, (E1)

where ρA = TrB |�λ〉 〈�λ| and α is an integer [48]. To esti-
mate these entropies, we use the so-called replica trick [48],
where we consider the action of the SwapA operator on the
two copies of the RNN wave function, which swaps the spins
in the region A between the two copies (as demonstrated

FIG. 8. The Swap operator acting on the tensor product of two
samples σ and σ ′.

in Fig. 8) such that

SwapA|�λ〉 ⊗ |�λ〉
=

∑
σ, σ̃

ψλ(σAσB)ψλ(σ̃Aσ̃B)|σ̃AσB〉 ⊗ |σAσ̃B〉. (E2)

The expectation value of SwapA in the double copy of the
RNN wave function “|�λ〉 ⊗ |�λ〉” is given by [42,48]

〈SwapA〉 =
∑
σ, σ̃

ψ∗
λ (σAσB)ψ∗

λ (σ̃Aσ̃B)ψλ(σ̃AσB)ψλ(σAσ̃B)

= Trρ2
A = exp[−S2(A)]. (E3)

Hence, by calculating the expectation of the value of the Swap
operator in the double copy of the RNN wave function, we
can access the second Rényi entropy. Interestingly, the Rényi
entropies Sα have been shown to encode similar properties
independently of α [46,48].

Although an exact evaluation of Eq. (E3) is numerically
intractable, we can use importance sampling to estimate
it [48] as

〈SwapA〉

=
∑
σ, σ̃

|ψλ(σAσB)|2|ψλ(σ̃Aσ̃B)|2 ψλ(σ̃AσB)ψλ(σAσ̃B)

ψλ(σAσB)ψλ(σ̃Aσ̃B)
,

≈ 1

Ns

Ns∑
i=1

ψλ

(
σ̃

(i)
A σ

(i)
B

)
ψλ

(
σ

(i)
A σ̃

(i)
B

)
ψλ

(
σ

(i)
A σ

(i)
B

)
ψλ

(
σ̃

(i)
A σ̃

(i)
B

) . (E4)

Using this trick, for the system sizes studied in this paper we
only have to generate two sets of exact samples {σ (i)}Ns

i=1 and
{σ̃ (i)}Ns

i=1 independently from |ψλ|2 without having to use the
improved ratio trick [48]. By defining

Swap(i)
A ≡ ψλ

(
σ̃

(i)
A σ

(i)
B

)
ψλ

(
σ

(i)
A σ̃

(i)
B

)
ψλ

(
σ

(i)
A σ

(i)
B

)
ψλ

(
σ̃

(i)
A σ̃

(i)
B

) ,

the statistical error on the estimation of the Rényi-2 entropy
can be calculated as

ε = 1

〈SwapA〉

√
var

({
Swap(i)

A

})
Ns

.

For the estimation of the Rényi-2 entropy for the 1D TFIM
in this paper, we use Ns = 2 × 106 samples from a trained
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TABLE I. Energy per spin values for the 1D J1-J2 model. We
consider a cRNN wave function with two different methods of train-
ing (with no initial sign structure and with a background Marshall
sign) and compare with results from DMRG. All results correspond
to 100 spins and have J1 = 1. We use three GRU layers, where
each layer has 100 units. Note that J2 = 0.5 corresponds to the
Majumdar-Ghosh model where the ground state is a product state of
spin singlets. For the estimation of the variational energies we use
4 × 106 samples.

E/N

J2 No sign Marshall sign DMRG

0.0 −0.4412480(2) −0.4412760(1) −0.4412773
0.2 −0.4073635(3) −0.4073871(3) −0.4073881
0.5 −0.3749958(6) −0.3750006(6) −0.3750000
0.8 −0.4205478(13) −0.4205695(12) −0.4207006

RNN wave function with one GRU layer and 50 memory
units.

During the completion of this paper, we became aware
of another way to estimate entanglement entropies using
autoregressive models with conditional sampling [88].

APPENDIX F: TABLES OF RESULTS

In Table I, we state the variational energies of the cRNN
wave function for the 1D J1-J2 model and compare with
results from DMRG. We examine two different methods of
training. First, we do not impose an initial sign structure
while, secondly, we introduce a background Marshall sign.
The results suggest that using a Marshall sign improves the
results significantly for J2 = 0.0, 0.2, and 0.5 (with J1 = 1
for all cases). We note that our cRNN wave function recovers
the sign structure of the ground state if we train it without an
initial Marshall sign.

In Table II, we compare the variational energies per site
of the 2D TFIM with a lattice size of 12 × 12 for different
values of the transverse magnetic field h, for a 1D pRNN

TABLE II. Variational energies per site for a 1D pRNN wave
function (three layers of GRUs with 100 memory units), 2D pRNN
wave function (a single layer of 2D vanilla RNN with 100 memory
units), PixelCNN wave functions with results taken from Ref. [56],
and DMRG (with bond dimension χ = 512 for h = 2 and χ = 1024
for both h = 3, 4). As a benchmark, we use the 2D TFIM with a
lattice size of 12 × 12 for different values of h where the critical
point is at h ≈ 3. Values in bold font correspond to the lowest
variational energies and hence to the most accurate estimations of the
ground-state energy across all four methods. For the estimation of the
variational energy of the trained 1D and 2D pRNN wave functions,
we use 2 × 106 samples.

E/N

h 1DRNN 2DRNN PixelCNN DMRG

2 −2.4 096 018(2) −2.40 960 262(9) −2.4 096 022(2) −2.40 960 263
3 −3.1 738 969(5) −3.1 739 018(2) −3.1 739 005(5) −3.1 738 9966
4 −4.1 217 969(3) −4.12 179 808(6) −4.1 217 979(2) −4.12 179 793

100 200 500 1000

Number of samples

10−4

10−5

10−6

σ
2

1D TFIM

N = 80

N = 40

N = 20

FIG. 9. The energy variance per spin against the number of
samples, which suggests that the energy variance saturates and does
not improve further by using a larger number of samples for training.

wave function, a 2D pRNN wave function, a PixelCNN wave
function [56], and DMRG.

APPENDIX G: SCALING OF RESOURCES (CONTINUED)

Figure 9 shows the dependence of σ 2 on the number
of samples used to estimate the gradients of the variational
energy (see Appendix C). We investigate this effect for the
case of the 1D TFIM, using 50 memory units in the pRNN
wave function. Even though a large number of samples yields
higher statistical accuracy of the gradient estimates used in
our optimizations, we observe only a weak dependence of σ 2

on the number of samples for all studied system sizes.
In Fig. 10 we present results for the dependence of σ 2 on

the depth of the pRNN wave function architecture for a critical
TFIM with N = 40 sites. We investigate architectures up to a
depth of four layers. The number of memory units is adapted
such that we have a similar number of variational parameters

1 2 3 4

Number of layers

10−5

10−6

σ
2

1D TFIM

N = 40

FIG. 10. Scaling study of the energy variance per spin vs the
number of layers of a pRNN wave function such that all pRNN wave
functions with different layers have approximately the same number
of variational parameters. The results show that fixing the number of
parameters while changing the number of layers does not affect the
energy variance obtained by the pRNN wave function.
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TABLE III. Hyperparameters used to obtain the results reported in this paper. Note that the number of samples stands for the batch size
used to train the RNN wave function. Multiple seeds are used for the scaling of resources study to provide error bars on our results.

Figures Hyperparameter Value

Fig. 3 Architecture One-layer 1D pRNN wave function with 50 memory units
Number of samples Ns = 1000 (N = 20), Ns = 500 (N = 80), Ns = 200 (N = 1000)
Training iterations 20 000

Learning rate 5 × 10−3

Seed 111

Fig. 4 Architecture Three-layer 1D cRNN wave function with 100 memory units
Number of samples 500
Training iterations 100 000

Learning rate (η−1 + 0.1t )−1 with η = 2.5 × 10−4

Seed 111

Fig. 5(c): 1DRNN Architecture Three-layer 1D pRNN wave function with 100 memory units
Number of samples 500
Training iterations 150 000

Learning rate (η−1 + 0.1t )−1 with η = 10−3

Seed 333

Fig. 5(c): 2DRNN Architecture One-layer 2D pRNN wave function with 100 memory units
Number of samples 500
Training iterations 150 000

Learning rate η(1 + t/5000)−1 with η = 5 × 10−3

Seed 111

Fig. 6(a) Architecture One-layer 1D pRNN wave function
Number of samples 500
Training iterations 10 000

Learning rate 10−3

Seeds 111,222,333,444,555

Fig. 6(b) Architecture One-layer 1D pRNN wave function
Number of samples 500
Training iterations 10 000

Learning rate (η−1 + 0.1t )−1 with η = 10−3

Seeds 111,222,333,444,555,666,777,888,999,1111

Fig. 9 Architecture One-layer 1D pRNN wave function with 50 memory units
Training iterations 10 000

Learning rate 10−3

Seeds 111,222,333,444,555

Fig. 10 Architecture 1D pRNN wave function
Number of samples 500
Training iterations 10 000

Learning rate 5 × 10−3

Seeds 111,222,333,444,555

(≈31 000) for each of the four architectures. We find that σ 2

depends only weakly on the number of layers.

APPENDIX H: HYPERPARAMETERS

In Table III, we present the hyperparameters used to train
the RNN wave functions in this paper. We anticipate that

further improvements such as the use of stochastic recon-
figuration [13] or a computationally cheaper variant such as
K-FAC [71] for the optimization could potentially lead to more
accurate estimations of the ground-state energies as compared
to the ADAM optimizer [82]. Seeds are listed in the table for
reproducibility purposes.
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