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Suppression of cavitation-induced nucleation in systems under isochoric confinement
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Stabilization of supercooled liquids presents a fundamental challenge with broad practical implications. Here,
we unify divergent aspects of bubble dynamics, thermodynamics, and nucleation theory to explore the influence
of confinement on cavitation-induced nucleation, a principal destabilization mechanism in supercooled systems.
We demonstrate that confinement can suppress cavity collapse even in remarkably large systems and reveal the
existence of critical volumes at which cavitation-induced nucleation becomes entirely kinetically prohibited,
suggesting confinement as a compelling route towards modulation of kinetic phase change processes.
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I. INTRODUCTION

Efforts to mediate the nucleation of solid phases in super-
cooled liquids are ubiquitous in fields ranging from materials
science [1] to food science [2], and nucleation suppression
has recently emerged as an essential route towards long-term
organ and tissue preservation [3–5]. Nucleation is difficult
to avoid in mobile or industrial contexts however [6], be-
cause acoustic agitations of any kind can cause the liquid
phase to cavitate, resulting in ultrarapid, high-pressure nucle-
ation events [7,8]. Here, we explore the effects of isochoric
(constant-volume) confinement on the cavitation dynamics
and nucleation kinetics of aqueous systems exposed to ul-
trasonication, one of most reliable sources of rapid nucle-
ation [9]. We unify bubble dynamics, thermodynamics, and
classical nucleation theory to demonstrate that confinement
across multiple volume scales can dramatically decrease peak
cavity collapse pressures and dampen cavitation-induced nu-
cleation under a wide range of operating conditions. Fur-
thermore, we demonstrate the existence of a critical con-
finement volume, on the order of 108 times larger than the
cavitating bubble itself, beneath which cavitation-induced nu-
cleation becomes entirely kinetically prohibited. Our results
reveal fundamental insights into the effects of confinement
on kinetic phase change processes, and suggest that confine-
ment could provide a compelling route towards high-stability
supercooling.

Mechanical and acoustic stimuli have long been known to
induce ice nucleation [10], and the works of Hickling [7,8]
clarified the mechanism to be the collapse of cavitating bub-
bles within the liquid. Collapse events occur over the span
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of nanoseconds, and can cause local pressure excursions on
the order of several gigapascals in the surrounding medium.
In low-thermal-diffusivity media such as water, this dynamic
compression is sufficiently rapid to be considered quasi-
isentropic [7], and will result in liquid water rapidly travers-
ing the equilibrium domains of several high-pressure ice
polymorphs. Ice VII clusters will form nigh instantaneously
during such dynamic compression processes [8,11,12], and
it is assumed that these short-lived clusters then serve as
ultrapotent nucleation sites for ice-1h upon return of the
water to its initial temperature and pressure [7], producing the
macroscopic result of rapid ice-1h formation associated with
sonic agitation of supercooled water [9].

Given the extreme consistency of cavitation-induced nu-
cleation, ultrasonicated systems (which aggressively cavitate)
provide an excellent platform for the study of nucleation sup-
pression. In our recent experimental work [13], we observed
that macroscopic volumes of supercooled water (∼100 mL)
confined in an isochoric container were resistant to nucleation
via ultrasonication as well as other mechanoacoustic stimuli,
suggesting the absence or dampening of cavitation-induced
nucleation processes. In the present work, we conduct a fun-
damental analysis of the effects of multiscale confinement on
cavitation-induced ice nucleation, and in the process uncover
fundamental limiting behaviors relevant to cavity collapse,
nucleation, and the broader spectrum of kinetic processes
under confinement.

II. CAVITATION DYNAMICS IN CONFINED SYSTEMS

In formulating this analysis, we must first acknowledge
that the nucleation phenomena of interest are mathematically
linked to cavitation via quasi-isentropic compression, the
magnitude of which is dependent upon the pressure excur-
sions encountered during cavity collapse. Thus, we begin by
analyzing the dependence of cavity collapse dynamics on
confinement.

We develop a modified spherical finite-domain Gilmore
model [14] to describe the collapse dynamics of a single
spherical air bubble of initial radius R0 within a confined
spherical body of water of radius Rc exposed to ultrasonic
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FIG. 1. Transient excitation of a gas bubble in 0 °C water under
an ultrasonic pressure field. (a) Acoustic pressure signal of frequency
40 kHz and amplitude 1.5 bar as a function of cycle period, ωt/2π .
(b) Time evolution of relative bubble radius, Rb/R0, for various
values of relative confinement radius, Rc/R0. Equilibrium bubble
radius, R0 = 2.09 μm. (c) Pressure of water at bubble interface.

stimulation. These dynamics are governed by an equation of
the form[
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which describes the motion of the liquid phase between the
boundary of the cavitating bubble and the confined container,
and reduces to the classical Gilmore equation in the limit of
infinite container volume. Here, r is the radial coordinate, u is
the radial velocity, p is the pressure, c is the speed of sound in
the liquid, ρ is the density of the liquid, K is the bulk modulus
of the liquid, and Rb is the transient bubble radius. The
material properties of water are evaluated at the initial bulk
temperature of the system, according to the multiparameter
equation of state maintained by the International Association
for the Properties of Water and Steam (IAPWS) [15]. A
detailed account of the full model and derivation is available
in Appendix A.

The resulting bubble growth and collapse dynamics are
depicted in Fig. 1 for varying confinement volumes. The
bubble initially grows as tension is applied by the pressure
field [shown in Fig. 1(a)], reaching a maximum size following
the point of minimum applied pressure. As the applied tension
is then released, a force imbalance at the interface of the
oversized bubble causes violent collapse [Fig. 1(b)], during
which the bubble radius may recoil to less than one tenth its
equilibrium size. Given that the pressure within the bubble
varies as Rb

−3γ (in which γ is the ratio of specific heats for

air), these collapse events result in brief periods (0.5–2 ns) of
extreme pressure, as shown in Fig. 1(c).

The degree to which the system is confined (i.e., the ratio
of the total confined system volume to the initial bubble
volume) significantly alters bubble dynamics, acutely reduc-
ing the maximum bubble size reached and the peak pressure
experienced during collapse [Figs. 1(b) and 1(c)]. Physically
speaking, this reduction is driven by the finite compressibility
of the confined liquid phase; as the bubble grows, the reduc-
tion of the volume occupied by water must be accompanied
by an increase in hydrostatic pressure, which retards further
growth of the bubble.

In Fig. 2, the according effects of confinement on peak
collapse pressure are demonstrated for varying system con-
ditions, across which three distinct behavior regimes emerge
[Fig. 2(a)]. At the limit of infinite system volume, which is
here approached at system volumes on the order of 1011 times
greater than the initial bubble volume, the bubble dynamics
are unaffected by the container. We term this volume scale the
isobaric limit, as the results become equivalent to a system
operating under unconfined isobaric conditions. It should be
noted that this limit may increase somewhat (e.g., the effects
of confinement may be felt at greater system volumes) as the
initial bubble size is decreased, due to a relative enhancement
of surface tension effects (See Appendix B for more detail).

As the degree of confinement increases (i.e., the container
volume decreases), the bubble dynamics enter a “transition
zone”, in which the bubble begins to feel the effect of con-
finement and the peak collapse pressures begin to decline. The
degree of confinement at which the transition zone is centered
is dominated by the compressibility of the liquid phase, while
the width of the transition zone is a weak function of the
interfacial surface tension of the liquid, the ratio of specific
heats of the gas, and the viscosity of the liquid. Neglecting
time-dependent effects, the position of the transition zone
can be probed by performing a simple force balance (derived
in Appendix B) at the bubble’s maximum size, yielding the
scaling relation:

K ln
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in which K is the bulk modulus of the liquid, σ is the surface
tension, pl,0 is the initial pressure (atmospheric), PA is a
driving pressure, γ is the ratio of specific heats of the air,
and R0, Rb,max, and Rc are the initial bubble radius, maximum
bubble radius, and confinement radius, respectively.

This scaling relation describes the approximate depen-
dence of the maximum bubble radius on confinement, which
serves as an effective first-order proxy for the peak collapse
pressure and allows for convenient approximation of the
order-of-magnitude confinement scales at which an arbitrary
liquid with bulk modulus K and surface tension σ will start to
see an arrest of cavitation dynamics. These scales are plotted
for varying bulk moduli and surface tensions in Appendix B,
and the location and width of the water transition zone
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FIG. 2. Peak collapse pressures experienced during cavitation in confined volumes. Curves are plotted for an excitation frequency of
40 kHz unless otherwise noted. (a) General dependence of maximum cavitation pressure on degree of system confinement. (b) Dependence
of maximum cavitation pressure on degree of system confinement for varying degrees of bulk supercooling. (c) Dependence of maximum
cavitation pressure on excitation frequency. (d) Dependence of maximum cavitation pressure on initial bubble radius at the isobaric limit of
system confinement.

predicted by this simple relation demonstrate order-of-
magnitude agreement with the full data presented in Fig. 2.

The third and final regime depicted in Fig. 2(a), encoun-
tered at system volumes approximately 107 times larger than
the initial bubble volume, demonstrates the existence of a
critical confinement under which bubble collapse becomes
entirely prohibited (as evidenced by the peak collapse pres-
sure reducing to zero). Resistance from the rigid container
prevents the bubble from reaching sufficient size to drive an
unstable collapse event, and it instead merely oscillates stably
in response to the applied pressure field [as in the bottommost
profile in Fig. 1(b)]. We term this volume range the isochoric
limit, and at confinement volumes in this regime, the system
will experience no significant excursions in pressure.

The three regimes identified in Fig. 2(a) remain consistent
as operational parameters are varied, though the discrete peak
pressures encountered may change significantly. In particular,
reduction of the bulk system temperature significantly damp-
ens collapse intensity [Fig. 2(b)], due principally to the large
increase in the viscosity of water at subzero centigrade tem-

peratures, and reduction of the excitation frequency [Fig. 2(c)]
increases collapse intensity, due to an increased tensioning
period in which the bubble is allowed to grow preceding
collapse. The dependence of peak collapse pressure on the
initial bubble size is also shown in Fig. 2(d), acknowledging
that in an experimental context, a bubble field will exist
with a distribution of cavitating bubble sizes. Throughout the
collapse analyses presented in this work, the initial bubble
radius that yields the highest collapse pressure for a given fre-
quency is employed, ensuring description of the most extreme
possible response.

III. TRANSIENT SUPERCOOLING DURING
CAVITY COLLAPSE

Using the results of Fig. 2, we are now empowered to
relate confinement to high-pressure transient ice nucleation by
evaluating the quasi-isentropic thermodynamic path taken by
the water surrounding the bubble during collapse. In Fig. 3(a),
compression isentropes for water evaluated from multiple
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FIG. 3. Transient high-pressure solidification processes for systems of varying bulk temperatures sonicated at 40 kHz. (a) Phase diagram
of water with isentropic compression curves for bulk system temperatures of 0, −5, −10, −15, −20 and −25 ◦C, color coded according
to the color bar at right. The water-ice liquidus line (solid black) shows the equilibrium boundary between the liquid water phase (above
the line) and the ice phases Ih, III, V, VI, and VII (below the line), as labeled along the bottom of the plot. Isentropic compression curves
(dashed lines) show the temperature-pressure thermodynamic path followed by water as it is isentropically compressed from varying initial
temperatures. As compression increases, the water traverses through the equilibrium regions of several different ice phases. Both the liquidus
line and the isentropic compression curves are calculated using the standard IAPWS multiparameter equations of state [15,16]. (b) Magnitude
of transient supercooling encountered during isentropic compression, e.g., the difference �Tsupercooling between the liquidus curve and a given
isentropic compression curve. Curves are truncated at the maximum pressure reached during cavity collapse for a given bulk temperature.
(c) The same maximum transient supercooling as a function of confinement volume, adapted according to the pressure-confinement volume
relations provided in Fig. 2. (d) Minimum ice VII induction time encountered during cavity collapse as a function of confinement volume, as
calculated using classical nucleation theory. The dashed line represents the critical induction time threshold, defined by the average duration
of a high-pressure collapse event (here 1 ns). Minimum ice VII induction times beneath this threshold will lead to formation of ice VII nuclei
during cavity collapse, while induction times above the threshold will not.

bulk system temperatures are plotted atop the H2O phase
diagram, allowing calculation of the temperature difference
�Tsupercooling between the compressed metastable liquid phase
and the relevant equilibrium phase of ice as a function of
pressure. This temperature difference is plotted in Fig. 3(b)
for various isentropes. As the water is compressed, it can pass
through the equilibrium regions of up to five high pressure
polymorphs of ice, with the most radical supercooling invari-
ably occurring in the ice VII region.

By now combining the confinement-pressure results of
Fig. 2(b) with the pressure-supercooling results of Fig. 3(b),
the maximum transient supercooling encountered at a given
confinement volume can be calculated [Fig. 3(c)], and the

same confinement limits seen in the collapse pressure can be
observed. At the isochoric limit, the maximum supercooling
encountered in the system will simply be defined by the
bulk system temperature, as no cavitation will occur. At the
isobaric limit, significant cavity collapse pressures will drive
�Tsupercooling into the range of hundreds of degrees, principally
in the ice VII region of the phase diagram.

Reduction of the maximum transient supercooling can be
observed at remarkably large confinement volumes, on the
order of 109 times larger than the bubble itself, and increases
acutely over the volume range corresponding to the transition
zone. Across confinement volumes, the maximum supercool-
ing encountered is also a strong function of the bulk system
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temperature, though counterintuitively, increasing bulk super-
cooling decreases later cavitation-induced supercooling, due
to the increasing viscosity of water at low temperatures.

IV. EFFECTS ON CAVITATION-INDUCED NUCLEATION

We now incorporate the transient supercooling results de-
veloped in Fig. 3(c) into classical nucleation theory (CNT)
and examine the induction time required for the nucleation
of a high-pressure solid phase as a function of confinement.
To simplify this analysis, we make the crucial assumption
that the only high-pressure polymorph of ice likely to form
during the quasi-isentropic compression process is ice VII,
though each isentrope will briefly pass through regions in
which ice V or ice VI may be more thermodynamically
stable. This assumption is based on previous experimental
observations of ice nucleation during quasi-isentropic dy-
namic shock compression, in which metastable ice VII was
found to form preferentially to stable ice VI due its lower
interfacial free energy [17,18]. Furthermore, growth of ice VII
has been observed at the same time scales as cavity collapse
(∼single nanoseconds) [12,18,19], and the relative degree of
supercooling is highest in the ice VII region.

Using the Myint equation of state [20] to calculate the
thermodynamic driving forces (e.g., the chemical potential
difference) between compressed water and ice VII along each
compression isentrope, CNT enables calculation of a transient
induction time of the form

τ = 8kBT

π2λD∗ , (3)

which was originally formulated by Kaschiev [21] and
adapted by Myint [11] to describe the time required for a
cluster of ice VII particles to reach the critical size required
for nucleation. In Eq. (3), kBT is the energy scaling factor,
D∗ is a frequency factor describing the rate of attachment of
additional molecules to a critical cluster, and λ describes the
curvature at the top of the energy barrier (see Appendix C for
a full accounting of nucleation parameters).

Armed with the maximum supercooling encountered at
a given confinement volume [Fig. 3(c)] and the pressure-
temperature paths followed during quasi-isentropic compres-
sion of the water, the fastest induction time possible at a given
confinement volume can be calculated for various degrees
of bulk supercooling [Fig. 3(d)]. The isobaric and isochoric
limiting behaviors are once again observable: the induction
time stabilizes to a minimum value at large system volumes,
and it arcs toward infinity as the system volume decreases and
the cavitation dynamics driving nucleation are extinguished.

In order to estimate whether cavitation-induced ice VII
nucleation will ultimately occur, we can now compare the
induction time required for the formation of a stable nucleus
to the period over which the pressure excursion due to cavity
collapse occurs. Previous experimental work has observed ul-
trarapid formation of metastable ice VII at dynamic pressures
as low as 1.8 GPa [17]; we thus examined the period over
which the collapse pressure remained greater than or equal
to this pressure, finding across bulk system temperature and
frequency conditions a value of approximately 0.5–1.5 ns.
This period can be applied as a critical threshold for the

FIG. 4. Ice VII kinetic phase diagram. The critical confinement
volume for kinetic prohibition of ice VII nucleation is plotted as
a function of temperature for various driving frequencies. Dashed
lines indicate the boundary that separates the confinement regimes
in which nucleation of ice VII can (above a given line) and cannot
(beneath a given line) occur.

induction time of a high-pressure solid phase, and is plotted
as a dashed line in Fig. 3(d). If the calculated induction time
at a given confinement volume rests under this threshold, ice
VII has a kinetic route to nucleation. If the induction time is
above this threshold however (i.e., if it takes longer than ∼1 ns
for a critical cluster of ice VII to form), the collapse pressure
will dissipate before a stable nucleus can form, kinetically
prohibiting cavitation-induced nucleation.

The discrete confinement volumes at which the induction
time curves plotted in Fig. 3(d) cross the collapse period
threshold thus represent a critical phenomenon: the degree of
confinement at which cavitation-induced nucleation becomes
kinetically prohibited. This “critical confinement” volume
can be plotted as a function of system parameters, herein
the bulk temperature of the resting system and the driving
frequency of the ultrasonication, to develop a kinetic phase
diagram establishing the temperature-confinement boundary
under which cavitation-induced nucleation will not occur for
a given driving frequency (Fig. 4).

The single-bubble analysis performed herein reveals sev-
eral important consequences of system confinement: it can
dampen bubble collapse dynamics, reduce transient super-
cooling during cavitation, and ultimately restrict cavitation-
induced nucleation. Furthermore, there exist calculable criti-
cal confinement volumes at which discrete kinetic behaviors
(bubble collapse, nucleation of high-pressure polymorphs)
can be prohibited entirely. Perhaps most surprising, however,
is the volume scale at which these myriad confinement effects
come into play: For a single cavitation bubble on the order of
10−11 mL in volume, across sonication frequencies and bulk
system temperatures, bubble collapse and cavitation-induced
nucleation become kinetically prohibited at minimum critical
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confinement volumes on the order of 10−4 mL and 10−3 mL,
respectively. From a physical perspective, this remarkable
difference between the requisite system volumes for critical
confinement and the cavitating bubble volumes is a manifes-
tation of the large compressibility difference between water
and air (or more generally between generic liquids and gases);
if the compressibility of the liquid medium surrounding the
bubble increases, the observed difference in these volume
scales lessens, consistent with the scaling relation provided
in Eq. (2) and plotted in Appendix B in Fig. 6.

V. DISCUSSION

These remarkably large single-bubble confinement vol-
umes suggest that the observed confinement effects may also
translate to bulk macroscopic systems, which produce large
populations of simultaneously cavitating bubbles upon ultra-
sonication. For example, recent estimations of the number
density of cavitating bubbles in water sonicated in the 20–
200 kHz frequency range suggest that approximately 103

bubbles may cavitate per mL of liquid [22]. As a first-order
approximation, if a hypothetical bulk system is ultrasonicated
at 30 kHz and confined at 10 mL, the volume may be divided
evenly by the number density of bubbles to arrive at an
effective confinement volume per bubble of 10−2 mL, which
is well within the transition zone for transient supercooling
[Fig. 3(c)] and approaching the critical confinement threshold
for cavitation-induced ice VII nucleation (Fig. 4).

It must be noted, however, that the critical confinement
volumes calculated in this work describe only the most ex-
treme possible cavitation scenario, in which the equilibrium
size of the cavitating bubble corresponds to the peak dis-
played in Fig. 2(d), which will yield the greatest possible
collapse pressure and the highest pursuant likelihood of ice
VII nucleation. Experimentally, a cavitating bubble field in
a macroscopic system will include a wide distribution of
larger and smaller bubbles [22], which will inevitably produce
significantly smaller pressure excursions upon collapse and
reduce the likelihood of nucleation. Nucleation-suppressing
confinement effects may thus potentially be observed at much
larger scales than those considered here, and indeed in our
recent proof-of-concept experimental investigation of nucle-
ation in supercooled confined systems [13], suppression of
nucleation was observed in macroscopically confined systems
on the order of 100 mL that were supercooled to −3 °C
and ultrasonicated at 55 kHz. Although a full bubble field
analysis is required to accurately extend the present model
to experimentally relevant multibubble systems, the experi-
mental findings described in Ref. [13] provide preliminary
experimental confirmation of our proposed nucleation sup-
pression mechanism, and future experimental efforts should
not rule out confinement as a means of suppressing cavitation-
induced effects at any scale. It should also be noted that the
bubble number density, size distributions, and single-bubble
peak collapse pressures may vary significantly for acoustic
agitations other than ultrasonication, and future work should
adapt the analyses presented herein to a variety of acoustic
stimuli.

The need for robust control of ice nucleation has be-
come increasingly clear in light of recent successes in

medical supercooling [3,4], which have yielded excellent
biological results but have thus far not proven translat-
able outside a highly controlled laboratory environment [6].
Cavitation-induced nucleation of high-pressure polymorphs is
the dominant mechanism by which supercooled systems are
destabilized upon mechanical or acoustic perturbation (as
occurs variously during transportation and clinical use), and
thus any supercooling approach intended for practical use
must work to suppress this mechanism.

Our results herein suggest that isochoric confinement can
significantly hinder cavitation-induced nucleation, and, taken
in combination with other recent works investigating the lim-
iting effects of isochoric confinement on other ice nucleation
and growth mechanisms [13,23,24], suggest that confinement
may provide a compelling route toward robust nucleation sup-
pression in supercooled systems. Future work should extend
the single-bubble analyses developed herein to full cavitating
bubble fields, and in doing so establish a model for direct
prediction of nucleation suppression effects in more complex
macroscale cavitating systems.
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APPENDIX A: DERIVATION OF THE CAVITATION
MODEL

Here we present the details of the mathematical model
developed in the study to model bubble dynamics. The
derivations presented follow the approach implemented by
Gilmore [14], modified for consideration of a finite domain.
The problem considered herein describes cavitation dynamics
under confinement in an isochoric container subjected to an
ultrasonic pressure field, enabling study of collapse effects as
a function of container size. The mathematical formulation is
defined by a single spherical bubble located at the center of a
rigid, spherical vessel, as shown in Fig. 5.

Radial, compressible flow is prescribed, and the gas inside
the bubble is assumed to be spatially uniform. The effect of
gravity and any initial temperature variations are neglected.
Thus, the equations of motion describing the conservation of
mass and momentum in the liquid are

1

ρ

Dρ

Dt
+ 1

r2

∂ (r2u)

∂r
= 0, (A1)

∂u

∂t
+ u

∂u

∂r
+ 1

ρ

∂ p

∂r
= 0, (A2)

where ρ is the density, u is the velocity and p is the pres-
sure. The viscosity enters the problem solely as a bound-
ary condition, as will be seen later, since viscous effects
are confined to a thin boundary layer at the bubble surface
and have been found to have a negligible effect on bubble
dynamics [14,25,26].

The momentum equation is integrated from the liquid-gas
interface at the bubble wall, Rb, to the container wall or
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FIG. 5. Schematic of spherical bubble within a rigid confinement
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where the enthalpy at constant entropy, h, is given as
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The remaining integral in Eq. (A3) can be reformulated by
partial integration to obtain∫ Rc
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The remaining integral in Eq. (A7) can be evaluated by
recognizing that the quantity r�l is invariant in the acoustic
approximation and thus satisfies the relation

D(r�l )
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where c is the speed of sound in the liquid. Utilizing this, the
integrated momentum equation can be assembled to yield[

−r
Du

Dt
+ r�l (u − c) − 3

2
u2 + h

]Rc

Rb

= 0. (A9)

From the continuity equation we find
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In the barotropic approximation, pressure is only a function of
density, p = p(ρ), and is described by the relation

K = ρc2 = ρ
d p

dρ
, (A11)

where K is the liquid bulk modulus and c is the speed of
sound. Herein, K and c are evaluated at equilibrium condi-
tions. Substituting this into Eq. (A9), we get[
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Gilmore [14] recognized that the Kirkwood-Bethe ap-
proximation, which assumes that the characteristic invariants
propagate at a velocity of (c + u), is more accurate for finite
fluid velocities. By following the approach implemented by
Flynn [25], we may compare the form of Gilmore’s equation
to Eq. (A12) and include three additional correction factors
to yield[
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The enthalpy, h, as defined in Eq. (A4), is evaluated in terms
of pressure

h =
∫ p
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ρ
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ρ0

(
1 − exp

{
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K

})
. (A14)

To obtain an equation describing the motion of the bubble
interface, Eqs. (A13) and (A14) must be evaluated at the bub-
ble wall and container wall. The boundary conditions satisfied
by the liquid at the bubble wall, assuming no diffusion of gas
through the interface, are

u(Rb, t ) = Ṙb, (A15)

p(Rb, t ) = Pg(t ) − 2σ

Rb
− 4μ

Ṙb

Rb
+ PA sin (ωt ), (A16)

where, Rb is the evolving bubble radius, σ is the surface
tension of the gas-liquid interface, μ is the liquid viscosity,
Pg(t ) is the pressure of the gas within the bubble, PA is the
amplitude and ω is the frequency of the imposed ultrasonic
pressure disturbance. The overdot indicates d/dt .

Adopting a polytropic equation of state, the pressure within
the bubble under adiabatic conditions is given by the relation

Pg(t ) =
(

pl,0 + 2σ

Rb,0

)(
Rb,0

Rb

)3γ

, (A17)

where γ is the ratio of specific heats, cp/cv . Since the
container walls are assumed rigid, the liquid satisfies the
condition

u(Rc, t ) = 0. (A18)
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It has been shown that large pressure variations due to
bubble collapse during transient cavitation are only felt within
a distance of few bubble radii from the bubble wall [7]. Thus,
to a first-order approximation, it can be assumed that the
density in the liquid varies uniformly due to the evolving
bubble volume. Utilizing the relation from Eq. (A11), the
pressure of the liquid at the container wall can written as

p(Rc, t ) = K ln

(
Rc

3 − Rb,0
3

Rc
3 − Rb

3

)
+ pl,0, (A19)

where Rb,0 is the initial bubble radius and pl,0 is the initial
liquid pressure.

By evaluating Eqs. (A13) and (A14) utilizing the bound-
ary conditions, a second-order nonlinear ordinary differential
equation is obtained describing the time evolution of the
bubble radius:(

1 − Ṙb

c

)
RbR̈b + 3

2

(
1 − Ṙb

c

)
Ṙ2

b + Rcc

K

DPc

Dt

− Rbc

K

DPb

Dt

(
1 − Ṙb

c

)
+ hc −

(
1 + Ṙb

c

)
hb = 0. (A20)

This equation can be readily numerically integrated to find
the bubble radius as a function of time, Rb(t ). It is easily
observed that in the limit of infinite confinement radius, the
model reverts to the traditional Gilmore equation describing
bubble dynamics in an infinite (isobaric) medium.

In the analysis described herein, the physical properties
(viscosity, surface tension, density, speed of sound, and bulk
modulus) are evaluated at the initial bulk system temperature
using values from the IAPWS R6-95(2018) formulation [15].

APPENDIX B: TRANSITION ZONE SCALING ANALYSIS

As shown in Fig. 2 of the main text, three regimes emerge
when evaluating the dependence of the maximum pressure
generated during cavity collapse on the degree of confine-
ment. In the isochoric limit at sufficiently small confinement
volumes, no significant pressure excursions are experienced.
Conversely, at large confinement volumes, an isobaric limit
is reached in which the bubble dynamics are unaffected by
the rigid confinement and do not differ from an unconfined
system. Between these two limits lies a transition zone that
spans a few orders of magnitude in volume, in which the

bubble dynamics begin to be affected by the rigid wall causing
the peak collapse pressure to be suppressed.

Since the peak collapse pressure is integrally related to the
maximum radius reached by the bubble during the growth
period, the origin and behavior of the observed trends can be
probed by performing a static force balance on the bubble at
its point of maximum growth. During the tension phase of
the ultrasonic stimulation, the ultrasonic pressure and pres-
sure within the bubble [Eqs. (A16), (A17)] are balanced by
the pressure due to the compression of the water volume
[Eq. (A19)]. Taking the ultrasonic pressure to be equal to the
driving pressure amplitude, the balance can be written as

K ln

(
R3

c − R3
b,0

R3
c − R3

b,max

)
+ pl,0

=
(

pl,0 + 2σ

Rb,0

)(
Rb,0

Rb,max

)3γ

− 2σ

Rb,max
+ PA. (B1)

Shown in Fig. 6 is the normalized maximum bubble radius
as a function of confinement radius for a range of values of
liquid compressibility, K−1, surface tension, σ , and initial
bubble radius, Rb,0. The location of the transition zone is
found to be dependent on the compressibility (K−1), while
the width of the transition zone is largely dependent on the
surface tension (σ ). Although this static scaling analysis does
not include the effect of viscosity or sonic velocity, detailed
analysis utilizing the full bubble dynamics model shows that
viscosity has a similar effect as surface tension, although
to a weaker degree, and that sonic velocity has a similar
effect to compressibility, which is expected due to their direct
relationship [Eq. (A11)]. The initial bubble radius (Rb,0) is
also found to affect the transition zone: smaller bubbles ex-
perience the effect of confinement at larger relative container
volumes. This may be attributed to the increased significance
of surface tension, which scales with the surface area to
volume ratio and is thus more dominant in smaller bubbles.
This relationship can be observed in Figs. 6(b) and 6(c). As
the initial bubble size increases, this effect diminishes, and
the relative critical confinement volume becomes independent
of the initial bubble radius.

The scaling relation given in Eq. (B1) can be used to easily
probe the discrete confinement volumes at which confinement

FIG. 6. Dependence of transition zone on system parameters: (a) compressibility, K−1; (b) surface tension, σ ; (c) initial bubble radius, Rb,0.
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effects will be seen for arbitrary liquid materials with known
compressibilities and surface tensions.

APPENDIX C: NUCLEATION PARAMETERS

Provided in this appendix is a very brief explanation of the
parameters used to calculate the induction time for ice VII
via classical nucleation theory. The approach is identical to
that applied by Myint et al. [11], who followed the initial
derivations by Kashchiev [21], and more information can be
found in those works.

The thermodynamic driving force for nucleation is the
difference in the bulk chemical potential between the solid and
liquid phases:

�μ = μsolid − μliquid. (C1)

We obtained temperature- and pressure-dependent chemi-
cal potential values for liquid water and ice VII from the equa-
tions of state developed by Myint et al. [20]. This chemical
potential difference �μ, which scales with volume and drives
ice formation, is then compared to the interfacial free energy
σ , which scales with surface area and resists ice formation, to
identify the critical radius at which an incipient ice cluster will
form a stable nucleus. This critical cluster radius is defined as

R∗ = 2σ

ρsolid�μ
, (C2)

in which ρsolid is the density of the ice VII phase. The value of
the interfacial free energy at a given cavitation pressure was
calculated from a linear interpolation between the two refer-
ence points determined in Myint et al. [12], σ = 23.0 mJ/m2

at 1.58 GPa and σ = 129 mJ
m2 at 7 GPa.

The critical cluster radius is then employed in the definition
of several other terms describing the size and behavior of a
critical cluster, including:

The critical energy barrier to nucleation

�G∗ = 16πσ 3

3ρ2
solid�μ2

. (C3)

The critical cluster size

n∗ = 32πσ 3

3ρ2
solid�μ3

. (C4)

The Zel’dovich factor, or the probability that a critical
cluster will continue to grow, in which T is the temperature
and kB is the Boltzmann constant

Z =
(

�G∗

3πkBT n∗2

)1/2

. (C5)

The growth rate of the stable critical cluster

γ =
(

kBT

m

)1/2
�μ

kBT
. (C6)

A frequency factor describing the attachment rate of new
molecules to critical clusters, in which Vsolid is the molecular
volume of the ice VII phase

D∗ = 4πR∗2
γ

Vsolid
, (C7)

and the curvature at the top of the energy barrier

λ = 2πkBT Z2. (C8)

Calculation of each of these parameters at a given temper-
ature and pressure, starting from the bulk chemical potential
difference, enables calculation of Eq. (3) in the main text, the
induction time of a stable ice VII nucleus:

τ = 8kBT

π2λD∗ . (C9)

It should be noted that no arbitrary scaling factor has
been applied to this induction time, as was done by Myint
et al. [11]. This results in our induction time calculation
representing a conservative limit on the induction time of ice
VII nucleation during cavity collapse (e.g., it provides the
fastest possible induction time).
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