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Solitonic in-gap modes in a superconductor-quantum antiferromagnet interface
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Bound states at interfaces between superconductors and other materials are a powerful tool to characterize the
nature of the involved systems and to engineer elusive quantum excitations. In-gap excitations of conventional
s-wave superconductors occur, for instance, at magnetic impurities with net magnetic moment breaking time-
reversal symmetry. Here we show that interfaces between a superconductor and a quantum antiferromagnet
can host robust in-gap excitations, without breaking time-reversal symmetry. We illustrate this phenomenon
in a one-dimensional model system with an interface between a conventional s-wave superconductor and a
one-dimensional Mott insulator described by a standard Hubbard model. This genuine many-body problem is
solved exactly by employing a combination of kernel polynomial and tensor network techniques. We unveil the
nature of such zero modes by showing that they can be adiabatically connected to solitonic solutions between
a superconductor and a mean-field antiferromagnet. Our results put forward a new class of in-gap excitations
between superconductors and a disordered quantum spin phase, including quantum spin-liquids, that can be
relevant for a wider range of heterostructures.
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I. INTRODUCTION

Topological modes emerging in condensed matter systems
are among the most intriguing features in physics. Well-
known examples are the electronic solitons in polyacetylene
[1] or the Jackiw-Rebbi modes first introduced in high-energy
theory [2]. In recent years the family of topological phases
with extraordinary modes has been extended enormously to
a multitude of novel systems with gapped bulk excitation
spectra [3–5]. In almost all cases, such topological modes
emerge in systems that can be described within the spectra of
noninteracting electrons, whose single-particle Hamiltonians
incorporate a nontrivial topology. Despite the large body of
knowledge on topologically nontrivial excitations of nonin-
teracting particles accumulated in recent years, the theoretical
analysis of the many-body counterpart remains a formidable
challenge.

Among the different in-gap states found in materials, those
of superconductors have attracted special attention because
they might provide valuable information about the nature of
the superconducting phase, even if it is topologically trivial.
On the one hand, a classical magnetic impurity (a static
magnetic moment) gives rise to in-gap Yu-Shiba-Rusinov
states in an s-wave superconductor, probing the vulnerability
to the superconducting phase against time-reversal symmetry
violation (spin polarization) [6–13]. On the other hand, in-gap
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states created by nonmagnetic impurities provide a strong
signature for unconventional superconductivity [14–17].

Increasing complexity, for instance, through heterostruc-
tures connecting a superconductor to materials of various
properties offers an attractive platform to create new emer-
gent phases [18–20]. This is the basis for a plethora of
proposals to engineer Majorana bound states [21], to ex-
plore unusual Andreev physics [22,22–25] and even to design
higher-dimensional topological superconductors [26,27]. So
far studies in this direction focused mainly on single-particle
physics [3–5], e.g., system in which the excitation spectrum
can be treated in a mean-field picture. Therefore, extending
the scope to interface physics involving the strongly corre-
lated electron regime with dominant quantum fluctuations
represents a rich playground for new physics which is largely
unexplored [28–32].

Here we demonstrate how solitonic in-gap modes can
emerge at interfaces between a conventional superconductor
and a quantum antiferromagnet without long-range order, both
topologically trivial on their own. In particular, we show that
time-reversal symmetry needs not to be broken and that these
modes can be adiabatically connected with solitonic zero
modes of the antiferromagnetically ordered phase violating
time-reversal symmetry. In this way, we extend the set of
situations where the composition of different materials can
generate a nontrivial phase at interfaces. In particular, our re-
sults put forward a minimal model system where the interplay
of superconductivity and quantum spin liquid physics gives
rise to unconventional excitations.

The paper is organized as follows. In Sec. II we show
the emergence of the solitonic zero mode and its robustness
towards system parameters, by exactly solving the interacting
model. In Sec. III we put forward a connection between
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FIG. 1. (a) Spectral function of the superconductor, showing a
gap up to the superconducting gap �, and of the quantum antiferro-
magnet (b), showing a gap on the order of the Hubbard U . Panel (c)
shows the spectral function across the interface between the two
systems, showing the emergence of in-gap modes at the interface in
the absence of time reversal symmetry breaking. We use � = 0.6t
and U = 4t . The inset below panel (c) shows a sketch of the model
used to study the superconducting-antiferromagnetic interface.

the time-reversal symmetric interacting zero mode, and a
solitonic zero mode in a noninteracting model with broken
time-reversal symmetry. Finally, in Sec. IV we summarize our
conclusions.

II. EMERGENCE OF A SOLITONIC MODE

We model our system by the following Hamiltonian of a
one-dimensional chain, that allows us incorporate an inter-
face between a conventional superconductor and a quantum
antiferromagnet in the simplest way: H = Hkin + HU + HSC,
where Hkin is the kinetic energy term in a tight-binding form

Hkin = t
∑
n,s

[c†
n,scn+1,s + c†

n+1,scn,s] +
∑
n,s

μ(n)c†
n,scn,s, (1)

HU is the Hubbard interaction term with a position depen-
dent U

HU =
∑
n,s

U (n)c†
n,↑cn,↑c†

n,↓cn,↓, (2)

and HSC introduces conventional superconductivity in the
mean-field formulation

HSC =
∑

n

�(n)[cn↑cn↓ + c†
n↓c†

n↑]. (3)

The heterostructure can be modeled by the parametrization
U (n) = [tanh(n/W ) + 1]U/2, and �(n) = [− tanh(n/W ) +
1]�/2 locating the interface at n = 0 [Fig. 1(a)], and we take
W = 1. The profile of μ(n) is chosen as μ(n) = −U (n)/2 so

that the system is half filled everywhere. Our calculations are
performed in chains having 40 sites.

For the treatment of this genuine many-body Hamiltonian
we employ the computational matrix product state formalism
and, in particular, determine the local single-particle spectral
function defined as

A(ω, n) =
∑

s

〈GS|c†
n,sδ(ω − H + EGS )cn,s|GS〉. (4)

This dynamical correlation function can be computed for
the whole frequency range by exploiting a kernel polyno-
mial technique [33] implemented within the matrix product
state formalism of ITensor [34,35]. The basic idea of the
method consists of representing the function A(n, ω) in a
complete functional basis expanded by N Chebyshev poly-
nomials Tk (ω) as A(ω, n) = 1

π
√

1−ω2 (μ0 + 2
∑N

k=1 μkTk (ω)).

The coefficients μk are obtained as μk = 〈GS|c†
nTk (H )cn|GS〉

[36] that can be recursively computed through products of ma-
trix product operators and matrix product states [33,37–39].
Note that for this algorithm the time evolution is not needed
since we work from the beginning in frequency space.

The spectral function A(n, ω) shows the quasiparticle exci-
tation gap in real space. Thus, it is instructive to consider first
each subsystem of the model separately using our computa-
tional scheme for a system of finite length. For the uniform
superconductor, A(ω, n) shows a quasiparticle gap [Fig. 1(a)].
The half-filled Hubbard chain with U > 0 is not magnetically
ordered, but displays a Mott charge excitation gap as seen
in Fig. 1(b) [40–42]. Note that the spatial dependence of the
spectral functions in Figs. 1(a) and 1(b) is a finite-size effect
induced by the open boundary conditions. It is also interesting
to note that both systems are topologically trivial, lacking
in-gap edge modes.

We turn now to the spatially resolved spectrum of a het-
erostructure connecting the two phases. As shown in Fig. 1(c),
the system shows now in-gap excitations (the lowest one
highlighted with the dashed red circle), which are clearly
a feature connected with the interface (n ≈ 0). Besides the
previous in-gap mode, a second in-gap state at a higher energy
can be observed at the interface in Fig. 1(c). In-gap states
in an s-wave superconductor are usually attributed to static
magnetic impurities, giving rise to the so-called Yu-Shiba-
Rusinov states. In our case, however, time-reversal symmetry
is conserved and there are no static moments despite the
suppression of charge fluctuation on the Mott side (n > 0).
Moreover, the dominant mode here is essentially pinned at
zero, a feature that does not happen for generic Yu-Shiba-
Rusinov states.

Let us now consider the properties of this interface ex-
citation. First, we examine how the interface mode behaves
for varying the model parameters � and U . In Fig. 2(a)
the spectral function A(ω, n = 0) as function of � for fixed
U = 6t shows the evolution of the lowest mode toward ω = 0
upon increasing �. With increasing � the two in-gap modes
[red and blue dashed line in Fig. 2(a)] converge to stable
in-gap energies, while the bulk superconducting gap increases
(white dashed line, note the shift due to finite-size effects).
Figures 2(b) to 2(d) display the U -dependence for fixed � =
0.4t . In Fig. 2(b) we show how the charge fluctuations are
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FIG. 2. (a) Evolution of the spectral function at the interface
as a function of the superconducting pairing �, for the other half
chain with finite U . Panels (b) (c), and (d) show the evolution as
a function of U with the superconducting part at a fixed finite �.
Panel (b) shows the spatially resolved charge fluctuation in (b), the
spectral function at the interface in (c), and the spectral function in
the quantum antiferromagnetic part in (d). We use U = 6t for (a) and
� = 0.4t for (b)–(d).

gradually suppressed in the Mott region, while they remain
constant in the superconducting region. The zero-energy mode
(red dashed line) also settles at the interface upon increasing
U as shown in Fig. 2(c), and similar behavior happens with the
next in-gap state (blue dashed line) [43]. For comparison, we
observe that the low-energy modes progressively fade away
in the interior of the Mott region when U is increased [see
Fig. 2(d)].

III. ORIGIN OF THE SOLITONIC MODE

A further path to elucidate the character of the zero-energy
modes runs via the using a mean-field antiferromagnetic
phase for n > 0. We restrict to the single-particle description
by replacing HU by HAF = ∑

n(−1)nmAF(n)[c†
n↑cn↑ − c†

n↓cn↓]
with the spatial profile mAF(n) = [1 + tanh(n/W )]mAF/2 and
�(n) = [1 − tanh(n/W )]�/2. The Hamiltonian for this in-
homogeneous one-dimensional (1D) system can be easily
solved numerically by means of a Bogoliubov de Gennes
(BdG) scheme with the results displayed in Fig. 3. We find
zero-energy modes within the gap in the sequence of eigen-
values [Fig. 3(a)] and can locate them clearly at the interface
[Fig. 3(b)]. When changing the system parameters � for fixed
mAF = 0.8t [Fig. 3(c)] and mAF for fixed � = 0.3t [Fig. 3(d)]
we observed that this mode remains solidly at ω = 0, which
demonstrates clearly that this feature is not an effect of fine-
tuning.

FIG. 3. (a) Bogoliubov de Gennes spectra of the superconductor-
stagger antiferromagnet interface, showing the existence of a zero
mode. Panel (b) shows the spatially resolved density of states A(ω, n)
of the interface, showing that the zero mode is localized at the
interface between the two systems. Panels (c), (d) show the evolution
of the density of states at the interface as a function of the super-
conducting pairing � (c) and the antiferromagnetic stagger field mAF

(d), highlighting the robustness of the zero mode. We use for (a), (b)
mAF = 0.4t and � = 0.2t , for (c) mAF = 0.8t and for (d) � = 0.3t .
Note that the ω axis starts slightly below ω = 0 for visibility, dark
green dashed lines mark ω = 0 in (b)–(d).

The nature of this interface mode can be easily explained
with an analytical approach in the continuum limit of this
model. For this purpose we choose a two-site unit cell adapted
to the staggered moment (A and B sublattice) and rewrite the
kinetic energy term in k-space

H (k) =
(

0 1 + eik

1 + e−ik 0

)
, (5)

which near k = π takes the form of a 1D Dirac equation
with H (p) = τy p, with τy the sublattice Pauli matrix. We now
use p = −i∂x, introduced into the adapted HAF and HSC and
turn to continuum variables c2n → ψA(x), c2n+1 → ψB(x),
�(n) → �(x), mAF (n) → mAF (x) defining the continuum 1D
Hamiltonian

H =
∑
s,α,β

pταβ
y ψ†

α,sψβ,s +
∑
s,α

mAF(x)σ ss
z ψ†

α,sψα,s

+
∑

α

�(x)[ψα,↑ψα,↓ + ψ
†
α,↓ψ

†
α,↑]. (6)

This Hamiltonian can be diagonalized defining the Nambu
spinor � = (ψA,↑, ψB,↑, ψ

†
A,↓, ψ

†
B,↓), for the sector of spin-up
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electron/spin-down hole, where we obtain H ∼ �†H� with

H =

⎛
⎜⎜⎝

mAF(x) ip �(x) 0
−ip −mAF(x) 0 �(x)
�(x) 0 mAF(x) −ip

0 �(x) ip −mAF(x)

⎞
⎟⎟⎠. (7)

The spectrum is obtained by BdG transformation. While both
the superconductor and the antiferromagnet have an excitation
gap, we find at the interface a zero-energy eigenvalue with an
eigenoperator [2,44–46]

�† = 1
2 [c†

A,↑ + c†
B,↑ − cA,↓ + cB,↓]e

∫ x
0 [�(x′ )−mAF(x′ )]dx′

(8)

for mAF(∞) > 0 [47]. Note that since Eq. (7) is a real differ-
ential equation, the solitonic zero-mode Eq. (8) has real coeffi-
cients. Note that for a given choice of mAF, only a single [48]
zero mode exists. It is also worth to note that time-reversal
symmetry 
 is not a symmetry of the interface. As a result,
for the time-reversal counterpart of the previous system, the
zero-mode excitation will be 
�†
−1, different from �†.
Intuitively, the action of time-reversal symmetry is equivalent
to switching between positive or negative magnetic moments.
In the noninteracting Hamiltonian presented, the zero-energy
mode can be derived analytically, yet an analogous approach
is not available if we replace the mean field by a quantum
antiferromagnet where the many-body nature of the system is
important.

Although the many-body problem is challenging, we may
connect with the previous solitonic mode by extending the
many-body Hamiltonian with a staggered field on the Mott
side, i.e., H = Hkin + HU + HSC + HAF. In this way, we in-
troduce a static moment in addition to the quantum fluctua-
tion. This model shall again be solved by our computational
many-body scheme. The schematic result obtained is shown
in Fig. 4(a) that shows that the two time-reversal related
solutions found in the single-particle case, merge in the pure
quantum limit yielding localized in-gap mode. The previous
sketch captures only the single-particle charge excitations
reflected in the correlator Eq. (4), whereas the many-body
spectrum will show a continuum of states stemming from
the gapless spinon modes of the quantum antiferromagnet.
The transition from the quantum to the classical regime as the
stagger magnetization is switched on can be directly observed
in the expectation value of the local magnetic moment, as
shown in Fig. 4(b).

We now verify the previous picture by examining the
spectral function Eq. (4) at the interface, n = 0 [Fig. 4(c)]
and at n = 10 inside the Mott region [Fig. 4(d)]. We can
observe how the in-gap mode is present for mAF = 0 and
gradually transforms into the zero-energy solitonic mode just
described, while the spectrum within the Mott region remains
gapped. Thus, the in-gap spectrum of the many-body system
is adiabatically connected to a time-reversal symmetry break-
ing situation where the low-energy quantum fluctuations are
progressively suppressed upon increasing |mAF|.

An interesting feature is the splitting of in-gap mode into
two branches when mAF is switched on, whereby only one
branch evolves into the solitonic zero-energy mode, while
second rises in energy and gradually loses weight. Moreover,
it is also important to note that depending on the sign of mAF,

FIG. 4. (a) Sketch of the evolution of the charge excitation in the
heterostructure, including the solitonic zero modes, as a function of
the antiferromagnetic field mAF, showing that they become the in-gap
excitations in the case of the quantum antiferromagnet. (b) Spatially
resolved magnetization as a function of mAF. Panels (c), (d) show
the spectral function at the interface (c) and in the middle of the
antiferromagnetic region (d). We use U = 6t and � = 0.6t .

the low-energy mode will transform either into �† or into

�†
−1. In the quantum antiferromagnetic regime, the two
modes coexist, such that there is a two-fold degeneracy for
the in-gap mode at mAF = 0, whose energy needs not to lie at
exactly zero.

Finally, we highlight two potential platforms to experimen-
tally realize our proposal, bulk compounds showing quasi-1D
chains and atomically engineered lattices. The first direc-
tion consists of creating an interface between a conventional
superconductor and a compound hosting quasi-1D quantum
antiferromagnets, such as CuCl2 − 2N(C5D5) [49], KCuF3

[50], and Sr2CuO3 [51,52]. The second direction consists of
exploiting atomic engineering with atomic scale microscopy
[53] to create a quantum antiferromagnet [53–56] and putting
it in contact with a superconductor [19].

IV. CONCLUSION

To summarize, we have put forward a minimal system
consisting of a many-body quantum antiferromagnet and a
conventional s-wave superconductor that host solitonic in-gap
excitations. We unveiled the nature of those states, by showing
that they can be adiabatically connected to solitonic states
between a mean-field antiferromagnet and a superconductor,
which resembles the Jackiw-Rebbi soliton. Our results put
forward a minimal example in which solitonic modes appear
between a quantum disordered magnet and a superconductor,
providing a stepping stone towards the study of interfaces
between superconductors and quantum spin liquids.
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APPENDIX A: ADIABATIC CONNECTION BETWEEN
THE MEAN-FIELD AND MANY-BODY LIMIT

In this section we show alternative paths between a free
and interacting limit, complementary to the results of Fig. 4 in
the main text. We will analyze two cases. First, we connect
the mean-field antiferromagnet and the interacting system,
keeping the stagger magnetization. Second, we connect the
mean-field antiferromagnet directly to the many-body time-
reversal state. We elaborate on those two cases below.

First, we show in Fig. 5(a) the evolution of the interface
spectral function defining a parametric Hamiltonian

H (U ) = Hkin + HSC + HAF + HU (U ), (A1)

keeping a fixed mAF and changing U . We observe that the
solitonic mode exists in the whole range of this alternative
parametric path. We note that time-reversal symmetry remains
always broken due to the presence of a finite mAF.

Furthermore, to demonstrate the robustness of the adiabatic
connection used in the main text, we show an alternative inter-
polation between the quantum and classical antiferromagnet.
For this purpose, we now define the parametric Hamiltonian
as

H (λ) = Hkin + HSC + (1 − λ)HAF + λHU , (A2)

so that for λ = 0 the Hamiltonian becomes purely noninteract-
ing (breaking time-reversal symmetry), whereas for λ = 1 the
system becomes purely many-body (conserving time reversal
symmetry). As it is observed in Fig. 5(b), the solitonic mode

FIG. 5. (a) Evolution of the spectral function at the interface
site for the Hamiltonian Eq. (A1), i.e., taking a constant mAF and
ramping up the value of the Hubbard U . Note that the whole path
has broken time-reversal symmetry. Panel (b) shows the interface
spectral function for the parametric path defined in Eq. (A2), where
λ = 0 denotes the analytically solvable limit, and λ = 1 the quantum
limit (with time-reversal symmetry). It is observed that the solitonic
mode remains robust in both paths, keeping a finite bulk gap.
We took � = 0.5t for (a), (b), U = 5t for (b), and mAF = 0.3t
for (a), (b).

exists again in the whole parametric range, demonstrating its
robustness.

It is interesting to note that since the interface mode is
not of topological origin, there is not a symmetry protected
topological index associated with it. This is what allows
us to connect smoothly the symmetry broken state, and the
time-reversal symmetric many-body soliton. We highlight that
along this path, the bulk charge gap of the antiferromagnet
remains open, so that the evolution of solitonic mode can be
clearly followed.

Finally, we note that although the emergence of in-gap
states at interfaces between time-reversal symmetry bro-
ken states and superconductors is a generic feature [57]
and has been shown also for antiferromagnetic interfaces
[44–46,58,59]. However, in the present case we showed
that a robust zero mode appears in the presence of time-
reversal symmetry conservation, and therefore represents
a case dramatically different from conventional Yu-Shiba-
Rusinov states [57].

APPENDIX B: FINITE-SIZE SCALING

In this section we show that the interface solitonic excita-
tion becomes independent of the length of the chain for large
chain size.

We first focus on the effect of different lengths for the
analytically solvable mean-field antiferromagnet. We first
show in Fig. 6 the spectral function in the noninteracting
limit for chains with L = 40 and L = 80 sites (besides the
L = 200 case shown in the main text), highlighting that the
zero mode does not change once chains are sufficiently long.
This exemplifies that the interface mode for the L = 200 chain
used in our main text is qualitatively analogous to the one for
L = 40 and L = 80 of Fig. 6. We note that this case is easily
solvable due to the single-particle nature of the system.

We now address the purely many-body quantum limit.
In particular, we computed how the spectral function at the
interface evolves with the size of the system as shown in
Fig. 7. As it is observed, the solitonic zero mode remains
robust for different system sizes [Figs. 7(a) and 7(c)]. In
contrast, the second bound mode is sensitive to the size of the
system, that slightly changes the Hamiltonian at the interface
[Figs. 7(b) and 7(d)]. This result illustrates the robustness

FIG. 6. Spectral function in the different sites, for an interface
between a mean-field antiferromagnet and a superconductor, show-
ing that zero mode is robust with respect to the size of the chain, 40
sites for (a) and 80 sites for (b). We took mAF = 0.4t and � = 0.2t .
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FIG. 7. (a), (c) Evolution of the spectral function at the interface
as a function of the full length of the system L. (b), (d) Evolution
of the density fluctuations in real space as a function of the chain
length L. Panels (a), (b) are computed with U = 6t and � = 0.4t ,
whereas panels (c), (d) with U = 4t and � = 0.6t . It is observed
that the solitonic zero mode becomes independent of the system size
L for large L, and remains insensitive to the boundary conditions at
the interface. In contrast, the second in-gap state is highly sensitive
to the boundary conditions at the interface.

of the solitonic mode with respect to the system size, and
justifies once more that with a L = 40 chain we reach already
asymptotic results.

APPENDIX C: SPIN EXCITATIONS

In this section we address the interplay between the soli-
tonic interface mode and the gapless spinon excitations of the
antiferromagnet.

The solitonic excitation appears in the charge channel,
in which both the superconductor and antiferromagnet are
gaped. The quantum antiferromagnet is gapless only in the
spin channel, where the gapless excitations are spinons. This
suggests that the solitonic mode will be delocalized in the spin
sector, yet localized in the charge sector. To illustrate this, we
computed the dynamical response spin response, defined as

S (ω, n) = 〈GS|Sz
nδ(ω − H + EGS )Sz

z |GS〉, (C1)

shown in Fig. 8. The solitonic mode cannot be easily distin-
guished in this channel, while only the gapless low-energy
modes of the quantum antiferromagnet can be observed. This
coexistence suggests than the spin sector of the solitonic mode
becomes completely delocalized in the spinon bath, whereas
the charge part remains confined to the interface, visible in the
charge correlator shown in the main text.

FIG. 8. (a) Dynamical spin response function S(ω, n) of the
superconducting-quantum antiferromagnet chain, as defined in
Eq. (C1). It is observed that the quantum antiferromagnet shows
excitations at low energies, which are associated with spinons of the
Hubbard part. The solitonic excitation cannot be easily distinguished
in this channel. Panel (b) shows a sketch of the model.

APPENDIX D: ROBUSTNESS OF THE SOLITON MODE
TOWARDS PERTURBATIONS

In our main text we focused in the a minimal model for
the sake of clarity. We now explicitly show that the details of
the superconductor or the existence of additional perturbations
do not matter for the existence of the solitonic mode. These
results demonstrate that the zero mode survives a variety of
perturbations present in a real system, and therefore can be
experimentally observable.

We now elaborate on the different perturbations addressed,
which are summarized below.

(1) Arbitrary doping in the superconductor [Eq. (D1)].
(2) Interface scattering [Eq. (D2)].
(3) Extended hopping [Eq. (D3)].
(4) Extended many-body interactions [Eq. (D4)].
(5) Anderson disorder [Eq. (D5)].
(6) Self-consistent treatment of the superconductor

[Eq. (D6)].
In all those instances we observed the persistence of the

many-body solitonic mode in our calculations (Fig. 9). We
now elaborate on the results for the different terms considered.

The unperturbed Hamiltonian considered for the system
is H = Hkin + HU + HSC, with the kinetic term Hkin =
t
∑

n,s [c†
n,scn+1,s + c†

n+1,scn,s] + ∑
n,s μ(n)c†

n,scn,s, the local

interactions of the form HU = ∑
n,s U (n)c†

n,↑cn,↑c†
n,↓cn,↓,

and the superconducting term of the form HSC =∑
n �(n)[cn↑cn↓ + c†

n↓c†
n↑] as considered in the main text.

�(n) is defined to be nonzero in the superconductor, U (n)
to be nonzero in the quantum antiferromagnet, and μ(n) is a
local on-site energy. In the following we will add a variety of
perturbations to the previous Hamiltonian, and show that the
zero mode remains present.

First [Fig. 9(a)], we consider the case of a superconductor
with an arbitrary doping. For that sake we define a new term
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FIG. 9. Spectral function of the superconductor-quantum antifer-
romagnet system with different kinds of perturbations: (a) doping
in the superconductor Eq. (D1), (b) interfacial potential scattering
Eq. (D2), (c) extended hopping Eq. (D3), (d) extended interactions
Eq. (D4), (e) Anderson disorder Eq. (D5), and (f) selfconsistent
superconducting state Eq. (D6). It is observed that in all the instances
the solitonic mode persists, demonstrating its robustness in realistic
regimes. We took � = 0.6t in (a)–(e), U = 5t in (a)–(f) and N = 40.

that acts as a chemical potential in the superconducting region

HD = D
∑

i∈SC,s

c†
i,sci,s, (D1)

where i ∈ SC denotes sum over the superconducting part,
and we compute the spectral function for the Hamiltonian
H̄ = H + HD where we take D = 1.6t . The result is shown
in Fig. 9(a), and it is clearly observed that the interface
zero mode remains robust. We verified that the same holds
for arbitrary dopings of the superconductor. This robustness
demonstrates that the existence of the zero mode is not related
with the filling of the superconductor.

Second [Fig. 9(b)], we consider the existence of potential
scattering in the interface, as would happen if there is an
impurity at the interface between the antiferromagnet and the
superconductor. The local scattering is implemented in terms
of a local potential at the interface

HPS = w
∑

s

c†
0,sc0,s (D2)

so that the total Hamiltonian is H̄ = H + HPS, and we took
w = 0.8t . As it is observed in Fig. 9(b) the solitonic mode
persists in the presence of potential scattering.

Third [Fig. 9(c)], we consider the existence of second
neighbor coupling in our model

HNNN = tNNN

∑
n,s

c†
n,scn+2,s + H.c., (D3)

which breaks the bipartite nature of our model, and gener-
alizes to realistic realizations where it is expected a finite
second neighbor hopping. We take tNNN = 0.2t , and compute
the spectral function for the model H̄ = H + HNNN , whose
result is shown in Fig. 9(c). It is observed that the interface
zero mode remains robust, even in the presence of extended
hopping in the model. We also verified that the zero mode is
also robust if the second neighbor hopping is included only in
the superconductor or only in the quantum antiferromagnet.

Fourth [Fig. 9(d)], we consider the effect of nearest neigh-
bor many-body interactions. In particular, we consider an
additional interaction term of the form

HV = V
∑

n

(∑
s

c†
n,scn,s

)(∑
s

c†
n+1,scn+1,s

)
(D4)

that acts in the whole system, so that the total Hamiltonian
is H̄ = H + HV and we take V = 0.3t . As it is observed in
Fig. 9(d) the zero mode persists even in the presence of this
additional interaction term. We also verified that the zero
mode remains if the interaction is only considered in the
superconducting or quantum antiferromagnetic part.

Fifth, we consider the effect of random Anderson disorder
in the full system as

HA =
∑
n,s

δnc†
n,scn,s, (D5)

where δn is a random number for each site i between in the
interval [0, 0.4t]. The total Hamiltonian considered H̄ = H +
HA, and as shown in Fig. 9(e) it is observed that the zero mode
remains present even in the presence of disorder. We verified
that the zero mode also remains if disorder is only included in
the superconductor or antiferromagnet.

Finally, we consider the effect of a full self-consistent
pairing. For this purpose, instead of imposing a supercon-
ducting pairing HSC, we now start with an attractive in-
teraction in the superconducting region of the form Hg =
−g

∑
n∈SC,s c†

n,↑cn,↑c†
n,↓cn,↓ where i ∈ SC denotes sum over

the superconducting part. We perform a mean-field decou-
pling giving rise to

HMF
g = −g

∑
n∈SC,s

〈c†
n,↑c†

n,↓〉cn,↓cn,↑ + H.c., (D6)

so that the total Hamiltonian is H̄ = Hkin + HU + HD + HMF
g .

The normal term of the mean-field decoupling is reabsorbed
in Hkin, and we take g = 1.7t . The term HMF

g is computed
self-consistently with the tensor network formalism. We note
that this procedure treats the superconductor at the mean-field
level, yielding a self-consistent superfluid density, whereas
the antiferromagnet is still treated with the full many-body
formalism. The results are shown in Fig. 9(f), and it is clearly
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observed that the solitonic zero mode remains present when
the superconducting term is computed self-consistently.

APPENDIX E: EXPERIMENTAL REALIZATION

In this section we present potential platforms to realize
our model experimentally. Our proposal could be realized in
two different ways, with bulk oxides showing quasi-1D chains
or with atomically engineered lattices. We elaborate on this
below.

We first address the proposal based on quasi-1D chains
in a three-dimensional compound. This procedure consist
on creating a junction between a conventional superconduc-
tor and a material hosting nearly decoupled 1D S = 1/2
antiferromagnetic chains, as shown in Fig. 10. Different
compounds have been extensively studied showing quasi-
1D physics associated to a strongly interacting Hubbard
model, including CuCl2 − 2N(C5D5) [49], KCuF3 [50], and
Sr2CuO3 [51,52]. The interface should be perpendicular to
the direction of the antiferromagnetic chains, as shown in
Fig. 10(a). Those compounds were characterized as to re-
alize an isotropic Heisenberg model. Taking an interface of
any of those compounds with a conventional superconductor
would lead to a realization of the scenario proposed in our
paper. We note that although the superconductor is not three-
dimensional, the emergence of the zero mode does not depend
on the details of the superconducting part as elaborated in
Appendix D.

We now address the proposal based on atomically engi-
neered chains [53]. This realization is based on atomic-scale
manipulation of individual atoms using an scanning tunneling

FIG. 10. (a) Sketch of an experimental realization of our pro-
posal using a three-dimensional compound hosting quasi-1D AF
chains. Panel (b) shows a sketch of a realization of our proposal using
atomically engineered spin chains.

microscope (STM), which allows to create atomically precise
structures with specific atoms. These experimental develop-
ments allowed the realization, at the atomic level, a plethora
of paradigmatic models, including one-dimensional quan-
tum critical models [54], one-dimensional antiferromagnets
[55], and atomic-scale ferromagnets with superconductors
[19], among others [53]. The realization with this platform
would require creating a one-dimensional antiferromagnetic
Heisenberg chain, laterally contacted with a superconductor
as shown in Fig. 10. We note that all the ingredients to realize
this structure have been demonstrated, including quantum an-
tiferromagnetism in S = 1/2 systems [56] and superconduc-
tivity in combination with in atomic-scale engineered chains
[19].
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