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Mutual assistance between the Schwinger mechanism and the dynamical Casimir effect
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We study massive charged particle production from the vacuum confined between two vibrating plates in the
presence of a strong electric field. We analytically derive a formula for the production number based on the
perturbation theory in the Furry picture, and show that the Schwinger mechanism by the strong electric field
and the dynamical Casimir effect by the vibration assist with each other to dramatically enhance the production
number by orders of the magnitude.
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I. INTRODUCTION

According to the quantum field theory, our vacuum is by
no means a simple empty space, but should be regarded as a
sort of matter, in which virtual particles are ceaselessly created
and annihilated. Our vacuum, therefore, exhibits nontrivial
responses when exposed to external forces/fields just as ordi-
nary matters do. In particular, if the external forces/fields are
strong, the virtual particles in the vacuum may acquire large
energy through the interaction with the forces/fields. If the
acquired energy is sufficiently large, i.e., larger than the mass
scale of the particles, the virtual particles become on-shell real
particles. Therefore, our vacuum is no longer a stable state in
the presence of strong forces/fields and decays spontaneously
by producing particles.

An example of such a particle production mechanism is
the Schwinger mechanism, which is driven by a strong slow
electric field (for review, see, e.g., Refs. [1–3]). The original
idea of the Schwinger mechanism was first proposed by Sauter
in 1931 [4] as a resolution to the Klein paradox in the barrier
scattering problem of a Dirac particle [5]. The idea was that
a strong slow electric field induces a level crossing between
positive and negative energy states. The level crossing, then,
causes quantum tunneling from a negative energy state to
a positive one, which can be interpreted as pair production
of a particle and an antiparticle. This production process
is genuinely nonperturbative since it is driven by quantum
tunneling unless the electric field is fast [6–8]. Sauter’s idea
was, then, sophisticated by Heisenberg and Euler by deriving
the one-loop effective action in the presence of a constant
and homogeneous strong electromagnetic field [9] and by
Schwinger by fully formulating Sauter’s idea and Heisen-
berg and Euler’s calculation within the quantum field theory
[10]. Later, the Schwinger mechanism for Dirac particles was
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generalized to scalar particles [11], vector particles [12], and
particles with arbitrary spin [13], which revealed that the
Schwinger mechanism is insensitive to spin or boson/fermion
statistics provided that there is no magnetic field and that
the electric field does not change its direction. Despite its
long history, the Schwinger mechanism is still a hot research
topic in theoretical physics and has been developing con-
tinuously. To name a few, examples include the following:
study of finite size effects [14–22]; inclusion of back-reaction
effects [23–31]; proposal of avalanchelike particle production
mechanism (QED cascade) [32–36]; developments of new
theoretical techniques (e.g., the world-line instanton method
[37–39], classical statistical method [40,41], and the pertur-
bation theory in the Furry picture [42–47]); and phenomeno-
logical applications (e.g., the early stage dynamics of ultrarel-
ativistic heavy-ion collisions [23,24,48–56], magnetogenesis
in the early universe [57–62], and spin-current generation in
spintronics [63]).

From an experimental side, the Schwinger mechanism
has not been observed yet. Since the lightest charged par-
ticle is electron, it requires extremely strong electric field
eEcr ≡ m2

e ∼
√

1029 W/cm2 for the Schwinger mechanism
to be manifest. The available electric field strength in the
current laboratory experiments is, however, far below this
critical value. In fact, eE ∼

√
1022 W/cm2 is the present

world record established by the highest-intensity focused
laser at HERCULES [64]. The forthcoming laser experiments
at, e.g., the Extreme Light Infrastructure (ELI) and at the
Exawatt Center for Extreme Light Studies (XCELS), may
reach eE ∼

√
1024−25 W/cm2, which is still below the crit-

ical field strength eEcr by several orders of the magnitude.
Therefore, much attention has been paid recently to how to
enhance the Schwinger mechanism to make it experimentally
observable. One of the most promising ideas is the so-called
dynamically assisted Schwinger mechanism [65–69] (see also
Refs. [70–72]), which proposed that a superposition of a
fast weak electromagnetic field can enhance the Schwinger
mechanism by several orders of the magnitude. Recently,
Refs. [42–47] showed that the enhancement can be captured
very well within the perturbation theory in the Furry picture
[73–75] and clarified that the parametric (or perturbative)
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particle production by the superimposed field is the essence
of the enhancement. This observation implies that a similar
enhancement mechanism may occur not only with a fast weak
electromagnetic field but also with other kinds of forces/fields
involving parametric particle production.

Another example of the particle production from the vac-
uum is the dynamical Casimir effect (for review, see, e.g.,
Refs. [76,77]), which is driven by vibrating plates (or, more
generally, variations of geometries in time, e.g., acceleration
of a single mirror [78] and rotation of an object [79,80]).
The dynamical Casimir effect, named by Yablonovitch [81]
and Schwinger [82], was first proposed by Moore in 1970
[83]. It is a parametric effect, which occurs when the typical
frequency of the vibration matches the mass gap (or the
eigenfrequency of cavity modes inside the boundaries) and
can essentially be studied with perturbative approaches as
long as the amplitude of the vibration is sufficiently small
[84–87]. Notice that these features are quite distinct from
the Schwinger mechanism, which is not a parametric effect
and hence does not exhibit any threshold behaviors. Also, a
nonperturbative treatment of a strong electric field is essential
to describe the Schwinger mechanism. The original idea of
the dynamical Casimir effect proposed by Moore was for
massless photon production, but was naturally generalized to
massive particle production, e.g., in Refs. [88–92].

The direct experimental observation of the dynamical
Casimir effect is still lacking, which requires a very fast
vibration of plates, e.g., ω/2π ∼ 10 GHz to produce cavity
photons (which could be lowered by nonperturbative effects
[93]) and much larger frequency for massive particles like
electron ω/2π ∼ 2me/2π ∼ 100 EHz. Such a fast vibration
is not experimentally available at the present, although a close
value ω/2π ∼ 6 GHz was achieved recently in Ref. [94]. On
the other hand, there already exists an indirect observation of
the dynamical Casimir effect utilizing some effective motion
instead of real vibration of plates. For example, Ref. [95]
modulated electrical length of a coplanar transmission line by
modulating inductance of a superconducting quantum inter-
ference device (SQUID) connected to the transmission line
[96,97]. This effectively realized ω/2π ∼ 11 GHz vibration,
which enabled us to observe the cavity photon production by
the dynamical Casimir effect for the first time. It is, however,
still very difficult even with the indirect methods to observe
the dynamical Casimir effect for massive particles. Hence, a
new mechanism to lower the threshold frequency is highly
demanded for future experiments.

The purpose of this paper is to propose a new mechanism
to enhance the Schwinger mechanism and the dynamical
Casimir effect for a massive charged particle. Namely, we
consider a charged massive scalar field confined inside of
two vibrating plates and apply a strong external electric field.
With this setup, we show that the dynamical Casimir effect
by the vibrating plates assists the Schwinger mechanism by
the strong electric field and vice versa. In particular, we
show that the assistance effectively reduces the mass gap, and
the particle production is dramatically enhanced by orders
of the magnitude. This may be understood as an analog of
the dynamically assisted Schwinger mechanism [65–69], in
which the combination of the parametric particle production
mechanism and the nonperturbative Schwinger mechanism

enhances the particle production [42–47]. Our theory is based
on the perturbation theory in the Furry picture [42–47,73–75],
in which the interaction with the electric field is treated
nonperturbatively but that with the vibration perturbatively.
The perturbation theory in the Furry picture is very success-
ful in the analytical description of the dynamically assisted
Schwinger mechanism [42–47] and, as we shall show in
this paper, can smoothly describe the interplay between the
nonperturbative Schwinger mechanism and the parametric dy-
namical Casimir effect, which is not feasible within adiabatic
approaches such as the world-line instanton method [37–39].
Note that our formalism can naturally be extended to, e.g.,
fermionic case and particles with arbitrary spin, which would
be discussed in another publication.

This paper is organized as follows: In Sec. II, we derive
a general formula for the particle production number in the
presence of both vibrating plates and a strong electric field
based on the perturbation theory in the Furry picture. In
Sec. III, we discuss quantitative features of the production
number by considering a constant and homogeneous electric
field configuration, for which the general formula can be
evaluated exactly. We show that the dynamical Casimir effect
by the vibrating plates assists the Schwinger mechanism by
the strong electric field and vice versa, which results in
an enhancement of the production number by orders of the
magnitude. Section IV is devoted to summary and discussion.

II. GENERAL FORMULA

We derive a production number formula for a massive
charged scalar field in the presence of both vibrating plates
and a strong electric field based on the perturbation theory
in the Furry picture [42–47,73–75]. We first explain our
physical setup in Sec. II A, and write down the corresponding
field equation in Sec. II B. In Sec. II C, we solve the field
equation perturbatively in terms of the vibration while the
nonperturbative interaction with the strong electric field is
fully taken into account by using a Green function dressed by
the strong electric field (the perturbation theory in the Furry
picture). Then, we canonically quantize the field operator at
asymptotic states, which allows us to directly compute the
vacuum expectation value of the number operator to derive
the production number formula.

A. Setup

We consider a massive charged scalar field φ̂ with mass m
and electric charge e confined between two vibrating plates
with (infinitely large) transverse area S⊥ put at z = z0, z0 +
L(t ), and apply a strong electric field in the transverse direc-
tion (see Fig. 1),

Aμ ≡ (0, A⊥, 0) =
(

0,−
∫ t

dt E⊥, 0

)
, (1)

where we adopted the temporal gauge A0 = 0. One can always
gauge out the longitudinal component A3 = 0 because there is
no longitudinal electric field.

We assume (i) that the plates are vibrating just slightly, i.e.,
the amplitude of the vibration is small (but the frequency can
be large) and (ii) that the plates adiabatically stop moving at
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FIG. 1. A schematic picture of our system: a strong electric field
E⊥ applied between two vibrating plates with transverse area S⊥ and
distance L(t ) = L0 + l (t ).

the infinite future and past. Namely, we separate L(t ) into a
time-independent part L0 and a time-dependent part l (t ) as

L(t ) ≡ L0 + l (t ), (2)

and assume (i) smallness of the amplitude,∣∣∣∣ l

L0

∣∣∣∣ � 1, (3)

and (ii) adiabaticity,

lim
t→±∞ l = 0. (4)

These assumptions may be reasonable because (i) it is ex-
perimentally difficult to realize a vibration with large am-
plitude if its frequency is large, and (ii) it is impossible
to vibrate the plates forever. Theoretically, as we describe
below, we use (i) to justify the lowest order perturbation in
terms of the vibration l and (ii) to define asymptotic states in
a well-defined manner. Note that Eq. (2) does not necessarily
mean L0 is large, i.e., only the ratio l/L0 is assumed to be
small and the size of L0 is arbitrary.

B. Field equation and boundary condition

The field operator φ̂ obeys the Klein-Gordon equation,

0 = [
∂2

t − (∂⊥ − ieA⊥)2 − ∂2
z + m2]φ̂. (5)

As the field φ̂ cannot go outside of the two plates, φ̂ should
satisfy a boundary condition,

0 = φ̂(z0) = φ̂(z0 + L(t )). (6)

The time-depending boundary condition (6) is quite in-
convenient in solving the Klein-Gordon equation (5), and to
see how the vibrating plates affect the time evolution of the
system. To circumvent these inconveniences, we change the

coordinates as(
t
z

)
→
(

τ (t, z)
ξ (t, z)

)
≡
(

t
(z − z0)/L(t )

)
. (7)

Then, the Klein-Gordon equation (5) and the boundary condi-
tion (6) can be re-expressed as

0 =
[(

∂

∂τ
− L̇

L
ξ

∂

∂ξ

)2

−(∂⊥−ieA⊥)2 −
(

1

L

∂

∂ξ

)2

+ m2

]
φ̂,

(8)

and

0 = φ̂(ξ = 0) = φ̂(ξ = 1). (9)

Notice that L explicitly enters in the new field equation (8),
which effectively describes the interaction between particles
and the vibrating plates. Through the interaction, the vibrating
plates can supply energy to the vacuum if L̇ �= 0, and thus par-
ticles can be excited from the vacuum if the supplied energy
is larger than the mass gap ∼m (i.e., the dynamical Casimir
effect). Mathematically speaking, the time-translational in-
variance in Eq. (8) is explicitly broken by L, so that the pos-
itive and negative frequency modes (particle and antiparticle
modes) ∝ e∓iωpt are mixed with each other during the time
evolution. As shown below, the vacuum expectation value of
the number operator can have nonzero value because of this
mixing.

C. Production number within the perturbation theory in the
Furry picture

We evaluate the production number of particles and an-
tiparticles from the vacuum in the presence of the vibration
and strong electric field: We first solve the field equation (8)
within the perturbation theory in the Furry picture (i.e.,
a perturbative calculation with a dressed propagator/wave
function) [42–47,73–75]. As we assumed that the plates are
vibrating just slightly, we are justified to expand the field φ̂

perturbatively in terms of the small displacement l . On the
other hand, the electric field E⊥ is assumed to be strong,
so that its interaction with the field φ̂ should be treated
nonperturbatively. That is, a free propagator/wave function is
inappropriate to perform the perturbative calculation in terms
of the vibration, and one has to use a dressed propagator/wave
function which is fully dressed by the strong electric field.
After obtaining a solution of the field equation (8) within the
perturbation theory in the Furry picture, we canonically quan-
tize the field operator to define annihilation operators at the
asymptotic future and past. Then, we can explicitly evaluate
the in-vacuum expectation value of the number operator at
t = ∞ to get a production number formula up to the lowest
order in the displacement l , while the interaction with the
strong electric field is fully taken into account.

We solve the field equation (8) within the perturbation
theory in the Furry picture. To this end, we first expand Eq. (8)
in terms of the small displacement l � L0. We find[

∂2

∂τ 2
− (∂⊥ − ieA⊥)2 −

(
1

L0

∂

∂ξ

)2

+ m2

]
φ̂ = V φ̂, (10)
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where

V ≡
(

l̈

L0
+ 2

l̇

L0

∂

∂τ

)
ξ

∂

∂ξ
− 2

l

L0

(
1

L0

∂

∂ξ

)2

+ O((l/L0)2)

(11)

describes effects of the vibration. Note that L−1
0 ∂ξ gives the

longitudinal momentum and is totally independent of the
smallness of l . Also, note that V should be adiabatically
switched off at the infinite future and past,

lim
τ→±∞V = 0, (12)

because of the adiabaticity of l (4). Then, by using the Green
function technique, one can write down a formal solution of
Eq. (10) as

φ̂(x) =
√

Zφ̂in(x) +
∫

d4y GR(x, y)V (y)φ̂(y)

=
√

Z

[
φ̂in(x) +

∫
d4y GR(x, y)V (y)φ̂in(y)

+ O((l/L0)2)

]
, (13)

where Z is the field renormalization constant and GR is the
retarded Green function satisfying

δ4(x − x′) =
[

∂2

∂τ 2
− (∂⊥ − ieA⊥)2

−
(

1

L0

∂

∂ξ

)2

+ m2

]
GR(x, x′)

0 = GR(τ < τ ′). (14)

Notice that the Green function GR is fully dressed by
the strong electric field E⊥. In Eq. (13), we required the
Lehmann-Symanzik-Zimmermann (LSZ) asymptotic condi-
tion [98] onto φ̂ as1

lim
τ→±∞[φ̂(x) −

√
Zφ̂as(x)] = 0, (15)

where φ̂as (as = in/out) is a solution of the field equation
without V (i.e., without the perturbative vibration) because V
is vanishing at the infinite future and past [see Eq. (12)].

In order to define the notion of a particle from the solution
of the field equation (13), we express the asymptotic field
operator φ̂as in terms of a mode integral as

φ̂as(x) = 2π

L0

∞∑
n=1

∫
d2 p⊥

× [
+φas

p⊥,n(x)âas
p⊥,n + −φas

p⊥,n(x)b̂as†
−p⊥,n

]
, (16)

1Strictly speaking, the equality in Eq. (15) should be interpreted as
a weak equality. It is not a strong equality among operators, but a
weak equality holds only after operators are sandwiched by states. In
this work, we are interested only in expectation values of the number
operator, so that the difference between a strong and weak equality
is not important.

where ±φas
p⊥,n are the positive and negative frequency mode

functions at the corresponding asymptotic times which are
defined as two independent solutions of[

∂2

∂τ 2
− (∂⊥ − ieA⊥)2 − 1

L2
0

∂2

∂ξ 2
+ m2

]
±φas

p⊥,n = 0, (17)

with a boundary condition (i.e., a plane wave at the infinite
future and past),

lim
τ→−∞/+∞ ±φin/out

p⊥,n = exp[∓i
∫ τ dτ ωp⊥−eA⊥,n]√
2ωp⊥−eA⊥,n

× eip⊥·x⊥

2π

√
L0

π
sin(nπξ ), (18)

where ωp⊥,n (n = 1, 2, . . .) is the on-shell energy,

ωp⊥,n ≡
√

m2 + p2
⊥ +

(
nπ

L0

)2

. (19)

Here, we can safely identify the positive and negative fre-
quency mode functions at the asymptotic times by the plane
waves thanks to the adiabatic assumption (12): The vibration
adiabatically goes off, and the time-translational symmetry
is restored at the asymptotic times. Therefore, the plane
waves, which are the eigenfunctions of the time-translational
operation −i∂τ , becomes a good basis for the mode expan-
sion at the asymptotic times. It should be stressed here that
±φin

p⊥,n �= ±φout
p⊥,n if L or A⊥ is time dependent because their

time dependence mixes the positive and negative frequency
modes. Only if L and A⊥ are time independent, can one have
±φin

p⊥,n = ±φout
p⊥,n. Note that the plane waves contain a sine

function and the on-shell energy is quantized by the label
n = 1, 2, . . . ∈ N because of the boundary condition (9). We
also note that the mode functions ±φas

p⊥,n are normalized as

(
±φas

p⊥,n|±φas
p′
⊥,n′
) = ± L0

2π
δn,n′δ2(p⊥ − p′

⊥)(
∓φas

p⊥,n|±φas
p′
⊥,n′
) = 0, (20)

with (φ1|φ2) being the Klein-Gordon inner product defined as

(φ1|φ2) ≡ i
∫

d3x φ∗
1

↔
∂ τφ2. (21)

Imposing the standard canonical commutation relations
onto φ̂as, one can quantize âas

p⊥,n, b̂as
p⊥,n to obtain annihilation

operators at the corresponding asymptotic times. From the
normalization condition (20), the commutation relation for the
annihilation operators read

L0

2π
δn,n′δ2(p⊥ − p′

⊥) = [
aas

p⊥,n, aas†
p′

⊥,n′
] = [

bas
p⊥,n, bas†

p′
⊥,n′
]

(others) = 0, (22)

which, as usual, can be interpreted that âas
p⊥,n and b̂as

p⊥,n destroy
a particle and an antiparticle with quantum number n, p⊥ at
the corresponding asymptotic times, respectively.

The annihilation operators at in and out states are not
independent with each other but are related with each other
by a Bogoliubov transformation. To see this, we use Eq. (13)
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and

GR(x, x′) = iθ (τ − τ ′)[φas(x), φas†(x′)] = iθ (τ − τ ′)
2π

L0

∞∑
n=1

∫
d2 p⊥

[
+φas

p⊥,n(x)+φas∗
p⊥,n(x′) − −φas

p⊥,n(x)−φas∗
p⊥,n(x′)

]
. (23)

Then, we find (
ain/out

p⊥,n

bin/out†
−p⊥,n

)
=
( (

+φ
in/out
p⊥,n

∣∣φin/out
)

−(−φ
in/out
p⊥,n

∣∣φin/out
)
)

= lim
τ→−∞/+∞

1√
Z

( (
+φ

in/out
p⊥,n

∣∣φ)
−(−φ

in/out
p⊥,n

∣∣φ)
)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
+φout

p⊥,n

∣∣φin
)

+i
∫ +∞

−∞
d4y+φout∗

p⊥,n(y)V (y)φin(y) + O((l/L0)2)

−(−φout
p⊥,n

∣∣φin
)

+ i
∫ +∞

−∞
d4y−φout∗

p⊥,n(y)V (y)φin(y) + O((l/L0)2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

Therefore,

aout
p⊥,n = 2π

L0

∑
n′

∫
d2 p′

⊥

[{(
+φout

p⊥,n

∣∣+φin
p′
⊥,n′
)+ i

∫
d4y+φout∗

p⊥,nV +φin
p′
⊥,n′ + O((l/L0)2)

}
ain

p′
⊥,n′

+
{(

+φout
p⊥,n

∣∣−φin
p′
⊥,n′
)+ i

∫
d4y+φout∗

p⊥,nV −φin
p′
⊥,n′ + O((l/L0)2)

}
bin†

−p′
⊥,n′

]
, (25a)

bout†
−p⊥,n = 2π

L0

∑
n′

∫
d2 p′

⊥

[{
−(−φout

p⊥,n

∣∣+φin
p′
⊥,n′
)+ i

∫
d4y−φout∗

p⊥,nV +φin
p′
⊥,n′ + O

(
(l/L0)2

)}
ain

p′
⊥,n′

+
{
−(−φout

p⊥,n

∣∣−φin
p′
⊥,n′
)+ i

∫
d4y−φout∗

p⊥,nV −φin
p′
⊥,n′ + O((l/L0)2)

}
bin†

−p′
⊥,n′

]
. (25b)

An important point here is that the annihilation operators at out-state âout
p⊥,n, b̂out

p⊥,n contain the creation operators at in-state

âin†
p⊥,n, b̂in†

p⊥,n if the inner products and the matrix elements are nonvanishing. It is easy to show that the matrix elements can be

nonvanishing only when ±φin
p⊥,n �= ±φout

p⊥,n. This implies that the annihilation operators at out-state âout
p⊥,n, b̂out

p⊥,n cannot annihilate
the in-vacuum state if ±φin

p⊥,n �= ±φout
p⊥,n and, in turn, implies that the in-vacuum expectation value of the number operator at

out-state becomes nonvanishing.
Now, we are ready to compute the total production number of particles N and antiparticles N̄ by directly evaluating the

in-vacuum expectation value of the number operator at out-state t = τ → +∞. The result is

(−)
N ≡ S⊥L0 × 2π

L0

∞∑
n=1

∫
d2 p⊥

(−)
n p⊥,n, (26)

where S⊥L0 is the volume of the system, and

np⊥,n ≡ 1

S⊥L0

〈vac; in|aout†
p⊥,naout

p⊥,n|vac; in〉
〈vac; in|vac; in〉 = 1

S⊥L0

2π

L0

∞∑
n′=1

∫
d2 p′

⊥

∣∣∣∣(+φout
p⊥,n

∣∣−φin
p′
⊥,n′
)+ i

∫
d4y+φout∗

p⊥,nV −φin
p′
⊥,n′ + O((l/L0)2)

∣∣∣∣
2

,

(27a)

n̄p⊥,n ≡ 1

S⊥L0

〈vac; in|bout†
p⊥,nbout

p⊥,n|vac; in〉
〈vac; in|vac; in〉 = 1

S⊥L0

2π

L0

∞∑
n′=1

∫
d2 p′

⊥

∣∣∣∣−(−φout
p⊥,n

∣∣+φin
p′
⊥,n′
)+ i

∫
d4y−φout∗

p⊥,nV +φin
p′
⊥,n′ + O((l/L0)2)

∣∣∣∣
2

,

(27b)

are the distributions of particles and antiparticles for each
mode p⊥, n, respectively. The in-vacuum state at t = τ →
−∞, which we write |vac; in〉, is defined as

0 = ain
p⊥,n |vac; in〉 = bin

p⊥,n |vac; in〉 for any p⊥, n. (28)

Note that n′, p′
⊥ in Eqs. (27a) and (27b) can be interpreted as

the quantum number of the pair produced particle. The matrix
element in Eqs. (27a) and (27b) always has off-diagonal com-
ponents n �= n′ because the vibration gives finite longitudinal
momentum to the produced particles.
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The production number formula (26) smoothly connects
the nonperturbative Schwinger mechanism and the parametric
dynamical Casimir effect: In the limit of no vibration V → 0,
the second term in Eqs. (27a) and (27b) vanishes. Then,
we only have the first term, which describes the particle
production by an electric field. This is, by definition, the
Schwinger mechanism. On the other hand, the second term
includes the effect of the vibration. In the absence of an elec-
tric field E⊥ → 0 (or, equivalently, V becomes much greater
than E⊥), our formalism reduces to the standard perturbation
theory without E⊥, in which the first term vanishes and only
the second term survives. Then, the particle production is
driven by the vibration, which is nothing but the dynami-
cal Casimir effect. For general E⊥ and/or V , our formula
(26) deviates from the standard formula for the Schwinger
mechanism or the dynamical Casimir effect because (i) we
have an interference between the first and second terms and
(ii) our mode function ±φas

p⊥,n is fully dressed by the electric
field E⊥ and hence the second term is strongly affected
by e and E⊥ in a nonlinear manner. Note that the above
argument suggests that the typical frequency of the vibration
can control the interplay between the Schwinger mechanism
and the dynamical Casimir effect. This is because the strength
of the potential V (11) increases with the frequency, with
which one can control the relative strength between E⊥
and V . We explicitly confirm this expectation in the next
section.

III. CONSTANT AND HOMOGENEOUS ELECTRIC FIELD

We discuss quantitative aspects of the particle production
based on the general formula obtained in Sec. II. As a demon-
stration, let us assume that the electric field E⊥ is sufficiently
slow such that it is well approximated by a constant and
homogeneous electric field, i.e.,

E⊥(x) = Eex with eE > 0. (29)

An advantage of this field configuration is that the field equa-
tion (17) is analytically solvable, with which one can exactly
evaluate the production number (26). Also, the Schwinger
mechanism for the constant and homogeneous electric field
configuration is very well understood [10], while that for a
spacetime-dependent electric field configuration is less under-
stood. It is, therefore, good to consider the well-understood
field configuration, so that we can better understand physics
of the dynamical assistance by the dynamical Casimir ef-
fect to the Schwinger mechanism and vice versa on a clear
footing.

The rest of this section is organized as follows: In Sec.
III A, we present the analytical expression for the production
number (26) using the analytical solution of the field equation
(17). In Sec. III B, we analytically discuss how the particle
production in the presence of both a strong electric field and
vibrating plates is related to the standard Schwinger mecha-
nism and the dynamical Casimir effect based on the analytical
expression for the production number obtained in Sec. III A.
We also show that the interplay between the two production
mechanisms can be controlled by the typical frequency of the
vibration. In Sec. III C, we numerically discuss the dynamical
assistance between the two production mechanisms and show

that it dramatically enhances the particle production number
compared to what the standard Schwinger mechanism or the
dynamical Casimir effect naively expects.

A. Evaluation of the formula (26)

Let us evaluate the production number formula (26) for the
constant and homogeneous electric field configuration (29).
For this field configuration, one can analytically solve the
mode equation (17) as(

+φas
p⊥,n(x)

−φas
p⊥,n(x)

)
=
(


as
p⊥,n(τ )


as∗
p⊥,n(τ )

)
eip⊥·x⊥

2π

√
L0

π
sin(nπξ ), (30)

where


in
p⊥,n = e−πap⊥ ,n/4

(2eE )1/4

×
[

D−iap⊥ ,n−1/2

(
−eiπ/4

√
2

eE
(eEτ + px )

)]∗
,


out
p⊥,n = e−πap⊥ ,n/4

(2eE )1/4

× D−iap⊥ ,n−1/2

(
eiπ/4

√
2

eE
(eEτ + px )

)
. (31)

Here, Dν (z) is the parabolic cylinder function and

ap⊥,n ≡ m2 + p2
y + (

nπ
L0

)2

2eE
. (32)

Using the solution (30), one can exactly evaluate the inner
product and the matrix element in Eqs. (27a) and (27b). We
find (

+φout
p⊥,n

∣∣−φin
p′
⊥,n′
)

= −[(+φout
p⊥,n

∣∣−φin
p′
⊥,n′
)]∗

= δ2(p⊥ − p′
⊥) × L0

2π
δn,n′ × (+i)e−πap⊥ ,n , (33)

and

i
∫

d4y±φout∗
p⊥,nV ∓φin

p′
⊥,n′

= δ2(p⊥ − p′
⊥) × L0

2π
× i

nπ√
eEL0

n′π√
eEL0

(−1)n+n′

×
∫ ∞

0
dω

l̃ (ω)

L0
ei ω2−4pxω

4eE

(
ω√
2eE

)i(ap⊥ ,n−ap⊥ ,n′ )

× 1F̃1

(
1

2
+ iap⊥,n; 1 + i(ap⊥,n − ap⊥,n′ ); −i

ω2

2eE

)
,

(34)

where

l̃ (ω) ≡
∫ +∞

−∞
dt e−iωt l (t ), (35)
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and O((l/L0)2) term is discarded. Putting Eqs. (33) and (34)
into Eqs. (27a) and (27b), we arrive at

np⊥,n = n̄−p⊥,n

= 1

(2π )3

∞∑
n′=1

e−π (ap⊥ ,n+ap⊥ ,n′ )

∣∣∣∣δn,n′ + nπ√
eEL0

n′π√
eEL0

× (−1)n+n′
∫ ∞

0
dω

l̃ (ω)

L0
ei ω2−4pxω

4eE

(
ω√
2eE

)i(ap⊥ ,n−ap⊥ ,n′ )

× 1F̃1

(
1

2
+ iap⊥,n; 1 + i(ap⊥,n − ap⊥,n′ ); −i

ω2

2eE

)∣∣∣∣
2

.

(36)

The total production number (26) can be evaluated by
integrating Eq. (36). By noting

∫
d px = eET with T being

the whole time interval [55,99], we find

N = N̄ = S⊥L0T

(2π )3
m4
∑

n

∑
n′

2
π√

eEL0

∣∣∣∣eE

m2

∣∣∣∣
2

e−π m2

eE

×
[
δn,n′ × e

−π ( nπ√
eEL0

)2

{
1 + 2π

T

∣∣∣∣ nπ√
eEL0

∣∣∣∣
2 l̃ (0)

L0

}

+ 2π

T

1√
eE

∣∣∣∣ nπ√
eEL0

∣∣∣∣
2∣∣∣∣ n′π√

eEL0

∣∣∣∣
2

e
−π n2+n′2

2

∣∣∣ π√
eEL0

∣∣∣2

×
∫

d py

∫ ∞

0
dω e−π

p2
y

eE | l̃ (ω)

L0
|2

×
∣∣∣∣∣1F̃1

(
1

2
+ i

2

{
m2 + p2

y

eE
+
∣∣∣∣ nπ√

eEL0

∣∣∣∣
2
}

; 1

+ i
n2 − n′2

2

∣∣∣∣ π√
eEL0

∣∣∣∣
2

; −i
ω2

2eE

)∣∣∣∣∣
2
⎤
⎦. (37)

B. The interplay between the Schwinger mechanism and the
dynamical Casimir effect

Let us discuss the basic features of the production num-
ber formula (37). Namely, we analytically discuss how the
formula (37) is related to the Schwinger mechanism and
the dynamical Casimir effect and how the interplay between
the two production mechanisms can be described in terms of
the typical frequency of the vibration.

1. Slow vibration: the Schwinger mechanism

For a slow vibration, the plates cannot supply large en-
ergy to the vacuum. Therefore, the main energy source for
the particle production should come from the electric field.
This implies that the particle production is dominated by the
Schwinger mechanism, for which the production number is
exponentially suppressed by the mass gap.

To see this, let � be the typical frequency of the vibration
and assume � ∼ 0. This is equivalent to assuming

l ∼ l0 ⇔ l̃ ∼ 2πδ(ω) × l0. (38)

Then, one can simplify the distribution
(−)
n p⊥,n (36) as

np⊥,n = n̄−p⊥,n,

�→0−−→ 1

(2π )3

[
1 + 2π

(
nπ√
eEL0

)2 l0
L0

+ O((l0/L0)2)

]

× exp

[
−π

m2 + p2
y + (nπ/L0)2

eE

]

= 1

(2π )3
exp

[
−π

m2 + p2
y + (nπ/L)2

eE

]

× [1 + O((l0/L0)2)], (39)

where

L = L0 + l0 (40)

is the total size of the system (2) in the slow limit (38). Up to
O((l0/L0)2), Eq. (39) reproduces the well-known Schwinger
formula [10] for a system with size L, in which the longitudi-
nal momentum pz is quantized as pz → nπ/L. Therefore, the
particle production is, indeed, dominated by the Schwinger
mechanism for a slow vibration. It should be noted that the
finiteness of the system always makes the mass gap ωp⊥,n

larger by ∼nπ/L and hence the particle production is always
suppressed if the frequency is small, i.e., if the production is
dominated by the Schwinger mechanism.

The total production number
(−)
N can be evaluated by

integrating Eq. (39). By neglecting terms of the order of
O((l0/L0)2), we find

(−)
N

�→0−−→ S⊥LT

(2π )3
m4

∣∣∣∣eE

m2

∣∣∣∣
2

e−π m2

eE

× π√
eEL

[−1 + ϑ3(0, e−π ( π√
eEL

)2

)]

≡
(−)
N (Sch;L→∞) × F

(
π√
eEL

)

≡
(−)
N (Sch), (41)

where ϑ3 is the Jacobi elliptic function of the third kind, and
(−)
N (Sch;L→∞) is the Schwinger formula for the total production
number with infinite system size L → ∞ [10],

(−)
N (Sch;L→∞) ≡ S⊥L

∫
d3 p

(2π )3
exp

[
−π

m2 + p2
x + p2

z

eE

]

= S⊥LT

(2π )3
m4

∣∣∣∣eE

m2

∣∣∣∣
2

e−π m2

eE . (42)

The factor F � 1 in Eq. (41) accounts for the finite size effect,
which suppresses the Schwinger mechanism as

F

(
π√
eEL

)
→
{

1 − π√
eEL

for π√
eEL

� 1

2 π√
eEL

e−π ( π√
eEL

)2

for π√
eEL

� 1
. (43)

Namely, the finite size effect is not important for large
L � 1/

√
eE , while it gives an exponential suppression

for small L � 1/
√

eE for which the mass gap ωp =
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√
m2 + p2

y + (nπ/L)2 becomes larger than the electric field
strength no matter how small m is. Note that the finite
transverse size effect to the Schwinger mechanism was pre-
viously discussed in Refs. [16–22] (with various theoretical
approaches and boundary conditions), whose results are con-
sistent with ours.

2. Fast vibration: the dynamical Casimir effect

If the vibration is fast enough, the plates are able to supply
large energy to the vacuum. Then, the particle production
should be driven by the vibrating plates rather than by the
electric field. Therefore, the dynamical Casimir effect should
dominate the production, for which the production number
is just suppressed by powers of the mass gap and is free
from the strong exponential suppression unlike the Schwinger
mechanism.

To see this, let us assume that the vibration is dominated
by a high-frequency mode � → ∞, for which the distribution
(−)
n p⊥,n (36) reads

np⊥,n = n̄−p⊥,n

�→∞−−−→ 1

(2π )3

∑
n′

∣∣∣∣δn,n′ exp

[
−π

m2 + p2
y + (nπ/L0)2

eE

]

+ (−1)n+n′

√
ωp⊥,nωp⊥,n′

nπ

L0

n′π
L0

l̃∗(ωp⊥,n + ωp⊥,n′ )

L0

∣∣∣∣
2

∼ 1

(2π )3

∑
n′

1

ωp⊥,nωp⊥,n′

×
(

nπ

L0

)2(n′π
L0

)2
∣∣∣∣∣ l̃ (ωp⊥,n + ωp⊥,n′ )

L0

∣∣∣∣∣
2

. (44)

Therefore, we obtain

lim
�→∞

(−)
N ∼ S⊥T

(2π )3

∑
n

∑
n′

∫
d py

1

ωp⊥,nωp⊥,n′

×
(

nπ

L0

)2(n′π
L0

)2
∣∣∣∣∣ l̃ (ωp⊥,n + ωp⊥,n′ )

L0

∣∣∣∣∣
2

≡
(−)
N (Cas). (45)

Equations (44) and (45) are independent of the electric field
E and are dependent only on the vibration l , and reproduce
the known formulas for the dynamical Casimir effect [87].
Therefore, the particle production is, indeed, dominated by the
dynamical Casimir effect for a fast vibration. Note that, to get
the second line of Eq. (44), we neglected the first term, which
comes from the inner product in Eqs. (27a) and (27b), because
it is exponentially suppressed by the mass gap ωp⊥,n. In other
words, the contribution from the first term (i.e., the Schwinger
mechanism) is subleading compared to the second term (i.e.,
the dynamical Casimir effect), which is just suppressed by
powers of the mass gap ωp⊥,n. For a very strong electric
field comparable to the mass gap eE � ω2

p⊥,n, the first term
(i.e., the Schwinger mechanism) is free from the exponential
suppression, for which case one may not neglect it. Note

FIG. 2. � dependence of the total production number N (37) for
the monochromatic vibration (46). As a comparison, the production
number for the Schwinger mechanism with finite L (41) and with
infinite L → ∞ (42), and for the dynamical Casimir effect (45)
are shown in blue, dashed cyan, and red lines, respectively. The
parameters are fixed as eE/m2 = 0.1, mL0 = 30, and ml0 = 0.3.

also that the argument of l̃ is ωp⊥,n + ωp⊥,n′ , which appears
because the vibration must supply energy ωp⊥,n + ωp⊥,n′ to
create a pair of particles with energy ωp⊥,n and ωp⊥,n′ . This
implies that the (lowest-order parametric) dynamical Casimir
effect never occurs for vibrations whose typical frequency �

is below ωp⊥,n + ωp⊥,n′ 2.

C. The dynamical assistance

At intermediate frequencies (i.e., the vibration is neither
fast or slow), both the Schwinger mechanism and the dynami-
cal Casimir effect become important, and they assist with each
other to enhance the particle production.

We demonstrate how the assistance occurs by explicitly
evaluating the total production number N (37) by considering
a monochromatic vibration as an example:

l = l0 sin �t, (46)

for which the Fourier component l̃ reads

l̃ = l0 × iπ [δ(ω + �) − δ(ω − �)]. (47)

1. � dependence

Figure 2 shows the result for the total production number
N (37) as a function of the frequency �. As a demonstration,
we considered a subcritical electric field eE/m2 = 0.1, suf-
ficiently large system size mL0 = 30, and a small vibration
ml0 = 0.3 (i.e., l0/L0 = 1/100).

2Note that our discussion here is based on the first-order pertur-
bation theory with respect to the vibration, which means that the
vibration can interact with particles only once. If one considers
higher nth-order perturbations, i.e., multiple interactions between the
vibration and particles, the threshold frequency can be lowered as
� = (ωp⊥,n + ωp⊥,n′ )/n. Such higher order perturbations are, how-
ever, suppressed by (l0/L0 )n and hence can safely be neglected.
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Figure 2 clearly shows the interplay between the
Schwinger mechanism and the dynamical Casimir effect that
we discussed in Sec. III B. Namely, the Schwinger mecha-
nism (the dynamical Casimir effect) dominates the particle
production when the frequency is small � � m,

√
eE , 1/L0

(large � � m,
√

eE , 1/L0), for which the production number
is strongly (weakly) suppressed by an exponential (powers) of
the mass gap ωp⊥,n. Notice that the dynamical Casimir effect
occurs only above |�| � 2

√
m2 + (π/L0)2 > 2m because of

the energy conservation as we discussed below Eq. (45).
This point may become clearer if one carries out the py

integration in Eq. (45), which is analytically doable for the
monochromatic vibration (46) as

(−)
N (Cas) = S⊥L0T

(2π )3
m4 × 2π3

∣∣∣∣eE

m2

∣∣∣∣
2∣∣∣∣ l0

L0

∣∣∣∣
2

×
∑

n

∑
n′

∣∣∣∣nπ

L0

∣∣∣∣
2∣∣∣∣n′π

L0

∣∣∣∣
2 1

L0|�|

× �

⎛
⎝|�| −

√
m2 +

∣∣∣∣nπ

L0

∣∣∣∣
2

−
√

m2 +
∣∣∣∣n′π

L0

∣∣∣∣
2
⎞
⎠.

(48)

Hence, if the production is dominated by the dynamical
Casimir effect, the n, n′th modes can contribute to the produc-
tion only when |�| �

√
m2 + (nπ/L0)2 +

√
m2 + (n′π/L0)2

is satisfied. This is in contrast to the production by the
Schwinger mechanism, which does not have such a sharp
threshold behavior for the modes n, n′ because an electric field
can mix up different energy states.

At intermediate frequencies (cf. �/m ∼ 0.5 in Fig. 2),
the production number N is dramatically enhanced by orders
of the magnitude compared to the naive expectations of the
Schwinger mechanism and the dynamical Casimir effect. This
is the dynamical assistance effect between the two production
mechanisms. Note that the size of the enhancement changes
quadratically with l and also is dependent on the system size
L0 and the electric field strength E , which will be discussed
in Secs. III C 2 and III C 3, respectively. One may interpret
this assistance in two different ways (although the physics is
the same) depending on which mechanism one compares with
the result: (i) Since the production number in the presence
of the vibrating plates is much more abundant than the naive
Schwinger formula without vibrating plates, one may say
that the Schwinger mechanism is enhanced by the dynamical
Casimir effect. This may be understood as an analog of the
dynamically assisted Schwinger mechanism not by a super-
position of an additional electromagnetic field [65–69] but by
the vibrating plates. Physically, the energy supply from the
vibrating plates reduces the mass gap, and hence it becomes
easier for the quantum tunneling by a strong electric field (i.e.,
the Schwinger mechanism) to occur. (ii) The particle produc-
tion occurs even below the threshold frequency for the low-
est mode |�| �

√
m2 + (nπ/L0)2 +

√
m2 + (n′π/L0)2. Since

the naive (lowest-order parametric) dynamical Casimir effect
alone cannot create particles if the frequency is below the
threshold, one may say that the Schwinger mechanism assists
the dynamical Casimir effect to lower the threshold frequency.

FIG. 3. The contribution from the n, n′th modes to the total
production number N (37) for the monochromatic vibration (46).
Different colors distinguish the maximum value of the summation
n, n′ � nmax = 0, 1, . . . , 20, and the black curve is for nmax = 25.
The parameters are the same as Fig. 2, i.e., eE/m2 = 0.1, mL0 = 30,
and ml0 = 0.3.

Physically, the energy supplied by the electric field reduces the
mass gap, which assists the perturbative pair production by
the vibrating plates (i.e., the dynamical Casimir effect). This
may be understood as an analog of the Franz-Keldysh effect
[42,100–103], in which photoabsorption rate in the presence
of a strong electric field becomes finite even below the gap
energy.

Figure 3 shows how the n, n′th modes contribute to the
production number N . The lowest mode n, n′ = 1 has the
smallest mass gap, so that it gives the largest contribution
to the production number. In particular, the lowest mode
dominates the production if the system size is very small
L0 � |�|−1, |eE |−1/2, m−1 (cf. the lowest Landau approxi-
mation in a strong magnetic field), for which the mass gap
of the higher modes becomes very large and their produc-
tion is strongly suppressed. With increasing � (i.e., injecting
more energy to the vacuum), higher n, n′th modes begin to
contribute at around the naive threshold frequency |�| ∼√

m2 + (nπ/L0)2 +
√

m2 + (n′π/L0)2. Notice that there is no
sharp threshold behavior as the dynamical Casimir effect
expects (48) and the particle production has a tail below the
threshold. This is nothing but the dynamical assistance by the
Schwinger mechanism to the dynamical Casimir effect that
we discussed in the last paragraph. Also, note that the produc-
tion number for each mode exhibits an oscillating behavior as
a function of � above the threshold. This can be understood
as an analog of the Franz-Keldysh oscillation [42,102,103],
which occurs because of the quantum reflection process (a
dual process of the quantum tunneling) in the presence of a
strong electric field. If L0 is large such that higher n, n′ modes
can contribute to the total production number N , it is hard
to see the oscillation behavior in N because the oscillation at
each mode cancels with each other after the n, n′ summation.
Inversely, the oscillating behavior in N may survive if L0

is small such that only a few modes can contribute to the
production number N .
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FIG. 4. L0 dependence of the total production number N (37) for
the monochromatic vibration (46). As a comparison, the production
number for the Schwinger mechanism with finite L (41) and with
infinite L → ∞ (42) are shown in blue and dashed cyan, respectively.
The parameters are fixed as eE/m2 = 0.1, �/m = 1, and ml0 = 0.3.

2. L0 dependence

Figure 4 shows the system size L0 dependence of the
total production number N (37). As a demonstration, we
considered a subcritical electric field eE/m2 = 0.1 and an in-
termediate frequency �/m = 1. We fixed the amplitude of the
vibration as ml0 = 0.3, and therefore the ratio l0/L0 decreases
as increasing L0. Note that the naive dynamical Casimir
effect expects no particle production N(Cas) = 0 [Eq. (45)] for
�/m = 1.

For small L0, the particle production is strongly suppressed
because of the finite size effect. Although the dynamical
assistance enhances the production by orders of the magnitude
compared to the naive Schwinger formula with finite L0,
the finite size effect is so large that the production number
becomes much smaller than the naive Schwinger formula
with infinite L0 → ∞. Indeed, one may analytically take the
L0 → 0 limit of Eq. (37) to find

lim
L0→0

(−)
N

= S⊥L0T

(2π )3
m4 × 2

π√
eEL0

∣∣∣∣eE

m2

∣∣∣∣
2

e−π m2

eE e
−π ( π√

eEL0
)2

×
[

1 + 2π

T

∣∣∣∣ π√
eEL0

∣∣∣∣
2 l̃ (0)

L0

+2π

T

∣∣∣∣ π√
eEL0

∣∣∣∣
3 ∫ ∞

0

dω

2π

√
eE

ω
e

2 ω√
eE

π√
eEL0

∣∣∣∣ l̃ (ω)

L0

∣∣∣∣
2
]
.

(49)

It is evident that the production number is suppressed expo-
nentially by L0 due to the overall factor exp[−π (π/

√
eEL0)2],

i.e., the finite size effect strongly suppresses the Schwinger
mechanism as well as the dynamical assistance. Also, the
third term (i.e., the dynamical assistance) is exponentially
large ∝ exp[2(ω/

√
eE )(π/

√
eEL0)] compared to the first and

second terms (i.e., the Schwinger mechanism with finite L0).
This implies that the relative magnitude of the dynamical
assistance increases with an exponential of L−1

0 .

FIG. 5. E dependence of the total production number N (37) for
the monochromatic vibration (46). As a comparison, the production
number for the Schwinger mechanism with finite L (41) and with
infinite L → ∞ (42) are shown in blue and dashed cyan, respectively.
The parameters are fixed as �/m = 1, mL0 = 30, and ml0 = 0.3.

For large L0, the production number asymptotes the naive
Schwinger formula with infinite L0 → ∞, i.e., no dynamical
assistance, since l0/L0 → 0. Indeed, in the limit of L0 → ∞,
Eq. (37) behaves as

lim
L0→∞

(−)
N

= S⊥L0T

(2π )3
m4 ×

∣∣∣∣eE

m2

∣∣∣∣
2

e−π m2

eE

⎡
⎣1 + 1

L0T
l̃ (0)

+ 1

L0T

1

eE

∫ +∞

−∞
d pzd p′

zd py

∫ ∞

0
dω |l̃ (ω)|2

× p2
z

eE

p′
z
2

eE
e−π

p2
y+ p2

z +p′z2

2
eE

∣∣∣∣∣1F̃1

(
1

2
+ i

2

m2 + p2
y + p2

z

eE
; 1

+ i
p2

z − p′
z
2

2eE
; −i

ω2

2eE

)∣∣∣∣∣
2
⎤
⎦, (50)

where we used

nπ

L0
→ pz,

2π

L0

∑
n

→
∫ +∞

−∞
d pz. (51)

Therefore, the dynamical assistance decays slowly ∝L−1
0 for

large L0 if l0 is fixed. Note that, if one fixes the ratio l0/L0

instead of fixing l0, the production number linearly increases
with L0. This is simply because the dynamical assistance
becomes stronger with L0 since l0 increases (i.e., the vibration
becomes stronger) with L0.

At intermediate L0, the dynamical assistance overwhelms
the finite size effect, and the production number becomes
more abundant than the naive Schwinger formula for infinite
L0 → ∞.

3. E dependence

Figure 5 shows the electric-field strength E dependence
of the total production number N (37). As a demonstration,
we considered sufficiently large system size mL0 = 30, and
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a small vibration ml0 = 0.3 (i.e., l0/L0 = 1/100). We also
fixed the frequency as �/m = 1, for which the naive dynam-
ical Casimir effect expects no particle production N(Cas) = 0
[Eq. (45)].

For a supercritical electric field exceeding the mass gap,
the particle production is dominated by the Schwinger mech-
anism, and the dynamical assistance becomes unimportant.
This is because the Schwinger mechanism becomes free
from the strong exponential suppression for a supercritical
field, while the dynamical assistance is always suppressed
by powers of the mass gap independent of the electric field
strength.

For a subcritical electric field strength below the mass
gap, the dynamical assistance becomes important, and the
particle production is enhanced by orders of the magnitude
compared to the naive Schwinger mechanism. This is be-
cause the Schwinger mechanism is strongly suppressed by
an exponential of the mass gap, while the dynamical as-
sistance is suppressed just weakly by powers of the mass
gap.

IV. SUMMARY AND DISCUSSION

We have discussed massive charged particle production
from the vacuum in the presence of vibrating plates and a
strong electric field. Based on the perturbation theory in the
Furry picture, we have analytically derived a formula for the
particle production number, and have shown that (i) the for-
mula smoothly describes the interplay between the Schwinger
mechanism by the strong electric field and the dynamical
Casimir effect by the vibrating plates, and the interplay is
controlled by the typical frequency of the vibration; (ii) at
intermediate frequency, the Schwinger mechanism and the dy-
namical Casimir effect assist with each other to dramatically
enhance the particle production by orders of the magnitude;
(iii) the dynamical assistance can be greater than the finite size
effect, which gives an exponential suppression on the produc-
tion number; and (iv) the dynamical assistance becomes more
important for smaller system size and/or subcritical electric
field strength.

Our results suggest a novel method to enhance the
Schwinger mechanism by introduction of vibrating plates.
The vibration could be realized either mechanically or effec-
tively, just as the usual experimental setups for the dynamical
Casimir effect. This could be interesting to the current intense
laser experiments, in which the available field strength is
still far below the critical strength eEcr and hence some
mechanism to enhance the Schwinger mechanism is highly
demanded. Our results indicate that the enhancement becomes
larger for weaker electric field strength below the critical one,
which is exactly the relevant parameter regime at the current
experiments. Note that one may combine the usual dynami-
cally assisted Schwinger mechanism (i.e., superimposition of
a fast electromagnetic field) [65–69] to further enhance the
production number.

One may interpret the above application in an opposite
manner: One may use a strong electric field to enhance the
dynamical Casimir effect. Although the dynamical Casimir
effect is usually applied for photon production, the same
production mechanism, in principle, can be applied to massive

particles (e.g., electron) as well. However, it is very difficult
within the current experimental technologies to achieve a very
fast oscillation with frequency comparable to the mass scale
of, e.g., electron, so that such massive particle production
is not feasible in laboratory experiments at the present. Our
results suggest that one may lower the threshold frequency
for the dynamical Casimir effect by applying a strong electric
field if the massive particle is charged. In other words, one
may produce massive particles via the dynamical Casimir
effect even with a slow vibration under the assistance by a
strong electric field.

Another interesting application is ultrarelativistic heavy-
ion collision experiments operated at Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Laboratory and the
Large Hadron Collider (LHC) at the European Organization
for Nuclear Research (CERN). In those experiments, expand-
ing color flux tubes (sometimes called glasma) are produced
just after a collision of ions [104–108]. The speed of the
expansion is relativistically fast, so that the dynamical Casimir
effect may take place [109] on top of the Schwinger mecha-
nism by the chromo-electromagnetic field of the flux tubes.
If this is the case, the dynamical Casimir effect as well as
the dynamical assistance between the two mechanisms could
leave some experimental traces in, e.g., hadron multiplicities
and rapidity correlations.

It is also interesting to pursue a condensed-matter analog
of our results. Electrical breakdown of materials (Landau-
Zener transition [110–113]) is one of the possible examples:
Electrical breakdown can be understood as an analog of the
Schwinger mechanism. Usually, materials are assumed to be
static in discussing electrical breakdown. Our results suggest
that addition of some mechanical perturbations onto materials
(e.g., acoustic wave on the surface) and/or varying material
properties (e.g., dielectric constant) in time may trigger elec-
trical breakdown even below the naive threshold, which could
be useful in designing, e.g., optical devices.

In the present paper, we have concentrated on the dynam-
ical assistance between the Schwinger mechanism (electric
field) and the dynamical Casimir effect (vibrating plates).
In principle, any kinds of external forces/fields can assist
the Schwinger mechanism and vice versa. In fact, no matter
what the physics origin of the potential V (11) is, one gets
the same assistance effect for the Schwinger mechanism
for the same V . It is, therefore, interesting to pursue other
combinations of forces/fields. For example, one may con-
sider the assistance between the Schwinger mechanism and
gravitational fields, which could be important to understand
the magnetogenesis in the early universe [57–62]. Another
example is the axion production by axion condensate [114],
which may take place at the early universe where the curvature
is large and hence the curvature effect could enhance the axion
production and vice versa. We leave these topics as future
work.
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