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Real-time chiral dynamics from a digital quantum simulation
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The chiral magnetic effect in a strong magnetic field can be described using the chiral anomaly in the (1 + 1)-
dimensional massive Schwinger model with a time-dependent θ term. We perform a digital quantum simulation
of the model at finite θ angle and vanishing gauge coupling using an IBM-Q digital quantum simulator, and
observe the corresponding vector current induced in a system of relativistic fermions by a global chiral quench—
a sudden change in the chiral chemical potential or θ angle. At finite fermion mass, there appears an additional
contribution to this current that stems from the nonanomalous relaxation of chirality. Our results are relevant for
the real-time dynamics of chiral magnetic effect in heavy ion collisions and in chiral materials, as well as for
modeling high-energy processes at hadron colliders.
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I. INTRODUCTION

Quantum theories possess a multidimensional Hilbert
space that becomes very large for relativistic and/or many-
body systems. This is why, in addressing the real-time dynam-
ics, the use of quantum simulations potentially provides an
exponential advantage over the classical simulations in terms
of required computational time and memory [1,2]. Quantum
simulations are also free from the sign problem that obstructs
the use of Markov chain Monte Carlo methods. Because of
this, along with the rapid development of digital and analog
quantum computers, quantum simulations become a valuable
source of information about the real-time behavior of relativis-
tic and many-body systems [3–40].

The chiral magnetic effect (CME) is a generation of electric
current in an external magnetic field induced by the chiral
asymmetry between the right- and left-handed fermions [41];
see [42,43] for reviews and references. It is a nonequilib-
rium phenomenon stemming from the relaxation of chiral
asymmetry via the chiral anomaly [44,45]. In high-energy
heavy ion collisions, the CME can reveal topological fluc-
tuations in QCD matter [46]. These fluctuations are akin to
the electroweak sphalerons in the early universe that induce
the baryon asymmetry. The experimental study of the effect
is ongoing at the Relativistic Heavy Ion Collider at BNL and
the Large Hadron Collider at CERN; see [47] for review. This
effect can also be studied in three-dimensional chiral materials
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(Dirac and Weyl semimetals) subjected to parallel electric and
magnetic fields, and the CME has been observed in a Dirac
semimetal ZrTe5 [48] and other materials.

In a constant magnetic field and a given chiral chemical
potential (the difference between the chemical potentials of
the right- and left-handed fermions), the magnitude of the
CME current is completely fixed by the chiral anomaly. How-
ever, this is not so for a time-dependent magnetic field [49],
or for a time-dependent chiral chemical potential. One of the
most important effects that determine the real-time dynamics
of the CME is the chirality flipping—the transitions between
the right- and left-handed fermions that are not related to the
anomaly. The simplest mechanism producing such transitions
arises from the finite masses of the fermions, since they
induce nonconservation of the axial current. The mass effects
are important for applications since the quarks in QCD are
massive, and quasiparticles in many Dirac materials possess a
finite gap.

In the limit of a strong magnetic field, the dynamics of chi-
ral fermions becomes (1 + 1)-dimensional, since the fermions
are frozen at the lowest Landau levels that are not degenerate
in spin, and are thus chiral. Indeed, the real-time dynamics of
CME and of the chiral magnetic wave can be described [50]
within the (1 + 1)-dimensional QED, the Schwinger model
[51]. The chiral anomaly relation in (1 + 1) dimensions has
the form

∂μJμ

5 = 1

π
E + 2imψ̄γ5ψ, (1)

where Jμ

5 = ψ̄γ μγ 5ψ is the axial current, E is electric field,
and m is the fermion mass. The first term represents the chiral
anomaly and the second one is due to nonconservation of
chirality induced by the masses of the fermions. It is well
known [52–54] that a background electric field Ecl in the
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Schwinger model can be introduced through the θ angle:

Ecl = g
θ

2π
. (2)

The real-time dynamics of CME can thus be studied in the
Schwinger model by considering the time-dependent θ angle.
While the CME stems from the anomaly term, it is very
important for applications to understand the role of the second
term in (1) in the relaxation of the vector current. This is the
goal of our work.

To accomplish this goal, we need to separate the effect
of the anomaly from the effect caused by the masses of the
fermions in (1). This can be achieved by first applying the
chiral rotation ψ → eiγ5θ/2ψ with θ = θ (t ) to the fermion
fields ψ , and then by putting the coupling constant g to zero. In
this limit of the theory, the time variation in θ does not induce
a background electric field [see (2)], but it does induce a
chiral imbalance between the left- and right-handed fermions
through the chiral chemical potential

μ5 = − θ̇

2
. (3)

Since the term describing the nonanomalous chirality flipping
in (1) vanishes at m = 0, in this limit of the theory the chiral
chemical potential can induce the vector current only at finite
fermion mass. In other words, a chirally imbalanced state with
μ5 �= 0 at m = 0 cannot relax to a state with μ5 = 0. This
can be seen formally by observing that the Hamiltonian of the
model in the chiral limit of m = 0 commutes with the vector
current operator, even at μ5 �= 0. This means that a chiral
imbalance indeed cannot induce a vector current in the chiral
limit of massless fermions.

The situation changes when the fermions become massive.
In this case, a chirally imbalanced state can relax to the true
ground state with μ5 = 0, and generate a vector current during
this relaxation process. It is clear that this is a real-time phe-
nomenon, and we need to introduce a time-dependent chiral
perturbation to study it. We will do this by subjecting the
system to two different types of global (spatially independent)
chiral quenches.

(1) Prepare the system in the state with θ = 0 at times t <

0. Then, starting at t = 0, rotate the θ angle according to θ =
−2μ5t , corresponding to a constant chiral chemical potential
(3).

(2) As before, prepare the system in the state with θ = 0
at times t < 0. Then abruptly change the θ angle at t = 0 to a
finite constant value corresponding to μ5 = 0; see [55] for an
earlier study of this quench type.

We will refer to these two global quench protocols as the
μ5 quench and the θ quench, respectively.

II. FREE FERMION MODEL AT FINITE θ ANGLE

We choose the following basis for the gamma matrices:

γ0 = Z, γ1 = −iY, γ5 = γ0γ1 = −X, (4)

where X ≡ σx, Y ≡ σy, and Z ≡ σz are the Pauli matrices.

The action of the massive Schwinger model with θ term in
(1 + 1)-dimensional Minkowski space is

S =
∫

d2x

[
−1

4
FμνFμν + gθ

4π
εμνFμν + ψ̄ (iγ μDμ − m)ψ

]
,

(5)

with Dμ = ∂μ − igAμ. Note that the gauge field Aμ and the
coupling constant g have mass dimensions 0 and 1, respec-
tively. In what follows, we fix the gauge by putting A0 =
0. From the action (5) the canonical momentum conjugate
to A1 can be read off as 
 = Ȧ1 − gθ

2π
. The corresponding

Hamiltonian is then given by

H =
∫

dx

[
1

2

(

 + gθ

2π

)2
+ ψ̄ (iγ1D1 + m)ψ

]
, (6)

with commutation relations [A1(x),
(y)] = iδ(x − y) and
{ψ (x), ψ̄ (y)} = γ0δ(x − y). Therefore, the term gθ/2π can
be identified with a classical contribution to the total electric
field E = Ȧ1 [in agreement with (2)], while 
 is the quantum
contribution.

Upon the chiral transformation ψ → eiγ5θ/2ψ and ψ̄ →
ψ̄eiγ5θ/2, the θ term is absorbed into the phase of the fermion
mass term,

S =
∫

d2x

[
−1

4
FμνFμν + ψ̄

(
iγ μDμ + θ̇

2
γ0γ5 − m eiγ5θ

)
ψ

]
,

(7)

where θ = θ (t ) is a time-dependent parameter. We then de-
couple the gauge dynamics by taking the g → 0 limit to
study the free fermionic theory with chiral chemical potential
μ5 = −θ̇/2 and chirally rotated mass term. The resulting
Hamiltonian is given by

H =
∫

dx ψ̄

[
γ1

(
i∂1 − θ̇

2

)
+ m eiγ5θ

]
ψ. (8)

Let us consider how the vector current is induced as a result
of the chiral quench. In our (1+1)-dimensional system, the ax-
ial charge density q5(x) ≡ ψ̄γ5γ0ψ (x) and the vector current
density j(x) ≡ ψ̄γ1ψ (x) are related by q5 = − j; the vector
charge density q(x) ≡ ψ̄γ0ψ (x) and axial current density
j5(x) ≡ ψ̄γ5γ1ψ (x) are identical, q = j5. The Hamiltonian
before the quench H0 is obtained from (8) by setting θ = 0
and θ̇ = −2μ5 = 0. The full Hamiltonian after the quench is

H = H0 + μ5J + mψ̄ (eiγ5θ − 1)ψ, (9)

with J = ∫
dx j(x). The vector current is zero in the ground

state before the quench (t < 0),

〈J〉0 = 0, (10)

where the expectation value 〈. . . 〉0 is taken with respect to the
ground state of H0. In the massless case, the vector current is
identically zero both before and after the quench,

〈T̄ [ei
∫ t

0 dt H ]J T [e−i
∫ t

0 dt H ]〉0 = 0, (11)

because H0 and H both commute with J = −Q5. T (T̄ )
indicates that the operator product is (anti)time ordered. With

023342-2



REAL-TIME CHIRAL DYNAMICS FROM A DIGITAL … PHYSICAL REVIEW RESEARCH 2, 023342 (2020)

the fermion mass term included, H and J no longer commute,

[H, J] = 2m cos θ

∫
dx ψ̄γ5ψ (x) + 2im sin θ

∫
dx ψ̄ψ (x).

(12)

Hence the current can take a finite value. Indeed, the current
does not vanish and at short times behaves as (Appendix B)

〈T̄ [ei
∫ t ′

0 dt H ]J T [e−i
∫ t ′

0 dt H ]〉0

= i
∫ t

0
dt1〈[H (t1), J]〉0 −

∫ t

0
dt1

∫ t1

0
dt2〈[H (t2), [H (t1), J]]〉0

+ O(t3)

=
(

−2m
∫ t

0
dt1 sin θ (t1) − 2m

∫ t

0
dt1

∫ t1

0
dt2θ̇ (t2) cos θ (t1)

)

×
∫

dx〈ψ̄ψ〉0 − 4m
∫ t

0
dt1

∫ t1

0
dt2 sin θ (t1)

×
∫

dx〈ψ̄γ5∂1ψ〉0 + O(t3). (13)

Spin Hamiltonian of the lattice fermion model

Let us now set up this problem in the lattice form suit-
able for a digital quantum simulation. We impose a periodic
boundary condition, where the zeroth and N th sites are iden-
tified and N is an even integer. The staggered Hamiltonian is
[56,57]

H = −iw
N−1∑
n=0

[χ†
n χn+1 − χ

†
n+1χn]

− θ̇

4

N−1∑
n=1

[χ†
n χn+1 + χ

†
n+1χn]

+ m cos θ

N−1∑
n=0

(−1)nχ†
n χn

+ i
m

2
sin θ

N−1∑
n=0

(−1)n[χ†
n χn+1 − χ

†
n+1χn], (14)

where a is the lattice spacing and w = (2a)−1 (see Appendix
A for details). For the purpose of quantum simulation, we
apply the Jordan-Wigner transformation [58],

χn = Xn − iYn

2

n−1∏
i=0

(−iZi ), χ†
n = Xn + iYn

2

n−1∏
i=0

iZi, (15)

which leads to the desired spin Hamiltonian:

H = H1 + H2 + H3 + H4 + H5,

H1 = 1

2

N
2 −1∑
n=0

(
w − m

2
(−1)n sin θ

)
[X2nX2n+1 + Y2nY2n+1],

H2 = 1

2

N
2 −1∑
n=1

(
w − m

2
(−1)n sin θ

)
[X2n−1X2n + Y2n−1Y2n]

+ (−1)
N
2

2

(
w − m

2
(−1)N−1 sin θ

)

× [XN−1X0 + YN−1Y0]
N−2∏
i=1

Zi,

H3 = − θ̇

8

N
2 −1∑
n=0

[X2nY2n+1 − Y2nX2n+1],

H4 = − θ̇

8

N
2 −1∑
n=1

[X2n−1Y2n − Y2n−1X2n]

− (−1)
N
2 θ̇

8
[XN−1Y0 − YN−1X0]

N−2∏
i=1

Zi,

H5 = m cos θ

2

N−1∑
n=0

(−1)nZn.

(16)

It should be stressed that each Hi does not violate the particle
number conservation. This decomposition enables us to carry
out the Suzuki-Trotter decomposition (19) with the particle
number conservation preserved exactly.

We are interested in computing the spatial average of
vector current, which, in terms of spin operators, is expressed
as

J̄ = J̄1 + J̄2,

J̄1 = w

2N

N
2 −1∑
n=0

(X2nY2n+1 − Y2nX2n+1),

J̄2 = w

2N

N
2 −1∑
n=1

(X2n−1Y2n − Y2n−1X2n)

+ (−1)
N
2 w

2N
(XN−1Y0 − YN−1X0)

N−2∏
i=1

Zi.

(17)

We note that the relations (12) and (13) hold for corresponding
operators defined on the lattice without taking a continuum
limit.

III. REAL-TIME SIMULATION

We implement the quantum simulation for the global chiral
quench using a IBM Q digital quantum simulator in the three
following steps: initial state preparation, real-time evolution,
and measurement.
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A. Initial state preparation

We prepare the ground state, |(0)〉, of the Hamiltonian
(16) at θ = 0 and θ̇ = 0 using a python package for exact
diagonalization, QuSpin [59].1 This state is used as the initial
state in our studies of real-time chiral dynamics.

B. Time evolution with the Hamiltonian at θ �= 0

The time-evolution operator is applied to the initial state,

|(t )〉 = T [e−i
∫ t

0 dt ′H (t ′ )]|(0)〉. (18)

We employ the trapezoidal discretization of integration and
the Suzuki-Trotter decomposition in order to approximate
the time-evolution operator, T [e−i

∫ t
0 dt ′H (t ′ )], by elementary

unitary gates. Applying the trapezoidal rule we approxi-
mate the integral by the sum,

∑S
s=0 H̃ s := [H (0) + H (t )]/2 +∑S−1

s=1 H (st/S) = ∫ t
0 dt ′H (t ′) + O(t2/S2). Then, the Suzuki-

Trotter decomposition is done as follows:

S∏
s=0

e−i(H̃ s
5+H̃ s

4+H̃ s
3+H̃ s

2+H̃ s
1 ) t

S

= eiH̃S+1
2

t
2S

S∏
s=0

(
e−i(H̃ s+1

2 +H̃ s
2 ) t

2S e−iH̃ s
1

t
2S e−iH̃ s

3
t

2S e−iH̃ s
5

t
2S

× e−iH̃ s
4

t
S e−iH̃ s

5
t

2S e−iH̃ s
3

t
2S e−iH̃ s

1
t

2S )e−iH̃0
2

t
2S + O(t3/S2),

(19)

where H̃ s
i := H̃i(st/S). The operator product is understood

to be time ordered. Hence the total decomposition error is
O(t3/S2), which we call the Trotter error. The circuit imple-
mentation of each unitary is given in Appendix C.

Here, we consider two protocols for the quench described
in Sec. I.

(1) μ5 quench: at t = 0 we abruptly turn on the chiral
chemical potential μ5 and keep it constant during the subse-
quent evolution.

(2) θ quench: at t = 0 we abruptly change the value of the θ

angle, that introduces the pulse in the chiral chemical potential
− θ

2 δ(t ).
The unitary evolution with the use of the Suzuki-Trotter de-

composition may be interpreted as the Hamiltonian evolution
with the shadow Hamiltonian Hsh, defined by

e−iHsht := eiH̃S+1
2

t
2S

S∏
s=0

(
e−i(H̃ s+1

2 +H̃ s
2 ) t

2S e−iH̃ s
1

t
2S e−iH̃ s

3
t

2S

× e−iH̃ s
5

t
2S e−iH̃ s

4
t
S e−iH̃ s

5
t

2S e−iH̃ s
3

t
2S e−iH̃ s

1
t

2S
)
e−iH̃0

2
t

2S .

(20)

The shadow Hamiltonian Hsh differs from the original Hamil-
tonian (16) by the Trotter error. Since we use the exact ground
state of (16) as an initial state, the Hamiltonian evolution Hsh

introduces an additional quench due to the Trotter error in
addition to the μ5 or θ quench. This artificial quench accounts

1Adiabatic state preparation of the massive Schwinger model at
finite θ angle was studied in detail in [40] by carefully taking
thermodynamic and continuum limits of the lattice Schwinger model.
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FIG. 1. t/S dependence of the vector current following the μ5

quench, with lattice size N = 12, fermion mass M = 0.1w, and
chiral chemical potential μ5 = 0.2w. The error bar for each data
point represents the statistical error which is estimated by perform-
ing 100 000 measurements. The solid lines are exact results. The
discretization error becomes significant for wt/S = 1.0.

for a small oscillation of O(t3/S2) in the physical quantities
such as vector current as shown in Fig. 1.

C. Evaluation of the vector current

Having obtained the |(t )〉 at time t , we evaluate the
expectation value of the vector current density 〈J̄〉 :=
〈(t )|J̄|(t )〉, where J̄ is given by (17). Since the operators
J̄1 and J̄2 do not commute with each other, we carry out two
independent measurements to read off the expectation value
of J̄ .

Let us first find a way to calculate 〈J̄1〉. We note the
following identities:

(HS†)iCXi j (XiYj )CXi j (SH )i = ZiZ j,

(HS†)iCXi j (YiXj )CXi j (SH )i = ZiIj,
(21)

where Hi and Si are Hadamard and π/4 gates acting on the
ith qubit. CXi j is a controlled-NOT (CNOT) gate with the ith
and jth qubits being control and target qubits, respectively.
These identities imply that the Zi and Zj measurements on a
state (SH )iCXi j |ψ〉 yield the data needed to compute 〈XiYj〉
and 〈YiXj〉. The measurement is performed by the following
circuit:

(22)

Given the counts of the digits (di, d j ) from the above mea-
surements, we can extract the operator expectation values,

〈XiYj〉 =
∑

(di,d j )

(1 − 2di )(1 − 2d j )
countsdi,d j

shots
,

〈YiXj〉 =
∑

(di,d j )

(1 − 2di )
countsdi,d j

shots
,

(23)

which allows us to compute 〈J̄1〉.
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FIG. 2. Vector current densities after the μ5 quench with lattice size N = 12 and temporal lattice spacing wt/S = 0.3. The fermion mass is
set to be (a) M = 0.1w and (b) M = 0.5w. The error bar for each data point represents the statistical errors which are estimated by performing
100 000 measurements. The solid lines are exact results.

The same argument applies to J̄2 except for the operators
XN−1Y0

∏N−2
i=1 Zi and YN−1X0

∏N−2
i=1 Zi. We use the identities

⎛
⎝ N

2∏
n=1

(HS†)2n−1CX2n−1,2n

⎞
⎠(

XN−1Y0

N−2∏
i=1

Zi

)

×
⎛
⎝ N

2∏
m=1

CX2m−1,2m(SH )2n−1

⎞
⎠ = Z0

⎛
⎝ N

2 −1∏
i=1

Z2i

⎞
⎠ZN−1,

⎛
⎝ N

2∏
n=1

(HS†)2n−1CX2n−1,2n

⎞
⎠

(
YN−1X0

N−2∏
i=1

Zi

)

×
⎛
⎝ N

2∏
m=1

CX2m−1,2m(SH )2n−1

⎞
⎠ = I0

⎛
⎝ N

2 −1∏
i=1

Z2i

⎞
⎠ZN−1,

(24)

where the N th site is identified with the zeroth site. Therefore,
provided the counts of the digit (d0, . . . , dN−1), we can extract
the operator expectation values,

〈
XN−1Y0

N−2∏
i=1

Zi

〉
=

∑
(d0,...,dN−1 )

⎛
⎝ N

2 −1∏
i=0

(1 − 2d2i )

⎞
⎠(1 − 2dN−1)

× countsd0,...,dN−1

shots
,

〈
YN−1X0

N−2∏
i=1

Zi

〉
=

∑
(d0,...,dN−1 )

⎛
⎝ N

2 −1∏
i=1

(1 − 2d2i )

⎞
⎠(1 − 2dN−1)

× countsd0,...,dN−1

shots
. (25)

These, combined with (23), provide all the ingredients re-
quired to compute 〈J̄2〉.

IV. RESULTS AND DISCUSSION

Let us begin by discussing the features of our results at
short time after the μ5 quench, where θ = −2μ5t .

(1) The expectation value of the vector current at short
times (13) is given by

〈J̄〉 = 4μ5mt2〈ψ̄ψ〉ave + O(t3) ≈ −cμ5m2t2, (26)

where 〈ψ̄ψ〉ave is the spatial average of the scalar condensate
(proportional to −m) and c is a constant. The above expression
for 〈J̄〉 exhibits an approximately quadratic dependence on
time after the quench, which agrees with the behavior seen
in Figs. 2.

(2) The vector current is also approximately quadratic
in the fermion mass m and linear in the chiral chemical
potential μ5, as expected from (26). The explicit comparison
between the data and the short-time behavior (26) is shown in
Appendix B.

Our quantum simulation results are in good agreement with
the results based on exact diagonalization as shown in Figs. 2
and 3. Note that the error bars account for the statistical error
but not the Trotter error, that results in deviation from the exact
result as explained at the end of Sec. III B. At larger times,
the vector current exhibits a rich dynamics with nonlinear
dependence on time. Some features of this dynamics can still
be understood qualitatively. For the μ5 quench, the current
tends to a finite value at late times (see Fig. 2), and then, at
larger value of the mass, starts to exhibit saturation caused by
the relaxation of chirality [see Fig. 2(b)]. For the θ quench, the
current after the initial pulse at t = 0 relaxes back to zero (see
Fig. 3), possibly with subsequent oscillations. This relaxation
is faster for a larger value of the fermion mass, in accord with
(1). For larger fermion masses, we observe the oscillation; for
smaller masses, the oscillations, if present, are characterized
by a larger period.

The real-time dynamics following the θ quench was ex-
tensively studied in [55] using exact diagonalization. The μ5

quench that we investigated here is directly relevant for the
real-time dynamics of the chiral magnetic effect.
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FIG. 3. Vector currents after the θ quench with lattice size N = 12 and temporal lattice spacing wt/S = 0.3. The fermion mass is set to be
(a) M = 0.1w and (b) M = 0.5w. The error bar for each data point represents the statistical errors which are estimated by performing 100 000
measurements. The solid lines are exact results.

V. SUMMARY AND OUTLOOK

We have considered the behavior of a free model of
relativistic fermions under the global chiral quenches that
abruptly change the value of the θ angle. It has been observed
here that such quenches induce vector currents stemming from
the dynamics of chirality relaxation. The resulting real-time
dynamics of the vector current appears unexpectedly rich,
and is determined by the interplay between the processes of
chirality pumping induced by the rotating θ angle and chirality
absorption and relaxation.

This pilot study clarifies the effect of explicit breaking of
chiral symmetry by fermion mass on the real-time dynamics
of the chiral magnetic effect. The computation that we have
performed is amenable to a study using a classical computer;
however, we feel that it is important to demonstrate the
potential of quantum computation for describing the real-time
dynamics of quantum field theories. The study of the effect
of fermion mass on real-time chiral dynamics is relevant
for many practical applications—e.g., the quarks in QCD, or
chiral quasiparticles with a finite gap in Dirac semimetals. In
addition, the Schwinger model has been used to model the
fragmentation of quarks in high-energy collisions [56,60–65],
and the relaxation of chirality is key to the dynamics of this
process. Our results show how the fermion mass affects the
relaxation to a steady state, and the behavior of the vector
current.

In the future, we plan to include the dynamical gauge field
to investigate the interplay of anomalous and mass-induced
chirality relaxation in the generation of the chiral magnetic
current. This will require developing a method for truncating
the U (1) gauge field. For example, if U (1) is approximated
by ZN , then in general per each site one needs log N qubits.
However, in the Schwinger model, the absence of propagating
gauge field modes allows one to use log N qubits per entire
lattice. This should allow one to simulate the model with a
moderate number of qubits.
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APPENDIX A: RELATION AMONG DIRAC FERMION,
STAGGERED FERMION, AND SPIN OPERATORS

Given a theory with two-component Dirac fermion ψ (x) =
[ρ(x), η(x)]t defined on a continuum space-time, we place
the theory on a spatial lattice by placing a one-component
staggered fermion χn on each site. Letting lattice size be an
even integer N and lattice space be a, χ2m/

√
a is identified

with ρ(x = m) and χ2m+1/
√

a is identified with η(x = m),
where m runs from zero to N/2. With this correspondence
in mind, the following operators are translated from Dirac
fermion to staggered fermion as follows:

∫
dx ψ̄ψ ↔

∑
n

(−1)nχ†
n χn, (A1)

∫
dx ψ̄γ0ψ ↔

∑
n

χ†
n χn, (A2)

∫
dx ψ̄γ1ψ ↔ −1

2

∑
n

[χ†
n χn+1 + χ

†
n+1χn ], (A3)

∫
dx ψ̄γ5ψ ↔ −1

2

∑
n

(−1)n [χ†
n χn+1 − χ

†
n+1χn ], (A4)

∫
dx ψ̄γ1∂1ψ ↔ − 1

2a

∑
n

[χ†
n χn+1 − χ

†
n+1χn ]. (A5)

The left-hand sides correctly reproduce the right-hand sides in
the continuum limit a → 0. The operators written in terms of
staggered fermions are further converted to spin operators by
using the Jordan-Wigner transformation (15).

We summarize the relation of operators among these rep-
resentations:

023342-6



REAL-TIME CHIRAL DYNAMICS FROM A DIGITAL … PHYSICAL REVIEW RESEARCH 2, 023342 (2020)

Dirac Staggered Spin

ψ̄ψ (−1)n

a χ†
n χn

(−1)n

2a Zn

ψ̄γ0ψ
1
aχ†

n χn
1

2a Zn

ψ̄γ1ψ
1

2a

[
χ†

n χn+1 + χ
†
n+1χn

]
1

4a

[
XnYn+1 − XnYn+1

]
ψ̄γ5ψ

(−1)n

2a

[
χ†

n χn+1 − χ
†
n+1χn

] − i(−1)n

4a

[
XnXn+1 + YnYn+1

]
ψ̄γ1∂1ψ − 1

2a2

[
χ†

n χn+1 − χ
†
n+1χn

] − i
4a2

[
XnXn+1 + YnYn+1

]
(A6)

The expressions in each row are different representations of
the same operators. More precisely, the operators in terms of
staggered fermions and spins are equivalent up to constant
terms and they agree with the operators of Dirac fermions
in the continuum limit. Note that for n = N − 1 the operator
(−1)

N
2 +1 ∏N−2

i=1 Zi has to be inserted in the spin representation
in order to take account of the periodic boundary condition.

APPENDIX B: CURRENT AT SHORT TIME

The vector current at shot time is given by

〈T̄ [ei
∫ t

0 dt ′H ]J T [e−i
∫ t

0 dt ′H ]〉0

= i
∫ t

0
dt1〈[H (t1), J]〉0

−
∫ t

0
dt1

∫ t1

0
dt2〈[H (t2), [H (t1), J]]〉0 + O(t3). (B1)

The commutators are calculated as

[H (t1), J] =
∫

dx dy[m cos θ (t1)ψ̄ψ (x)

+ im sin θ (t1)ψ̄γ5ψ (x), ψ̄γ1ψ (y)]

=
∫

dx[2m cos θ (t1)ψ̄γ5ψ + 2im sin θ (t1)ψ̄ψ],

(B2)

[H (t2), [H (t1), J]]

=
∫

dx dy

[
iψ̄γ1∂1ψ (x) − θ̇ (t2)

2
ψ̄γ1ψ (x)

+ m cos θ (t2)ψ̄ψ (x) + im sin θ (t2)ψ̄γ5ψ (x),

2m cos θ (t1)ψ̄γ5ψ (y) + 2im sin θ (t1)ψ̄ψ (y)

]

=
∫

dx[ − 4im cos θ (t1)ψ̄∂1ψ + 4m sin θ (t1)ψ̄γ5∂1ψ

+ 2mθ̇ (t2) cos θ (t1)ψ̄ψ + 2imθ̇ (t2) sin θ (t1)ψ̄γ5ψ

+ 4m2ψ̄γ1ψ]. (B3)

Since the vacuum before the quench is parity symmetric,

〈ψ̄γ5ψ〉0 = 0, 〈ψ̄γ1ψ〉0 = 0, 〈ψ̄∂1ψ〉0 = 0. (B4)

Hence the current is computed as

〈T̄ [ei
∫ t

0 dt ′H ]J T [e−i
∫ t

0 dt ′H ]〉0

=
(

− 2m
∫ t

0
dt1 sin θ (t1)

− 2m
∫ t

0
dt1

∫ t1

0
dt2θ̇ (t2) cos θ (t1)

) ∫
dx〈ψ̄ψ〉0

− 4m
∫ t

0
dt1

∫ t1

0
dt2 sin θ (t1)

∫
dx〈ψ̄γ5∂1ψ〉0 + O(t3).

(B5)

In case of the μ5 quench, where θ = −2μ5t , it is further
simplified to

〈T̄ [ei
∫ t

0 dt ′H ]J T [e−i
∫ t

0 dt ′H ]〉0 = 4mμ5t2
∫

dx〈ψ̄ψ〉0 + O(t3).

(B6)

The short-time behavior is shown in Fig. 4.
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−0.004

−0.003

−0.002

−0.001

0.000

J
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μ5/w = 0

μ5/w = 0.1

μ5/w = 0.2

FIG. 4. Short-time behavior of the vector current following the θ

quench with lattice size N = 12 and fermion mass M = 0.1w. The
data points are obtained by exact diagonalization and dashed lines
are short-time behavior of the current (B6).
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APPENDIX C: QUANTUM CIRCUITS FOR TIME EVOLUTION

We show the circuit implementations used for time-evolution operator (19):

e
(C1)

where RZ (θ ) := e−i θ
2 Z ,

e

(C2)

Then, e−iα(XY −Y X ) is immediately implemented by noting

e−iα(XiYj−YiXj ) = S je
−iα(XiXj+YiYj )S†

j . (C3)

The evolution operator involving a nonlocal term is implemented by the following circuit:

e i

(C4)

Then, e−iα(XY −Y X ) is immediately implemented by noting

e−iα(X0YN−1−Y0XN−1 ) = SN−1e−iα(X0XN−1+Y0YN−1 )
∏N−2

i=1 Zi S†
N−1. (C5)
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