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Role of Nambu-Goldstone modes in the fermionic-superfluid point contact
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In fermionic superfluids that are charge neutral, Nambu-Goldstone (NG) modes, also known as Anderson-
Bogoliubov modes, emerge as a result of spontaneous symmetry breaking. Here, we discuss DC transport
properties of such NG modes through a quantum point contact. We show that contrary to a naive view that
enhancement of the phase stiffness may suppress transport of the NG modes, there must be an anomalous
contribution that survives at low temperature. This contribution originates from the conversion process between
the condensate and the NG mode. We find that within the BCS regime the anomalous contribution is enhanced
with increasing channel transmittance and attractive interaction, and leads to a temperature-dependent Lorenz
number and absence of the bunching effect in current noise.
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I. INTRODUCTION

In mesoscopic transport phenomena through small con-
strictions, quantum-mechanical effects are known to be di-
rectly reflected in transport coefficients. One of the best
known is the Landauer formula in which the two-terminal
conductance of normal metals is quantized [1]. This quan-
tization originates from the disappearance of relevant length
scales in constriction due to the ballistic condition and there-
fore is clearly seen in a quantum point contact where a
constriction has a short one-dimensional structure [2,3].

In addition to shapes of constriction, states of matter in
reservoirs play an important role in mesoscopic transport. The
prototype example is a superconducting point contact where
reservoirs consist of superconductors [4,5]. In this case, it
is known that the direct current does not obey Ohm’s law
[4,5]. The key ingredient there is multiple Andreev reflections
[6] where quasiparticles repeat Andreev reflections at the
boundaries between superconductor and contact. As a result,
the current-bias characteristics become highly nonlinear [7].

In contrast, each constituent particle in detail is expected to
be irrelevant in mesoscopic transport. For instance, when elec-
trons are replaced by other fermions, e.g., neutral atoms such
as 6Li and 40K, essentially the same phenomena are observed
as long as similar states of matter are prepared. This type of
universality can nowadays be confirmed with ultracold atomic
gases. Indeed, a two-terminal transport setup with a quantum
point contact has been realized in experiments of ultracold
Fermi gases [8], which observed the conductance quantization
[9] and nonlinear current-bias characteristics [10].

It must be noted, however, that the presence or absence
of charge may cause a difference in transport between elec-
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tron and atomic systems. Specifically, this difference may
qualitatively be important for systems with Bose-Einstein
condensation of Cooper pairs where Nambu-Goldstone (NG)
modes emerge due to spontaneous symmetry breaking [11].
In the case of electrons (superconductors), an effect of the
Coulomb interaction is inevitable, which turns the NG modes
into the gapped plasma modes [12]. In the case of atoms
(superfluids), on the other hand, these NG modes, also known
as Anderson-Bogoliubov modes, remain gapless [12,13], and
the NG modes may play an important role in low-energy trans-
port. At the same time, as the NG modes are a nonsuperfluid
component, there is a view that the effects of such modes
are negligible at low temperature. Since the NG modes in
mesoscopic transport have yet to be incorporated in an explicit
manner, it is not clear whether it is reasonable to neglect the
effect of the gapless mode in experiments of ultracold atomic
gases.

In this paper, we analyze direct currents pertinent to
transport of the NG modes in the fermionic superfluid point
contact, as illustrated in Fig. 1. On one hand, we demonstrate
that the naive view mentioned above is partially correct in that
the exchange process of the NG modes between reservoirs is
indeed suppressed at low temperature. On the other hand, we
uncover an anomalous process such that condensate elements
are converted into the NG modes and vice versa. What is
remarkable is that this process survives even at absolute zero.
It is discussed that within the BCS regime the anomalous con-
tribution is enhanced with increasing channel transmittance
and attractive interaction of fermions, and is absent in the heat
current, which causes a breakdown of the Wiedemann-Franz
law.

This paper is organized as follows. Section II discusses an
effective action of the NG modes in fermionic superfluids in
terms of functional integrals. In Sec. III, we introduce the
tunneling Hamiltonian approach to discuss transport of the
NG modes in the superfluid point contact. In Sec. IV, the
pair current expression including effects of the NG modes is
obtained by using the analyses in Secs. II and III. Section V
discusses several topics related to the results of Sec IV.
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FIG. 1. Schematic illustration of the fermionic superfluid point
contact, where two macroscopic reservoirs are fulfilled by s-wave
Fermi superfluids. We analyze a DC current including transport of
the Nambu-Goldstone modes in terms of the tunneling Hamiltonian,
provided that the constriction length is shorter than the superfluid
coherence length.

Section VI summarizes this paper and the calculation of
correlation functions is shown in detail in the Appendix.

II. EFFECTIVE FIELD THEORY OF
ANDERSON-BOGOLIUBOV MODES

Here, we sketch how the effective action of the Anderson-
Bogoliubov modes in the bulk (each reservoir) is obtained
from fermionic superfluids. To this end, we consider the
following bulk Hamiltonian (we use units h̄ = kB = 1):

H0 =
∫

d3x H0, (1)

H0 =
∑

σ=↑,↓
ψ†

σ

(
− ∇2

2M
− μ

)
ψσ + gψ†

↑ψ
†
↓ψ↓ψ↑, (2)

where ψσ is the fermionic field with spin σ , M is the mass
of fermions, and μ is the chemical potential. In addition, the
coupling constant g is assumed to be negative to ensure an at-
tractive interaction between fermions. We note that the above
Hamiltonian is nothing but the celebrated BCS Hamiltonian
and is also known to describe two-component Fermi gases
interacting via broad Feshbach resonances [14].

We focus on the low-temperature regime where ↑ and ↓
fermions form Cooper pairs and Bose-Einstein condensation
of Cooper pairs occurs. When the attractive interaction be-
tween fermions is weak (BCS regime), such condensation can
be captured by the mean-field theory [15]. By adopting this
theory, the original Hamiltonian reduces to

H0 →
∑

σ

ψ†
σ

(
− ∇2

2M
− μ

)
ψσ − �ψ

†
↑ψ

†
↓ − �̄ψ↓ψ↑. (3)

Here, we introduce the gap parameter,

� = −g〈ψ↓ψ↑〉, (4)

which is assumed to be a constant in space-time. Since
the Hamiltonian above is quadratic in ψ , we can obtain
a quasiparticle excitation by diagonalizing it. The resultant
quasiparticle is called a Bogoliubov mode that is fermionic
and has the energy gap 2|�|.

In addition to the fermionic quasiparticle excitation, there
are bosonic collective excitations in fermionic superfluids.
The NG mode is then the dominant excitation at low energy,

since it is gapless due to the NG theorem [11]. To see this
gapless mode, we consider fluctuations from the mean field in
the gap function. In general, the gap parameter is complex and
therefore there are two directions of fluctuations, amplitude
fluctuation and phase fluctuation, which are related to the
Higgs mode and the NG mode, respectively. Since the former
excitation has a gap 2|�| [16], we can focus on the phase
fluctuation in the low-frequency regime |ω| < |�|. In this
case, the gap parameter with the phase fluctuation is expressed
as follows:

�(x) = |�|e2iφ(x), (5)

where φ is a real bosonic field describing the phase fluctu-
ation. To obtain an effective theory of the NG mode, it is
convenient to adopt the functional integral formalism. By inte-
grating out the fermionic fields in the mean-field Hamiltonian
(3), the partition function can be expressed in terms of φ such
that

Z =
∫

Dφe−Seff (φ). (6)

Here, Seff is the effective action of the NG mode, and is
in general a complicated function in φ. By performing the
leading-order analysis of the gradient approximation in φ,
however, Seff becomes the following quadratic form [11]:

Seff ≈ ρs

2

∫ β

0
dτ

∫
d3x

[
1

v2
(∂τφ)2 + (∇φ)2

]
, (7)

where v is the speed of sound and ρs is the superfluid density.
At absolute zero, they are explicitly determined as

v = vF√
3
, (8)

ρs = n

M
, (9)

with the Fermi velocity vF and number density n.
The procedure introduced above is called bosonization in

the way that the effective theory of the bosonic collective
mode is obtained from the fermionic action. In our derivation,
the mean-field theory and gradient approximation are explic-
itly employed. Regardless of the strength of the attractive
interaction, however, the superfluid phase with spontaneous
breaking of U(1) symmetry is known to emerge in the low-
temperature regime of the spin-balanced mixture [14]. This
means that the NG modes with the linear gapless dispersion
are always present in the superfluid phase [17]. Indeed, as far
as the low-energy regime is concerned, the form of the effec-
tive action (7) is universal for the U(1) symmetry-breaking
phase [18]. Then, effects on the interaction and temperature
are reflected as renormalization of ρs and v.

III. TUNNELING HAMILTONIAN APPROACH

Now that the effective action of the NG mode in the
bulk superfluid is obtained, we wish to discuss how this
gapless mode affects two-terminal point contact transport,
where two macroscopic reservoirs (L and R) are connected
through a short one-dimensional wire. In particular, we focus
on a regime where the length of the one-dimensional wire is
shorter than the superfluid coherence length vF /(π |�|). The
constriction in detail is then known to be irrelevant [19] and
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transport of such a system can be discussed with the following
tunneling Hamiltonian [20–22]:

H = H0 + HT , (10)

H0 = HL + HR, (11)

where HL(R) is the grand Hamiltonian of the left (right) reser-
voir, and

HT = t
∑

σ

ψ
†
σ,R(0)ψσ,L(0) + H.c. (12)

is the tunneling term with the tunneling amplitude t . Since
in this model, a particle exchange occurs at the single point
x = 0, it follows that the currents are expressed by the fields
at x = 0. Thus, in what follows, we omit the spatial index
in fields for brevity. Based on this Hamiltonian, the particle
current operator is calculated as

I = −ṄL = i[NL, HT ] = −it
∑

σ

ψ
†
σ,Rψσ,L + H.c. (13)

We note that the tunneling term above represents the single-
particle tunneling between the reservoirs. Therefore, the direct
current calculated with the mean-field Hamiltonian (3) turns
out to be associated with quasiparticle processes including
multiple Andreev reflections [20].

In addition to the quasiparticle tunneling, the tunneling
Hamiltonian allows us to discuss the pair tunneling process
related to transport of the NG modes. The key point is that
in the tunneling Hamiltonian approach, the tunneling term is
treated as perturbation and therefore the pair tunneling process
is generated as a higher-order tunneling effect [23]. To see this
in an explicit manner, we temporarily consider the zero-bias
situation, where a contribution from left to right is balanced
with one from right to left. By using the imaginary time
formalism, a contribution related to the NG modes is extracted
as

〈I↑〉 = −it

〈 ∞∑
n=0

(−1)n+1

(n + 1)!

∫ β

0
dτ1 · · ·

∫ β

0
dτn+1

× Tτ [ψ†
↑,Rψ↑,LHT (τ1) · · · HT (τn+1)]

〉
0

+ H.c.

→ iαt2�L�R

g2
〈e−2iφR e2iφL 〉 + H.c., (14)

where 〈· · · 〉0 means the average without the tunneling term,
and in the last line of the equation, we extract the pair
tunneling process and introduce the short timescale α for
the extraction. Since a similar result is obtained for 〈I↓〉, the
pair current operator related to transport of the NG modes is
obtained as

Ip = −itpe−2iφR e2iφL + H.c., (15)

with tp = −2αt2�L�R/g2. In addition, HT generates the pair
tunneling term, showing up even order in t . Indeed, by using
the similar trick used in Eq. (14), the imaginary time evolution

operator of even order is transformed into

∑
n=2,4,···

∫ β

0
dτ1 · · ·

∫ τn−1

0
dτnHT (τ1) · · · HT (τn)

→
∞∑

n=1

∫ β

0
dτ1 · · ·

∫ τn−1

0
dτnHp(τ1) · · · Hp(τn), (16)

where

Hp = tpe−2iφR e2iφL + H.c. (17)

is the pair tunneling term. Thus, the discussions above imply
that the pair tunneling contribution of the mass current is
obtained as the average of Eq. (15) under the perturbation
term Hp.

IV. PAIR CURRENT EXPRESSION

We now discuss a pair current expression in the presence of
a chemical potential bias, �μ = μL − μR. In order to avoid a
contribution of the Higgs modes, we postulate the condition
�μ, T < �.

We note that �μ is the bias for each fermion. There-
fore, when it comes to the pair tunneling, the bias be-
tween the reservoirs must be regarded as 2�μ. We
can also understand this result in terms of the gauge
transformation technique conventionally utilized in the
tunneling Hamiltonian approach, where the combination
ψ

†
σ,R(L)(τ )ψσ,L(R)(τ ) yields the factor e−(+)i�μτ [24]. Then,

since the pair tunneling process is related to the combination
ψ

†
↑,R(L)(τ )ψ†

↓,R(L)(τ )ψ↓,L(R)(τ )ψ↑,L(R)(τ ), such a term gives
rise to the factor e−(+)2i�μτ , meaning that the chemical po-
tential bias on the pair tunneling is 2�μ [22].

To obtain a pair current expression, we also note that the
average of the current at real time τ can be expressed as

〈Ip(τ )〉 = 2Re[tpG<
LR(τ, τ )], (18)

with lesser Green’s function

G<
LR(τ, τ ′) = −i〈e−2iφR (τ ′ )e2iφL (τ )〉. (19)

By using the expression above, we turn to calculate the current
expression including arbitrary order in tp. To this end, it
is important to recall the following properties of uncoupled
retarded and advanced Green’s functions under the Gaussian
action [23]:

gR
L(R)(τ ) = −iθ (τ )〈[eAiφL(R) (τ ), eBiφL(R) (0)]〉0 = 0, (20)

gA
L(R)(τ ) = iθ (−τ )〈[eAiφL(R) (τ ), eBiφL(R) (0)]〉0 = 0, (21)

unless A + B = 0. These properties on the average without
Hp forbid emergence of the anomalous average contribution
appearing in the quasiparticle contribution in superconducting
systems [20], and render the current calculation simple.

In order to obtain the current expression including an
arbitrary order in tp, we consider the Dyson equation in the
real-time formalism [25]. By using the so-called Langreth
rules [25], the Dyson equation of G< is obtained as

G< = (1 + GRV ) ◦ g< ◦ (1 + V GA), (22)
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where ◦ denotes integration over the internal time variable
from minus infinity to plus infinity, V is one-particle poten-
tial, GR(A) is the exact retarded (advanced) Green’s function
including the effect of V , and g< is the uncoupled lesser
Green’s function. By applying the Dyson equation above
for the tunneling Hamiltonian where V is replaced by the
tunneling amplitude, we obtain

tpG<
LR = gR

L ◦ T̄ R
p ◦ g<

R ◦ T A
p + T R

p ◦ g<
L ◦ T̄ A

p ◦ gA
R. (23)

Here, we introduce the renormalized tunneling amplitudes

T R,A
p = tp + tpgR,A

L ◦ t̄pgR,A
R ◦ T R,A

p , (24)

T̄ R,A
p = t̄p + t̄pgR,A

R ◦ tpgR,A
L ◦ T̄ R,A

p . (25)

By performing the Fourier transformation, the renormalized
tunneling amplitudes can be solved as

T R,A
p (ω) = tp

1 − |tp|2gR,A
L (ω − 2�μ)gR,A

R (ω)
, (26)

T̄ R,A
p (ω) = t̄p

1 − |tp|2gR,A
L (ω − 2�μ)gR,A

R (ω)
. (27)

To obtain the above, we use the fact that tunneling is an energy
conserving process and the origins of frequencies between the
reservoirs are different by 2�μ. Thus, the DC pair current is
obtained as

〈Ip(τ )〉 = −
∫ ∞

−∞

dω

2π

2|tp|2∣∣1 − |tp|2gR
L(ω − 2�μ)gR

R(ω)
∣∣2

× (
Im

[
gR

L(ω − 2�μ)
]
Im[g<

R (ω)]

+ Im
[
gA

R(ω)
]
Im

[
g<

L (ω − 2�μ)
])

. (28)

For the sake of qualitative discussions on the transport
properties, we consider the small bias regime where O(�μ2)
is negligible. By using the expressions of Green’s functions
obtained in the Appendix, we reach the following linear
current-bias relation:

〈Ip〉 = (Gan + GNG)�μ. (29)

Here, we classify the conductance into two contributions,
since the lesser Green’s function contains a part proportional
to a condensate δ(ω) and one proportional to the phonon
distribution n(ω) = 1

eω/T −1 . The former yields Gan given by

Gan = T 2 2M2v3

πρs
, (30)

where

T 2 = 4|tp|2/(M2v4)∣∣1 − |tp|2gR
L(0)gR

R(0)
∣∣2 (31)

is the dimensionless parameter related to the channel trans-
mittance. This contribution is anomalous in that condensation
causes the direct current and does not vanish even at absolute
zero. Physically, Gan is related to the conversion process
between the condensate and NG mode, which also appears in
the transport of bosonic systems [26,27]. On the other hand,
the latter originates from normal tunneling of the NG modes
between the reservoirs. At a low temperature, GNG is reduced

FIG. 2. Typical behavior of the current-bias characteristics in
the fermionic superfluid point contact at T = 0. The dashed curve
represents the quasiparticle current in which the transmittance is
given as 0.5 [20].1 On the other hand, the total contribution being
the sum of the quasiparticle and pair currents is plotted in the solid
curve, where Gan = 1/h.

to the following simple form:

GNG =
∫ ∞

−∞

dω

2π

8|tp|2Im[gR(ω)]2∣∣1 − |tp|2gR
L(ω)gR

R(ω)
∣∣2

(
− ∂n(ω)

∂ω

)

≈ T 2 2M2v2T 2

3πρ2
s

, (32)

where we use

−∂n(ω)

∂ω
= 1

4T sinh2 [ω/(2T )]
. (33)

In contrast to the anomalous contribution, the contribution
above explicitly depends on temperature in such a way that
it vanishes at zero temperature. This is due to the fact that
the NG modes that are the nonsuperfluid components must be
suppressed at a low temperature.

V. DISCUSSION

Here, we discuss some implications based on the results
obtained in the previous sections.

First, it turns out that the contributions related to the NG
modes obey Ohm’s law at small biases, in contrast to the
quasiparticle contribution, which is essentially nonlinear in
�μ. As can be seen from the definition of tp and Eq. (31),
the leading order term in the pair current is proportional to t4.
In order to measure the NG mode contribution, we therefore
look at the high transmittance regime beyond the tunneling
limit proportional to t2.

As shown in the dashed line of Fig. 2, in the interme-
diate transmittance regime, the quasiparticle current shows
the subharmonic gap structure at �μ/� = 2/n (n = 1, 2, . . .)
due to the multiple Andreev reflections and is still negligible
at the small bias. On the other hand, in the BCS limit at

1In the tunneling Hamiltonian approach, the channel transmittance

of each fermion is expressed as 4t2/[πρq (μF )]2

{1+t2/[πρq (μF )]2}2 with the single-
particle density of states at the Fermi level ρq(μF ).
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zero temperature, we obtain Gan/T 2 ∼ 4π2/(
√

3h). Since we
apply the effective field theory approach, which inevitably
contains the short-range cutoff, it is difficult to a priori obtain
the quantitative value of the conductance. At the same time,
this estimation implies that the bias-independent conductance
of the order of 1/h arises from the anomalous contribution.
In this regime at small bias, it is thus expected that the mass
current is dominated by the Ohmic signal originating from the
NG modes (see the solid line in Fig. 2).

Next, we note that tp depends on the interatomic interaction
g. By using the gap formula in the BCS theory � ∼ e1/[gN (0)]

with the density of state at the Fermi level N (0), the pair
tunneling amplitude is found to behave as tp ∼ e2/[gN (0)]

g2 . This
coupling dependence in tp shows that when increasing the
strength of the coupling constant |g|, the pair tunneling effect
is enhanced at least within the BCS regime. Physically, this
means that with increasing |g|, the size of the Cooper pairs
decreases and the pair tunneling event through the point
contact tends to occur. In addition, at the zero-temperature
limit where ρs = ρ, the conductance turns out to be inversely
proportional to the speed of sound v. A recent experiment
on the Bragg spectroscopy confirms that v is decreased with
increasing strength of the coupling |g| [28]. Therefore, as far
as the BCS regime is concerned, the anomalous contribution
is expected to be enhanced with increasing |g|.

In what follows, we address the effects of temperature bias
and electric charge.

A. Effect of a temperature bias

We now consider a situation without chemical potential
bias but with temperature bias �T = TL − TR. As in the
case of the chemical potential bias, we focus on the regime
�T, T < �.

First, we discuss the effect of �T on the mass current. To
this end, we note that the DC pair current expression (28)
is available even in the presence of �T . This is because
in the two-terminal system a temperature is fixed in each
reservoir, and the calculations of the correlation functions
without the tunneling term discussed in the Appendix are
available regardless of the presence or absence of �T . Then,
up to linear order in �T , the pair current can be expressed as

〈Ip〉 = (L12,an + L12,NG)�T, (34)

where L12,an and L12,NG are, respectively, anomalous and
normal NG mode contributions similar to Eq. (29). By using
the correlation functions obtained in the Appendix, we find

L12,an ∝
∫

dω ωδ(ω) = 0. (35)

Thus, the anomalous contribution is not induced by �T . We
note that this is consistent with the result found in the bosonic
superfluid point contact [27]. Similarly, normal contribution
of the NG modes at a low temperature is obtained as

L12,NG ∝
∫

dω
ω3

sinh2(ω/2T )
→ 0, (36)

where we use
∂n(ω)

∂T
= ω

4T 2 sinh2 [ω/(2T )]
. (37)

Here, we point out that the absence of L12,NG is a consequence
of the quadratic action (7), which predicts Im[gR(ω)] ∝ ω. In
general, there must be effects beyond quadratic theory such
as interactions between the NG modes leading to the nonzero
value of L12,NG. In a low enough temperature where the NG
modes are rarely excited, however, such effects are negligible,
and the Seebeck effect related to the NG modes is absent.

Next, we discuss the heat current induced by �T . In the
tunneling Hamiltonian, the heat current operator is calculated
as

IQ = −ḢL = t
∑

σ

ψ
†
σ,R

d

dτ
ψσ,L + H.c., (38)

where we use the Heisenberg equation of motion for ψσ,L. By
using the similar trick used in the mass current, the heat pair
current may be obtained as [27]

〈Ip,Q(τ )〉 = 2 lim
τ ′→τ

Re

[
itp

d

dτ
G<

LR(τ, τ ′)
]
. (39)

In the frequency space, the expectation above is simplified as

〈Ip,Q〉 = −
∫ ∞

−∞

dω

2π

2ω|tp|2∣∣1 − |tp|2gR
L(ω)gR

R(ω)
∣∣2

× (
Im

[
gR

L(ω)
]
Im[g<

R (ω)] + Im
[
gA

R(ω)
]
Im[g<

L (ω)]
)
.

(40)

We now explicitly consider the linear regime in �T . Then, the
heat pair current can be expressed as

〈Ip,Q〉 = (L22,an + L22,NG)�T . (41)

The anomalous contribution of the heat current is shown to
vanish, since

L22,an ∝
∫

dω ω2δ(ω) = 0. (42)

On the other hand, the normal contribution of the heat current
is given by

L22,NG =
∫ ∞

−∞

dω

2π

4ω|tp|2Im[gR(ω)]2∣∣1 − |tp|2gR
L(ω)gR

R(ω)
∣∣2

(
∂n(ω)

∂T

)

≈ T 2 4πM2v2T 3

15ρ2
s

. (43)

The discussions above mean that the thermal conductance
induced by the NG modes reduces to L22,NG. Moreover, the
corresponding Lorenz number is obtained as

Lp ≈ L22,NG

T Gan
≈ 2π2T 2

15vρs
. (44)

It is notable that the Lorenz number depends on thermo-
dynamic quantities such as temperature, v, and ρs. Thus,
this is quite different from the Wiedemann-Franz law where
the Lorenz number is expressed in terms of fundamental
constants in physics such as the Boltzmann constant. As in
the case of the bosonic superfluid case, the breakdown of
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the Wiedemann-Franz law is attributed to the presence of
the anomalous contribution of the mass current that cannot
be interpreted as simple quasiparticle tunneling between the
reservoirs [27]. Moreover, the expression above shows that the
Lorenz number becomes small at a low temperature, which is
consistent with the recent experimental observation [29].

B. Current noise

It is interesting to look at the current noise behavior
induced by the pair current [30]. The current noise can be
introduced as

Sp(ω) =
∫ ∞

−∞
dτ eiωτ 〈�Ip(τ )�Ip(0) + �Ip(0)�Ip(τ )〉,

(45)

where �Ip(τ ) = Ip(τ ) − 〈Ip(τ )〉. At the level of the approx-
imation used in this work, the current noise is expressed in
terms of lesser and greater Green’s functions as follows [31]:

Sp(ω) =
∫

dτ eiωτ
[
t2
pG<

LR(−τ )G>
LR(τ ) + t̄2

pG<
RL(−τ )G>

RL(τ )

− |tp|2G<
RR(−τ )G>

LL(τ ) − |tp|2G<
LL(−τ )G>

RR(τ )

+ (τ → −τ )
]
. (46)

We now focus on the white noise limit ω = 0, where a
nontrivial relation between the current noise and DC current
is expected. Moreover, we can neglect the contribution of the
normal tunneling of the NG modes by focusing on the low-
temperature regime and keeping only the contribution from
the anomalous process. Then, the current noise is reduced to
the following simple expression:

Sp(0) ≈ 4T 2Gan�μ, (47)

where we use coth(β�μ) → 1. Here we note that in the
above expression, a contribution proportional to T 4 is absent,
which is correct up to �μ. This is in sharp contrast to the
shot noise of noninteracting particles where T 4 contributions
bringing bunching (antibunching) effects in bosons (fermions)
is present.

C. Absence of transport of the Nambu-Goldstone modes
in charged superconductors

A fact that the current contributions discussed in this work
are negligible in charged superconductors can explicitly be
shown as follows. In the presence of the Coulomb interaction,
the effective action of the NG modes is modified as [11]

Seff = ρs

2β�

∑
k

k2

[
ω2

n

v2k2 + ω2
p

+ 1

]
φ(−q)φ(q), (48)

where
∑

k ≡ ∑
iωn

∑
k, ωn = 2πnT with an integer n, and

ω2
p = 4πe2n

M
(49)

is the plasma frequency. By using the action above, the
imaginary time Green’s function of the NG mode is

obtained as

G(ωn) ≡ −4
∫ β

0
dτ eiωnτ 〈Tτ [φ(τ )φ(0)]〉0

= − 4

ρs�

∑
k

ω2
p + v2k2

k2
(
ω2

n + ω2
p + v2k2

) . (50)

As before, by using analytic continuation iωn → ω + iη with
an infinitesimal positive parameter η, the retarded Green’s
function is obtained as

gR(ω) = −
∑

k

2
√

ω2
p + v2k2

ρs�k2

×
⎡
⎣ 1

ω +
√

ω2
p + v2k2 + iη

− 1

ω−
√

ω2
p + v2k2 + iη

⎤
⎦.

(51)

Therefore, its imaginary term is given by

Im
[
gR(ω)

] =
∑

k

2π
√

ω2
p + v2k2

ρs�k2

× [
δ
(
ω+

√
ω2

p + v2k2
)−δ

(
ω−

√
ω2

p + v2k2
)]

.

(52)

The expression above implies that the imaginary term
vanishes unless |ω| � ωp. In contrast, the frequency
|ω| � �μ, T contributes to the mesoscopic current (28).
Since typically ωp � � > �μ, T , we conclude that the
current contributions related to the NG modes are absent in
charged superconductors.

VI. SUMMARY

By using the effective theory and tunneling Hamiltonian,
we have discussed DC transport of the NG modes in the
fermionic superfluid point contact. We have focused on the
BCS regime and revealed the anomalous contribution in
mass transport, which is the conversion process between the
condensate and the NG mode. We also discussed that the
anomalous contribution is not present in heat transport, which
gives rise to a breakdown of the Wiedemann-Franz law and
the absence of the bunching effect in current noise.

In addition to the BCS regime discussed in this work, it
was recently shown that the anomalous contribution of the
NG modes appears in the Bose-Einstein condensation regime
[27]. Therefore, it is reasonable to expect that this contri-
bution exists in the whole range of the BCS-Bose-Einstein
condensation crossover. Indeed, the recent experiment on the
current-biased Josephson junction implies the occurrence of
a non-negligible bias-independent DC conductance at unitar-
ity [32,33]. At the same time, the recent ETH experiment
observes a non-negligible Seebeck coefficient [29], which
cannot be explained with the processes discussed in this work.
In order to address such a regime, therefore, a direct many-
body calculation, which includes renormalization of Green’s
functions and vertex corrections rather than the effective field
theory approach may be required.
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APPENDIX: CORRELATION FUNCTIONS

Here, we calculate the correlation functions in the bulk.
In the current calculation, the following retarded Green’s
function is relevant:

gR(τ ) = −iθ (τ )〈[e2iφ(τ ), e−2iφ(0)]〉0. (A1)

As far as three-dimensional configurations where phase fluc-
tuations are small are concerned, the correlation function
above is approximated as

gR(τ ) ≈ −4iθ (τ )〈[φ(τ ), φ(0)]〉0. (A2)

Similarly, the lesser Green’s function that is another relevant
quantity in the current calculation is obtained as

g<(τ ) = −i〈e−2iφ(0)e2iφ(τ )〉0

≈ −i − 4i〈φ(0)φ(τ )〉0. (A3)

Thus, up to this order of approximation, what we need to
calculate is the correlation functions like 〈φ(±τ )φ(0)〉0. In
order to evaluate these correlations, it is convenient to use
the analytic continuation technique of imaginary time Green’s
functions. To see this, we consider the following imaginary
time Green’s function:

G(τ ) = −4〈Tτ [φ(τ )φ(0)]〉0

= − 4

(β�)2Z

∑
k1,k2

e−iωnτ

∫
Dφ φ(k1)φ(k2)e−Seff

= − 4v2

ρsβ�

∑
k

e−iωnτ

ω2
n + v2k2

, (A4)

where Z is the partition function, Tτ is the imaginary time-
ordering operator [23], and in the second line of equality we
use the functional integrals in which time-ordered products
are automatically ensured. In the frequency space, the above
correlation function is expressed as

G(ωn) =
∫ β

0
dτ eiωnτG(τ ) = − 4v2

ρs�

∑
k

1

ω2
n + v2k2

. (A5)

Then, the retarded Green’s function with real frequency ω can
be obtained from analytic continuation iωn → ω + iη with an
infinitesimal positive parameter η. By doing this, we obtain

gR(ω) = − 4v2

ρs�

∑
k

1

2vk

(
1

vk + ω + iη
+ 1

vk − ω − iη

)

= − 1

vπ2ρs

∫ v�

0
d (vk)

[
vk

vk + ω + iη
+ vk

vk − ω − iη

]
,

(A6)

where we introduce the momentum cutoff � to re-
strict the applicability of the tunneling Hamiltonian. By

using ∫
dx

x

x ± A
= x ∓ A ln |x ± A|, (A7)

with a real constant A, we reach

gR(ω) ≈ − 2�

π2ρs
− iω

vπρs
, (A8)

where we neglect O(ω2) terms. Similarly, by using iωn →
ω − iη, the advanced Green’s function is obtained as

gA(ω) ≈ − 2�

π2ρs
+ iω

vπρs
. (A9)

We finally calculate the lesser Green’s function at real
frequency,

g<(ω) = −2π iδ(ω) − 4i
∫ ∞

−∞
dτ eiωτ 〈φ(0)φ(τ )〉0. (A10)

In order to obtain a useful expression of the second term in the
right-hand side, we consider the spectral representation of the
Green’s function,

−4i
∫ ∞

−∞
dτ eiωτ 〈φ(0)φ(τ )〉0

= −8π i

Z

∑
n,m

e−βEm〈n|φ|m〉〈m|φ|n〉δ[ω + (En − Em)],

(A11)

where {|n〉} or {|m〉} is the set of the energy eigenstates.
Similarly, since

−4iθ (τ )〈[φ(τ ), φ(0)]〉0

= −4iθ (τ )

Z

∑
n,m

ei(En−Em )τ 〈n|φ|m〉〈m|φ|n〉(e−βEn − e−βEm ),

(A12)

the spectral representation of the retarded Green’s function is
given by

gR(ω) = 4

Z

∑
n,m

〈n|φ|m〉〈m|φ|n〉(e−βEn − e−βEm )

ω + (En − Em) + iη
. (A13)

Since its imaginary term is given by

Im[gR(ω)] = −4π

Z

∑
n,m

e−βEm〈n|φ|m〉〈m|φ|n〉(eβω − 1)

× δ[ω + (En − Em)], (A14)

we obtain

−4i
∫ ∞

−∞
dτ eiωτ 〈φ(0)φ(τ )〉0 = 2i Im[gR(ω)]n(ω). (A15)

In total, the lesser Green’s function is obtained as

g<(ω) = −2π iδ(ω) − 2iω

vπρs
n(ω). (A16)

In a similar manner, the greater Green’s function is obtained
as

g>(ω) = −2π iδ(ω) − 2iω

vπρs
[1 + n(ω)]. (A17)
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