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Machine learning and predicting the time-dependent dynamics of local yielding in dry foams

Leevi Viitanen , Jonatan R. Mac Intyre , Juha Koivisto, Antti Puisto, and Mikko Alava
Aalto University, School of Science, Department of Applied Physics, P.O. Box 11100, 00076 Aalto, Finland

(Received 17 September 2019; accepted 24 May 2020; published 15 June 2020)

The yielding of dry foams is enabled by small elementary yield events on the bubble scale, “T1”s. We study the
large-scale detection of these in an expanding two-dimensional (2D) flow geometry using artificial intelligence
(AI) and nearest neighbor analysis. A good level of accuracy is reached by the AI approach using only a single
frame, with the maximum score for vertex centered images highlighting the important role the vertices play in
the local yielding of foams. We study the predictability of T1s ahead of time and show that this is possible on a
timescale related to the waiting time statistics of T1s in local neighborhoods. The local T1 event predictability
development is asymmetric in time, and measures the variation of the local property to yielding and similarly the
existence of a relaxation timescale after local yielding.
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I. INTRODUCTION

Dry foams are assemblies of gas pockets separated by thin
films of liquid, forming a connected polygonal film structure
[1] at a configuration globally minimizing the surface energy
[2]. A finite external stress is needed to make foams flow
and, due to the absence of thixotropy, foams are usually
rheologically characterized as simple yield stress fluids [3].
The steady-state, global flow curves of foams are considered
to be typical examples of Herschel-Bulkley fluid-like behavior
[4,5].

At bubble scale, the viscoplastic flow of dry foams is
enabled by small elementary topological yield events re-
ferred to as T1’s and T2’s, analogous, for instance, to shear
transformation zones (STZs) in amorphous solids [6,7]. The
T2 events involve the disappearance of three-sided bubbles,
while the T1 events refer to a neighbor swap between four
bubbles. Both events enable the system to jump from one
metastable surface energy minimum to another, including a
local relaxation of the stored elastic energy of the foam [8,9].
T2 events require either film breakup or gas exchange to occur,
making them less frequent compared to T1s in systems under
continuous deformation. A quasi-2D setting or simplifying
geometry, is often used to study the flow of foams and T1s
therein [10–14]. The T1 events can be either reversible or
nonreversible depending on the geometric configuration and
the stress direction [15,16].

In the macroscopic flow and yielding of foams, the plastic
deformation arises from a complex dynamics of T1 events
with localization and clustering [17–19]. Here, we study
T1 events from large-scale statistics. We first detect tens of
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thousands of events from bubble raft flow dynamical data by
comparing two sequential frames using a nearest neighbor
detection algorithm [10]. Second, we feed single frames to a
convolutional neural network (CNN) and successfully predict
the T1 events by the film structure and extract the essential
features. We use this tool to explore T1 dynamics and the role
of the film structure by varying the region of interest (ROI).
The relation of the T1 dynamics to macroscopic flow have
been studied and interestingly, the time-dependent deforma-
tion tensor [20,21] and the strain rate [22], both dependent
on the local velocity, were found to correlate with the T1
frequency, while it has been suggested there is no correlation
between the snapshot of the film structure and the T1 fre-
quency [10]. This would imply T1 detection based on a single
structure snapshot should fail most of the time.

We find that T1 events can be predicted by the localized
changes in film vertices, while the bubble shape itself does
not contain the same information. The local predictability
evolution is shown by time-dependent AI predictions to be
asymmetric in time, and we interpret the results as a measure
of the decrease in local yield stresses and as a manifestation
of the inherent local relaxation after a T1. The foam structure
exhibits weaker and stronger spots, be it due to the network
structure or film properties [23]. In amorphous solids soft
spots have been studied using measures for nonaffine defor-
mation [24], Voronoi cell anisotropy [25], and machine learn-
ing tools [26,27] and the distribution of local yield stresses is
an inherent property of plasticity models [28], as is the local
relaxation dynamics after a yield event [29].

We compare two methods of identifying T1 events from
a video of a two-dimensional flow. First, we detect tens of
thousands of events from dynamical data by comparing two
sequential frames using well-established detection methods.
Second, we feed single frames to neural network and success-
fully predict the T1 events by the snapshot of the film struc-
ture. Our main findings show that T1 events are correlated
with the localized change in film vertices, while the bubble
perimeter itself does not contain similar information.
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FIG. 1. Radially symmetric 2D Hele-Shaw cell creates an ex-
panding flow field. (a) An angled photograph of the Hele-Shaw cell
shows dry foam with typically hexagonal bubbles. The 15-mm inlet
hose is located at the bottom center of the device. (b) Schematic side
view illustrates how the fluid and air are foamed at the inlet. (c) The
schematic drawing of the top view of the circular Hele-Shaw cell
is overlaid by a single raw image from the video stream. The dashed
line illustrates the analysis area that is skeletonized to a binary image.
The inlet at the center and outlet holes have diameter dh = 15 mm
shown as dashed blue circles.

II. METHODS

Figure 1 illustrates the circular Hele-Shaw cell with a
bubble inlet at the center used in the experiments. The flow
created is symmetric with a radial expansion that ensures T1
events will be present due to shear [30]. In addition, due to
the decreasing flow velocity toward the edges of the cell, a
single experiment inherently probes the system at a range of
shear rates. The cell diameter is d = 250 mm and the gap
height is h = 0.75 mm. The inlet has the diameter of 15 mm.
Foaming is facilitated by reducing the water surface tension
by mixing common household dishwashing liquid (Fairy)
with the weight fraction of 1 to 39. The solution viscosity is
indistinguishable from that of water, η = 1 mPa s, confirmed
using Anton Paar 302 rheometer in a bob-and-cup geometry
in the shear rate range of γ̇ = 0.1 to γ̇ = 100 1/s.

FIG. 2. The foam studied is rather monodisperse, having the
average effective radius Reff = 2.0 ± 0.1 mm, where the error is the
standard deviation. The histogram contains bubble sizes from three
snapshots separated by 200 s with data from 378 bubbles.

Both the fluid and air are driven into the cell using a con-
stant pressure set by two SMC ITV0010 pressure controllers
and a manual flow limiter. The inlet flow rates are set to
give an average bubble velocity of v = 1.0 mm/s. The air is
injected through a 26-gauge needle. The outer rim outlets are
open to the ambient pressure. The imaging is implemented
using a Canon M3 camera, which takes compressed video
at 1920 × 1080 pixels using the h.264 encoding resulting
in image resolution corresponding to 0.09 mm/pixel. The
resulting exposure time of one frame is 40 ms, which is
significantly shorter than the temporal separation between two
sequential T1 events at the same node. Figure 1(c) displays
an example of a grayscale snapshot overlaid to the schematic
top view of the device. The video is then interpolated to
13 000 grayscale images at 10 Hz frequency, resulting on
average 0.1-s time between subsequent frames and eventually
cropped to a square corresponding to the region of interest.
The cropped square can be then used as a grayscale image
as is or it can be processed to a skeletonized binary image
with exactly one-pixel-wide lines separating bubbles from
each other. The bubbles are thus identified from images as
connected 2D regions with an area A. Their size distribution
using effective radius Reff = √

A/π is illustrated in Fig. 2,
highlighting the monodispersity of our foam.

In the skeletonized image, the nearest neighbors of a
bubble are exactly 1 pixel apart. This information is further
utilized in identifying the time and location of the T1 events:
If there is a change in nearest neighbors, there is either one or
more T1 or T2 events. Here, we did not observe any T2 events
as no significant coarsening occurs at the timescales during
which the bubbles occupy the imaging area. The raw images
and the identified locations of the T1 events are then divided
into training and test sets as detailed in Supplementary Tables
1 and 2 [31].
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FIG. 3. (a) Architecture of neural network (illustrated using a tool from Ref. [32]) consists of three subsequent convolutional layers and
subsampling layers and finishes with two fully connected layers. (b) Example of a raw grayscale image with one vertex that produces a T1
event highlighted with a red square. The inset shows one of the 3 × 3 convolution filters of a fully trained CNN. The dark diagonal of the filter
captures the similarly aligned films of the raw images. (c) The convolution of the filter and the raw image illustrates the captured elements of
the raw image. The convolution is thresholded for clarity.

We pose the following question: Given a single frame, are
we able to predict the occurrence of a T1 event in the subse-
quent frame or frames? We start with a convolutional neural
network (CNN) [33,34] and modify it to accept grayscale
and skeletonized image as an input. Figure 3(a) depicts a
schematic illustration of the CNN application leading to a
single binary classification: Either T1 event occurs after �t
seconds or not. The neural network convolves and coarse
grains the input image in three layers. The values are then
run through fully connected neural network with two hidden
layers until one value is left that is thresholded to produce
the prediction. In the training, we use Adam optimizer [35].
In total, 10 000 training steps are used with learning rate of
5 × 10−5, and the prediction results were found to saturate
around 2000 training steps. The network was trained using
sample batches at each step, rather than using the whole data
set at every step. The batch size was 1000 samples and it was
tested that increasing the batch size did not improve the pre-
diction results anymore. An example of a grayscale input and
a trained filter is depicted in Fig. 3(b) and the first convolution
layer is depicted in Fig. 3(c). Here, the filter is from a fully
trained network. Initially the filters contains randomly chosen
values that converge to ones capturing essential features by
reinforcing the features producing correct prediction using
back propagation during training. The other filters capture
different orientations of the films, while the function of some
filters are not clear.

The input data is split into two, roughly equally large, sets
for training and testing. In the training, a sequence of small
regions of images are used. The essential structural features
for T1 detection and prediction may be studied by limiting the
amount of input data given to the network, here by limiting
the size and location of regions of interest (ROI) around the
possible T1 event. First, we generate a training set consisting
of small ROIs that precede a T1 event in the next frame.
Then, we balance the data set by adding randomly picked
nonoverlapping regions which do not precede a T1 event until
the data set contains 45–55% portions of each ROI type. This
results in data sets that contain roughly equal amounts of both
sample types so the AI does not benefit by favoring either of
the outcomes. This prescreening is necessary since T1 events
are rare. Without it, the algorithm scores high by always
predicting “no T1.” The quality of the prediction is measured
with a score parameter ξ that is the ratio of correct predictions
(T1 or no T1) per all predictions. Some examples of input
images given for CNN are shown in Fig. 4 with the outcomes
of the prediction. In Fig. 4, the left column has samples that
do not precede a T1 event within 0.1-s time frame while the
samples on the right column precede a T1 event. The figure
demonstrates that better accuracy of the predictions can be
reached by using the vertex centered sample set than by using
the bubble centered sample set. The CNN trained with bubble
centered samples highlights features such as bubble shapes
and stable vertices that are rather irrelevant for T1 prediction.
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FIG. 4. Examples of two different kind of samples input for the
CNN and the prediction results. On the left are negative samples that
do not precede a T1 event within 0.1 s and on the right are positive
samples which precede a T1 event. The sample types are starting
from the first row: vertex centered grayscale image and bubble
centered grayscale image. The labels “Correct” and “Incorrect” in
the figure indicate the success of the CNN prediction.

III. PREDICTION RESULTS

A. Machine learning

Next, we explore the T1 predictions produced by the CNN.
For this purpose, we use the score parameter defined earlier.
We study the CNN for five different combinations of locations
and grayscale or skeletonized frames for the full range of
ROIs. The combinations selected allows us to compare (i)
the effect of film or vertex thicknesses by comparing the
predictions produced using grayscale (filled symbols) and
skeletonized images (unfilled), (ii) the effect of focusing on
the vertices (triangles) or bubble centers (circles), or (iii)
concentrating on the shape of the bubble perimeter without its
neighbors (diamonds). These choices of ROIs allow us to ex-
plore the image features, such as bubble shape, liquid fraction,
or neighbor bubbles, by which the CNN is able to produce the
best predictions. Figure 5(b) shows the score parameter ξ for
different sizes (4 � L � 13 [mm]) and locations (bubble or
vertex centered) of ROIs.

The best score ξ = 98% is obtained using vertex centered
ROIs of 4 × 4 mm illustrated by the red triangle and a cor-
responding example input in Fig. 5(a). As a sanity check, we
get the same score ξ+ = 98% if we restrict to true positives by
defining ξ+ as correctly predicted T1 events per T1 predictions
only. This indicates that there is no bias in the classification.
Increasing the size of the ROI does not improve the score
ξ and thus we conclude that the information in the local
surroundings of the vertex provides a good indicator of a T1
event (filled triangles).

We considered that the change in the local liquid fraction is
the reason for lower yield point and T1 events, which would
appear as darker nodes. Thus, removing the information about
the local liquid fraction by skeletonizing, we expected that
the score parameter would decrease its value significantly.
We performed the same CNN analysis on the skeletonized

FIG. 5. Comparing the score parameter ξ to the size of regions of
interest reveals that for vertex centered images the score parameter is
virtually independent of the ROI size. However, for bubble centered
images the accuracy of the algorithm increases with the size of the
region of interest (L × L mm) until the area is at least equivalent
to that of four bubbles. There the performance is similar for both
the grayscale (filled symbols) and skeletonized (unfilled symbols)
images with the same centering. For the largest ROI, the algorithm
works best for skeletonized network (unfilled circles), reaching al-
most 90% accuracy. The result is worse for grayscale images (blue)
or if the data are reduced down to a single bubble shape [inset in pane
(b), open diamonds].

frames, which result roughly the same scores with the gray
scale images as witnessed in Fig. 5(b) (unfilled triangles).
This is indicative that the CNN is not in fact capturing the
grayscale levels in the images, but rather is predicting solely
based on the orientations of the films surrounding the vertices.
In other words, local liquid fraction or liquid motion in the
films plays no significant role in the local yielding. Similar to
the grayscale data, the skeletonized data show no significant
dependence on the ROI size.

Moving the ROI center from the vertex to the bubble center
of volume has a significant impact on the score parameter.
First, let us concentrate on the skeletonized bubble shape
[black diamonds and inset in Fig. 5(b)], where all the infor-
mation about the neighboring bubbles is removed from ROIs.
The score is close to ξ = 65% with only weak increase with
ROI size L. This is significantly lower compared to the ROIs
that focus on the vertex indicating that the bubble shape does
not contain enough information for accurate prediction of T1
events. The score calculated only for the positive predictions
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is even lower ξ+ = 60% showing that the CNN does a slightly
better job at predicting samples without a T1 event than
predicting the events.

Now we include the films of neighboring bubbles but
keep the ROI center at the center of bubble. These data are
plotted as a function of the bubble centered ROI size for both
grayscale (filled circles) and skeletonized (unfilled circles)
images in Fig. 5(b). The predictions on the smallest ROIs
for skeletonized or grayscale images gives similar scores as
the predictions based on bubble shapes considered above. For
both skeletonized and grayscale ROIs, the score ξ increases
with the size of the ROI. As the ROI increases to include
the entire bubble and parts of its neighbors (green circle), the
score reaches over 80%, lower than the one that focused on
the vertices, yet significantly higher than the one excluding
all the bubble’s neighbors. This supports our previous inter-
pretation that the essential information on the T1 event is
encapsulated by the structures and locations of the vertices
and not by the bubble shape.

Comparison of the pure skeletonized data with and with-
out the neighboring bubbles offers a visual confirmation to
these observations. These structures are shown in the inset of
Fig. 5(b) and highlighted by green color in Fig. 5(c). In the
frame in question, a T1 event will take place in the lowest
vertex, a location that is not obvious by only looking at the
bubble shape. Thus, if the information on the neighboring
bubbles is removed, the score parameter understandably drops
dramatically.

B. Comparison to established methods

In the simplest view, the CNN could be predicting the T1
events simply by applying Plateau’s laws. This seems to be
the case in the sense that the CNN obtains the best predictions
using the vertex centered samples and Plateau’s rules apply to
the vertices here. As shown in Fig. 6, the number of neighbors,
on the other hand, only correlates weakly with the probability
of the occurrence of a T1 event. As the figure shows, the most
probable number of neighbors for a bubble going through a
T1 event is actually six. This observation may explain why
bubble centered samples yield worse predictability compared
to vertex centered. Here, however, one must note that we
have a finite accuracy in determining if Plateau’s rules are
obeyed. The Supplementary Video [31] highlights the life-
times of these metastable states apparently violating Plateau’s
rule lasting up to several seconds. The actual violation of
Plateau’s rule lasts only a few milliseconds, observed in
a three-dimensional (3D) case with high magnification [8].
Therefore, a more rigorous statement is that the CNN bases
the predictions on apparent violation of Plateau’s rules within
the spatial and temporal resolutions of the measurement.

To further confirm the irrelevance of the bubble shape, we
checked for any correlation with the textural tensor

�̂ =
〈 �� ⊗ ��

�

〉
(1)

capturing the bubble shape [21] and the T1 event rate which
has already been used for various bubble monolayers with
similar results [10,20]. Here �� represents the vector joining

FIG. 6. Histogram of number of nearest neighbors for all bubbles
and bubbles right before a T1 event. Clearly the distribution is
wider for the bubbles about to have a T1 event, indicating that local
configurations where a bubble has exactly six neighbors are more
stable than configurations where bubbles have more or less than six
neighbors.

two neighboring Plateau borders within a single bubble. Using
a rectangular mesh of 8 × 8 boxes dividing each image into
64 subregions, Fig. 7 shows no correlation between T1 events
and the bubble shape for single frames.

Supplementary Table 3 shows the score parameter ξ along
with other benchmark parameters of our CNN with various
sanity checks [31]. These included a virgin data set without
any reduction of vertices, comparison to a handmade algo-
rithm, and prescreening the input data to contain only vertices
involving four films, those appearing to violate Plateau’s
120-deg rule. The last method has the best performance,

FIG. 7. Textural tensor and T1 event rate averaged over 8 × 8
sub-regions of imaged area and time. Although, both quantities show
variation between different locations the quantities are not correlated.
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reaching ξ = 99% score and capturing 34% of all the T1
events.

Based on our extensive testing, we conclude that there exist
a significant subset of T1 events triggered by the changes of
local microstructure and film orientations in the vertex that
can be captured with a CNN without any information on the
time dependence. Thus, already a small region of interest
enables the CNN to predict the T1 events. In the future, to
further improve the predictions we will train other neural
networks using parameters which describe features of the
local bubble geometry. We suspect adding some information
about the magnitude and direction of the velocity or recent T1
history could improve the predictability.

IV. TIME-DEPENDENT PROPERTIES OF
ELEMENTARY YIELD EVENTS

We next study to which extent in time the T1 events are pre-
dictable. To answer this, we study the temporal development
of T1 events using the data plotted in Fig. 8.

We identify the score parameter ξ as a measure of pre-
dictability. Essentially, predictability here means the existence
of a heterogeneous feature or “a defect”—since it leads to
yielding—unlike a featureless material, allowing the CNN
algorithm to make a prediction. We perform the analysis for
vertex and bubble centered grayscale samples separately for
the ROI size 9 × 9 mm2, corresponding to sample image
highlighted green in Figs. 5(a) and 5(c). The size is chosen
as the smallest area where the score parameter is saturated to
its limiting value. Also, it is not necessary to include analysis
with skeletonized images since the skeletonization only has
small effect on the prediction score (<5%), if any.

Figure 8(a) depicts predictability ξ against the time differ-
ence �t = tframe − tevent between the T1 event and the single
input frame used by the CNN. This allows to examine the
structural signatures of a T1 event before (�t < 0) or even
after (�t > 0) the event. The brown triangles refer to data
sets with vertex centered ROI, where the CNN is retrained
and evaluated for each measurement point. Here, the vertex is
always at the center of the ROI even if the lag �t is increased.

We find that the prediction probability follows an expo-
nential fit (solid line) and drops to one half at �t = −1.9 s
(before) the event. Using the ROIs from frames after the T1
event, the probability drops to one half faster at �t = 1.5
s, indicating that there is an asymmetry in predictability.
Interestingly, a similar breakdown of time reversibility related
to local geometry of T1 events has been reported previously in
bubble raft shearing experiment measuring orientation of T1
events [22]. The asymmetry seems reasonable as shear rate
drives the film shrinkage while force balance at the liquid-air
interfaces drives the film growth for small shear rates (see
Supplemental Video [31]) [36]. Although this picture is only
a crude simplification as evident based on the video and
the previous studies, T1 events also show clustering due to
redistribution of stress [37], causing nonlocal deformation in
the foam [38,39].

The bubble centered predictions are symmetric in �t ,
although the prediction probability is not as good as in the
vertex centered case. This might be due to the CNN focusing
more on other parts than the film created during a T1 event.

FIG. 8. (a) Temporal evolution of the score parameter ξ as a
measure for structural inhomogeneity for different lag times between
the CNN input frame and the T1 event �t = tframe − tevent , for the
vertex (brown triangles) and bubble (blue circles) centered cases.
The solid curves are the exponential fits to the data before the T1
event. The same fits are also plotted at the positive side (dashed).
This shows the time-reversal asymmetry with the vertex centered
case highlighted with arrows. (b) The characteristic timescale of
subsequent T1 events is of the order of 1 s from the waiting time
distributions P(τ ).

Therefore, while the film instability triggers the event, the
local neighborhood still plays a significant role. This can
be understood in the context of slow energy dissipation,
where a relaxation of the energy landscape enables reversible
T1 events [15]. Thus, the configuration does not essentially
change in the scale of few bubbles, even if the local film
geometry can become completely different.

Figure 8(b) shows the T1 event waiting time distributions
using the interevent arrival time in a restricted area of 50 ×
50 mm2. The data based on all the CNN prediction algorithms
agree with that obtained using the nearest neighbor detection
algorithm capturing all the events (red triangles). Moreover,
the data show that the typical T1 timescales are short, of the
order of 1 s, in agreement with Fig. 8(a). To compare other
dry foams with synthetic surfactants that do not affect the
viscosity of the carrier liquid [40], the timescales for stress
jumps were measured tjump = 1.5 ± 0.5 s [41] and the average
time to reach 90% of the final film length was measured t90 =
0.5 s [42], that is in both cases of the same order of magnitude
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as here, suggesting that film growth is driven by interfacial
tension. With the average bubble velocity of v = 1.0 mm/s,
the timescales are in the ballpark of the average bubble
diameter of d = 4 mm, making T1 events highly localized.

V. CONCLUSIONS

We have successfully trained a general purpose CNN to
recognize the neighbor swap T1 events in radial 2D foam flow
using only snapshots of the structure with no time-dependent
information. We capture the essential features of the images,
namely vertices and film orientations. Using these features,
we show that typically T1 events initiate from the unstable
vertices that appear to violate Plateau’s rules while the bubble
shape is a less relevant quantity (Fig. 5). This highlights
the importance of local film geometry and microstructure in
rearrangements similarly to bubble coalescence [43]. The de-
velopment of the shape or perimeter of a bubble and its neigh-
borhood is symmetric in time for the bubble participating in
a T1 event. In contrast, the changes in films are asymmetric
in time. Here, the emphasis is on the neighbor swap aspect;
the bubble is still a relevant unit for other processes such as
coarsening [44] and recoverable elastic response [15]. The
elastic energy stored in the system does not vanish instantly;
a major part of it is stored in a different film configuration,
making it possible to have reversible local rearrangements.

On average, a vertex about to yield looks very different
before than after the event, as seen, for example, in Supple-
mentary Video 1; that is, one can see whether the config-
uration under scrutiny is close to the local yield threshold
[31]. This manifests as temporal asymmetry in the score ξ

that drops relatively fast to the baseline after the event. In
other amorphous solids, e.g., granular pillars [26], the local
configuration, namely the particle contacts, correlate with the
yield stress and exhibit local variations (soft spots).

Our work has focused on the experimentally amenable
2D case considering the case of constant driving pressure
and liquid fraction. It would now be quite interesting to
investigate how one can change the foam yield in terms of
the local predictability of T1 events and their spatiotemporal
correlations. This could be achieved altering the physical
properties of the sample foam, such as liquid fraction, poly-
dispersity, geometry, or shear rate. However, changing any
of these parameters may impose difficulties in maintaining a
stable flow and keeping coarsening negligible. One particular
direction would be particle-laden foams where the reinforc-
ing particles would induce other dynamical timescales. This
leads to a wide variety of industrial applications with tunable
orientation-dependent properties such as tensile strength or
heat conductivity [45,46].
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