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Motivated by recent experiments in Ville et al. [Phys. Rev. Lett. 121, 145301 (2018)], we study sound propaga-
tion in a two-dimensional Bose gas across the superfluid-thermal transition using classical-field dynamics. Below
the transition temperature we find a Bogoliubov and a non-Bogoliubov mode, and above it we find the normal
sound mode and the diffusive mode, as we determine from the dynamical structure factor. Our simulations of
the experimental procedure agree with the measured velocities and show that below the transition temperature
the measurements detect the Bogoliubov mode. Above the transition, they detect either the normal sound mode
for low densities or weak interactions or the diffusive mode for high densities or strong interactions. As a key
observation, we discuss the weak-coupling regime in which the non-Bogoliubov mode has a higher velocity than
the Bogoliubov mode, in contrast to a hydrodynamic scenario. We propose to detect this regime via step-pulse
density perturbation, which simultaneously detects both sound modes.

DOI: 10.1103/PhysRevResearch.2.023336

I. INTRODUCTION

Controlled excitation of quantum liquids has created in-
sight into collective modes [1–8], superfluidity [7,9–18], exci-
tation properties [19], and sound diffusion [20]. An intriguing
phenomenon of quantum liquids is the propagation of second
sound. It was first observed in liquid helium, where it is well
described by Landau-Tisza’s two-fluid hydrodynamic model
[21]. While the studies of superfluid helium were of crucial
importance for understanding quantum liquids, the creation of
Bose-Einstein condensates of dilute gases strongly expanded
the scope of these studies. In ultracold quantum gases, a
wide range of interactions and densities is available in a
tunable manner, as well as bosonic and fermionic species, or
mixtures thereof. The sound modes of three-dimensional (3D)
condensates were measured in Refs. [22,23] and of a unitary
Fermi gas in Ref. [24]. Theoretical studies were reported in
Refs. [25–27].

Sound modes in 2D Bose gases are of special interest, as
an interacting 2D system undergoes a superfluid transition
via the Berezinskii-Kosterlitz-Thouless mechanism [28]. At
the transition, and in the thermodynamic limit, the superfluid
density vanishes with a universal jump of 4/λ2, where λ is
the de Broglie wavelength. Furthermore, 2D systems exhibit a
universal scale invariance: The dimensionless thermodynamic
quantities, such as the phase-space density and the entropy,
depend only on a single dimensionless parameter μ/kBT or,
equivalently, T/Tc, where μ is the mean-field energy, T the
temperature, and Tc the critical temperature. This is confirmed

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

by Refs. [29,30], where no jump in the thermodynamic quan-
tities is observed. References [31,32] studied the sound modes
of 2D quasicondensates using the two-fluid model, which
show a jump at the transition.

Recently, Ref. [33] reported on the measurements of the
sound propagation in a uniform 2D Bose gas of 87Rb atoms
across the superfluid-thermal transition. The temperature de-
pendence of the measured sound velocity shows no dis-
cernible jump in the crossover regime and a nonzero velocity
above the transition. Theoretical studies of this measurement
were reported in Refs. [34,35].

In this paper, we investigate sound mode dynamics of a uni-
form 2D Bose gas of 87Rb atoms across the superfluid-thermal
transition using classical-field simulations, see also Ref. [34].
We determine a sound velocity c by exciting running and
standing waves with a weak Gaussian potential. These results
show good agreement with the measurements of Ref. [33].
Below Tc, the temperature dependence of c is captured by a
Bogoliubov estimate that includes the superfluid density at
nonzero temperature. Near and above Tc, c displays a temper-
ature dependence that depends on the density in a qualitative
manner: c increases and decreases for low and high densities,
respectively. This is also reflected in the dynamic structure
factor, showing the density-dependent interplay between two
sound modes that we refer to as the Bogoliubov and the
non-Bogoliubov mode below Tc, and the diffusive and the
normal sound mode above Tc. The results of c show a breaking
of the universal scale invariance at nonzero temperature due
to Landau damping. Going beyond the experimental work
of Ref. [33], we propose to excite the two modes using a
step-pulse density perturbation. The results of the step-pulse
excitation across the transition show excellent agreement with
the results of the dynamic structure factor, which provides a
simultaneous measurement of both sound velocities.

This paper is organized as follows. In Sec. II we illustrate
the terminology of first and second sound. In Sec. III we
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FIG. 1. Sketch of the qualitative temperature dependence of first
sound (upper curve) and second sound (lower curve) for (a) weak and
(b) strong interactions. B denotes the Bogoliubov sound mode, NB
the non-Bogoliubov mode, D the diffusive mode, and N the normal
sound mode. The line color represents the spectral weight of the
modes in the dynamic structure factor. For strong interactions the two
modes undergo an avoided crossing at a hybridization temperature
below the critical temperature, where the hybridization point is
indicated by the crossing of the decoupled modes.

describe our simulation method. In Sec. IV we determine
sound velocities by exciting running waves. In Sec. V we
analyze the scale invariance of the sound velocity. In Sec. VI
we compare the running-wave velocity with the standing
wave velocity and the Bogoliubov estimate. In Sec. VII we
show the dynamic structure factor. In Sec. VIII we excite two
sound modes with a step-pulse perturbation, and in Sec. IX
we conclude.

II. WEAK- AND STRONG-COUPLING REGIMES

In this paper, we refer to the faster mode as first sound,
and the slower mode as second sound. We note that this
terminology is inherited from the study of superfluid helium,
and that the application of its terminology to cold atom
systems could be done in several ways. As we describe in this
paper, for cold atom systems, we find two regimes. For weak
interactions, or small densities, the temperature dependence
of the sound velocities is sketched qualitatively in Fig. 1(a).
At low temperatures, one sound mode is well described by the
Bogoliubov approximation (B), and one mode that we refer to
as a non-Bogoliubov (NB) mode. Here the non-Bogoliubov
mode is the first sound mode, in the sense that it is the
faster mode. In Ref. [27] we have given a weak-coupling
description of this mode as a squeezing mode; also note
Ref. [36]. For the interaction g → +0, the ratio of the sound

mode velocities approaches two. As the temperature is raised
above the critical temperature, the NB mode continuously
connects to the normal sound mode of a thermal gas. The
velocity of the Bogoliubov mode undergoes a universal jump
to zero at the critical temperature in the thermodynamic limit,
and becomes the diffusive mode. We note that this sudden
jump is replaced by a crossover regime for finite systems. The
spectral weight of the modes in the dynamic structure factor
has been indicated by the line color in the sketch.

For strong interactions the temperature dependence of the
mode velocities is sketched in Fig. 1(b). At low temperatures
the Bogoliubov mode is the faster mode, which we refer to
as first sound in this regime. The non-Bogoliubov mode is
the slower mode and connects to the diffusive mode. The
two modes display an avoided crossing at a hybridization
temperature below the critical temperature. We give numerical
evidence in support of these scenarios below.

III. SIMULATION METHOD

We simulate the dynamics of a 2D quasicondensate using
the c-field method of Ref. [37], see also, e.g., Refs. [38–40].
We describe the system with the Hamiltonian

Ĥ0 =
∫

dr
[

h̄2

2m
∇ψ̂†(r) · ∇ψ̂ (r)

+ g

2
ψ̂†(r)ψ̂†(r)ψ̂ (r)ψ̂ (r)

]
, (1)

where ψ̂ and ψ̂† are the bosonic annihilation and creation
operators, respectively. The 2D interaction parameter is given
by g = g̃h̄2/m, where g̃ = √

8πas/�z is the dimensionless in-
teraction, as the s-wave scattering length, and �z the harmonic
oscillator length in the transverse direction. We use g̃ = 0.167,
as in Ref. [33].

Inspired by the experimental setup of Ref. [33], we con-
sider a 2D Bose cloud of 87Rb atoms confined in a rectangular
box geometry of dimensions Lx × Ly = 34 × 39 μm. For the
numerical simulations, we discretize space with a lattice of
size Nx × Ny = 68 × 78 and the discretization length l =
0.5 μm, where l is chosen to be smaller than or comparable
to the healing length ξ and λ (see Ref. [41]). In our c-field
approach, we replace the operators ψ̂ in Eq. (1) and in the
equations of motion by complex numbers ψ . We sample the
initial states in a grand-canonical ensemble of chemical poten-
tial μ and temperature T via a classical Metropolis algorithm.
We propagate this initial state according to the equations
of motion. For each trajectory, we calculate the desired ob-
servables and average over the initial thermal ensemble. The
density of the atoms is in the range n2D = 3.0–53 μm−2. For
each n2D, we choose several temperatures across the transi-
tion. The critical temperature Tc is estimated by the critical
phase-space density Dc = ln(380/g̃) [42], which results in
Tc = 2πn2Dh̄2/(mkBDc).

To excite sound modes we add the perturbation Hex =∫
drV (r, t )n(r), where n(r) is the density at the location

r = (x, y). The excitation potential V (r, t ) is given by

V (r, t ) = V0(t ) exp[−(y − y0)2/(2σ 2)], (2)

where V0 is the time-dependent strength and σ the width.
This potential is used along the upper edge of the box at the
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FIG. 2. Running-wave excitation. (a) Time evolution of the density profile �n(y, t ) that is averaged along the x direction for n2D =
29.2 μm−2 and T/Tc = 0.37. We slowly turn on the Gaussian potential (smooth depletion of density along the upper edge), wait for tw , and
then turn it off at toff , which excites a running wave, visible as a density dip propagating in space as a function of t . The black continuous line is
the triangular-wave function fit. Panel (b) shows the amplitudes Ã1(t ) that are determined by fitting the density profile with the lowest-energy
density mode. The errorbars are the standard deviation. Panels (c)–(e) correspond to the parameter sets given in the text. The blue continuous
lines are the fits to Eq. (3).

location y0 = 36 μm to excite running and standing waves.
For all simulations, σ is 5 μm and V0 is typically in the range
V0/μ = 0.1–0.4, where μ = gn2D is the mean-field energy.
The size of the resulting density dip is similar to the one
created in the experiments with a steplike perturbation, see
Fig. 2(a). A running wave is excited using the following
scheme. We slowly turn on the potential over ton = 200 ms,
i.e., V0(ton) = V0, wait for tw = 100 ms, and then suddenly
turn it off. This excites a sound wave propagating in space
along y direction as a function of t , see Fig. 2(a). To excite
a standing wave, the following scheme is used. We slowly
turn on the potential in the manner described above, and then
sinusoidally modulate it by V0(t ) = V0(t ′){1 + sin[2π f (t −
t ′)]}, where t ′ = ton + tw and f is the modulation frequency.
We perform this modulation at various frequencies f . After
1 − 2 s excitation time, we analyze the density modulation
following Ref. [33]. For each f , we explore one oscillation
by recording the density profiles ni(y, f ) at four different
times ti, i ∈ {1, 2, 3, 4}, where ti are chosen according to
ωti = ωt1 + (i − 1)π/2, with ω = 2π f . The amplitude of
the standing waves is calculated by the quantity q2(y, f ) =
q2

1(y, f ) + q2
2(y, f ), where q1(y, f ) = n3(y, f ) − n1(y, f ) and

q2(y, f ) = n4(y, f ) − n2(y, f ). The squared amplitudes deter-
mined at various f are shown in Fig. 5(a). We determine the
sound velocities by exciting running and standing waves in
Secs. IV and VI, respectively.

IV. SOUND PROPAGATION

In this section, we present the results of running-wave
excitation for various combinations of n2D and T/Tc. As

an example, we first choose n2D = 29.2 μm−2 and T/Tc =
0.37, which is one parameter set used in the experiment. We
excite a running wave following the sequence described in
Sec. III. In Fig. 2(a) we show the time evolution of the density
profile �n(y, t ) = n(y, t ) − n2D, which is averaged over the
x direction and the ensemble. The excited sound wave is
indicated by the density dip propagating in space as a function
of time. The sound wave travels back and forth between the
edges at a constant velocity and forms a triangular pattern.
We fit the locations of the sound wave with a triangular-
wave function to determine its velocity c. From the fit, we
obtain c = 1.47 mm/s, which is in excellent agreement with
the measured c = 1.49 mm/s. The simulated c is slightly
below the Bogoliubov estimate of the sound velocity at zero
temperature c0 = √

gn2D/m = 1.61 mm/s.
Furthermore, we examine the damping of the sound mode

in Fig. 2(a). We fit the density profile with the function
n(y, t ) = n̄ + A1(t ) cos(πy/Ly) to determine the amplitudes
A1. This function represents the lowest-energy density mode,
and the functional form is motivated by the experiments. n̄
is a fitting parameter and represents the average density in
y direction. In Fig. 2(b) we show the extracted amplitudes
Ã1(t ) = A1(t )/A1(0) as a function of the propagation time t .
We fit Ã1 with an exponentially damped sinusoidal function
[33]

f (t ) = e−
t/2[
/(2ω) sin(ωt ) + cos(ωt )] (3)

to determine the frequency ω and the damping rate 
.
From these, we determine the sound velocity c = ωLy/π

and the quality factor Q = 2ω/
. For Ã1 in Fig. 2(b), the
fit yields ω = 119.7 s−1 and 
 = 11.2 s−1, and we obtain
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TABLE I. Values of c, 
, and Q, obtained from the simulation,
compared to the measurements in Ref. [33], for the same parameter
sets of n2D and T/Tc. V0 is the strength of the Gaussian potential. 


is given in units of s−1.

Parameter set Simulation Experiment

n2D T/Tc V0/μ c (mm/s) 
 Q c (mm/s) 
 Q

53 μm−2 0.21 0.2 2.10 8.7 39.1 2.20 5.5 64.5
52 μm−2 0.95 0.2 1.46 35.8 6.6 1.53 31.0 11.1
11 μm−2 1.38 0.4 0.56 111 0.8 0.81 32.7 4.2

c = 1.47 mm/s and Q = 21.4. The value of c is the same as
for the triangular pattern fit, and the high value of Q implies
weak damping of the sound mode. As the main origin of the
damping of the sound modes, we identify Landau damping
as we explain below. This Landau-type damping was also
considered in Ref. [34].

We now consider the three other sets of n2D and T that
are used in the experiment, which are (53 μm−2, 0.21 Tc),
(52 μm−2, 0.95 Tc), and (11 μm−2, 1.38 Tc). For each set, we
repeat the running-wave excitation and determine ω and 
,
as above. We show the extracted amplitudes Ã1 in Figs. 2(c),
2(d), and 2(e), respectively. The values of c, 
, and Q are
given in Table I, where we compare them with their corre-
sponding measured values. They are in agreement below Tc,
while they deviate for the parameter set above Tc. We link
this deviation to the measurement uncertainty and possibly
different values of V0 between experiment and simulation.

We now analyze the temperature dependence of c across
the transition systematically. We choose the three densities
n2D ≈ 3, 12, and 27 μm−2. We refer to them as low, moderate,
and high densities, respectively. For each n2D, we determine
c, 
, and Q at various T/Tc, with the running-wave exci-
tation described above. We use the same V0 ≈ 0.2 μ for all
simulations. We show the normalized results of c/c0 as a
function of T/Tc in Fig. 3(a). The temperature range includes
the superfluid, crossover, and thermal regime. In the superfluid
regime, c overall decreases with increasing T . The reduction
in c/c0 is higher for low n2D as compared to high n2D. In the
crossover and the thermal regime the temperature dependence
of c/c0 depends on the density in a qualitative manner. With
increasing T/Tc, c/c0 increases for a small density n2D but
decreases for large density. Note that c eventually vanishes in
the thermal regime for high n2D. This result indicates that at
all densities, the running-wave measurement primarily excites
the Bogoliubov mode at temperatures below the transition
temperature. However, above the transition temperature, the
potential quench primarily excites the normal sound mode at
low density, or weak coupling, and the diffusive mode at high
densities. As we describe below, the same trend is visible
in the standing-wave experiment. Furthermore, the dynamic
structure factor that we discuss in Sec. VII supports this
scenario as well. We emphasize that, in general, both modes
are excited in these experiments. However, the amplitudes of
the excited states are in general very different so that only one
mode is detectable. In Sec. VIII we present a proposal for ex-
citing both modes simultaneously with detectable amplitudes.
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FIG. 3. Sound velocity, damping rate, and quality factor. (a) Nor-
malized sound velocity c/c0 as a function of T/Tc for low (blue
squares), moderate (green circles), and high n2D (red diamonds).
Damping rate 
 and quality factor Q are shown in panels (b) and
(c), respectively. The black continuous line in panel (c) is the Landau
prediction [33]. The vertical dashed line at T/Tc = 1 denotes the
critical point [42]. The thin dashed lines are guides to the eye.

In Figs. 3(b) and 3(c) we show the damping rate 
 and the
quality factor Q, respectively. 
 shows a density-dependent
behavior as a function of T/Tc, which translates into a den-
sity dependence of the temperature dependence of Q. As a
comparison we depict the prediction for the Q factor, which
assumes that Landau damping is the primary mechanism for
the line broadening, see Refs. [33,43]. The comparison shows
good agreement.

V. SCALE INVARIANCE

Here we examine the scale invariance of c across the
transition. We first demonstrate the scale invariance of the
phase-space density D = n2Dλ2. We calculate D at various
T/Tc for the same three densities as before. In Fig. 4(a)
we show the results of the inverse phase-space density D−1

determined at various T/Tc. The different n2D results collapse
on a single line all across the transition. We compare them
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and high n2D (red diamonds). The black continuous line is the scaling
prediction D−1

scale. Panels (b) and (c) show the results of c0/cT and
c/cT , respectively. The black continuous lines in panels (b) and
(c) are the scaling prediction (c0/cT )scale. The errorbars in panel
(c) represent the damping velocities 
Ly/π determined with 
 in
Fig. 3(b).

with the scaling prediction D−1
scale = D−1

c T/Tc, where Dc is
the critical phase-space density [42]. The simulations are in
excellent agreement with the prediction. This confirms the
universal scale invariance of the phase-space density.

We now test the scale invariance of the dimensionless
sound velocities c0/cT and c/cT , where we refer to cT =√

kBT/m as the thermal velocity. The scaling prediction for
c0/cT is (c0/cT )scale = √

Dcg̃Tc/(2πT ), which depends only
on T/Tc, while g̃ is a fixed parameter. We show the results
of c0/cT and c/cT in Figs. 4(b) and 4(c), respectively. The
results of c0/cT collapse on a single line and agree very well
with (c0/cT )scale. This is a direct consequence of the data
collapse shown in Fig. 4(a). However, for c, obtained from the
simulation, the different n2D results do not collapse on a single
line, which shows a breaking of scale invariance regarding
the sound velocity. The results of c/cT and the prediction
(c0/cT )scale agree only at low T , whereas they deviate at
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FIG. 5. Standing-wave excitation. (a) Squared amplitude
q2(y, f ) calculated at varying modulation frequency f , for
n2D ≈ 27 μm−2 and T/Tc = 0.23. Panel (b) shows the determined
amplitudes B2

j of the standing waves, where j is the mode index.
The continuous lines are the Lorentzian fits. The mode frequencies
f j and the damping rates 
 j are given in the insets, where the
continuous lines are the linear fits.

intermediate and high T . At low T , the damping of the sound
mode is small compared to the mode frequency, i.e., 
 � ω.
However, at high T , 
 is comparable to ω and the deviation
from the scaling prediction increases. The magnitude of the
damping is expressed as a velocity, and shown as error bars in
Fig. 4(c). The deviation from the scaling prediction is compa-
rable to the error bars, suggesting that this breaking of scale
invariance is due to the damping of the sound mode. Near and
above Tc, c undergoes the density-dependent changes that we
have pointed out in the previous section.

VI. STANDING WAVES

As a second measurement, we analyze standing waves for
the same system parameters as in Sec. IV. As an illustra-
tion, we choose n2D ≈ 27 μm−2 and T/Tc = 0.23 and create
standing waves by periodically modulating the excitation
potential, following the scheme described in Sec. III. After 1 s
excitation time, we calculate the squared amplitude q2(y, f )
of the density modulation at varying modulation frequency
f , see Sec. III for details. We show the results of q2(y, f )
determined as a function of f in Fig. 5(a). This response
demonstrates the excitation of the first three standing waves
at their mode frequencies. We fit the spatial dependence of
q2(y, f ) with the function q2(y, ω j ) = ∑

j B2
j cos2(k j,ωy/2) to

determine the amplitudes B2
j , where j is the mode index and

k j = 2 jπ/Ly [33]. We show the extracted amplitudes B2
j of

the standing waves in Fig. 5(b). We fit B2
j with a Lorentzian
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function to determine the mode frequency f j and the damping
rate 
 j . We show the determined f j and 
 j in the insets of
Fig. 5(b). f j increases linearly with j, which demonstrates
that the simulated standing waves correspond to the first three
lowest-energy spatial modes. 
 j also increases linearly with
j, which is a feature that is consistent with Landau damping.

We use the lowest-energy standing wave to determine the
sound velocity c = ω1Ly/π and compare it to the running
wave measurement in Sec. IV. For the example given in
Fig. 5, we obtain c = 1.48 mm/s, which agrees very well
with c = 1.49 mm/s of the running wave measurement. We
extend the comparison between the two measurements to
the low- and high-n2D systems across the transition. We use
V0 in the range V0/μ = 0.1 − 0.2 for all simulations. We
present the results of standing and running wave simulations
in Fig. 6.

In addition, we compare the simulation results to the
Bogoliubov estimate of the sound velocity at nonzero tem-
perature. We express ψ̂ in the density-phase representation
as ψ̂ (r) = √

n + δn̂(r) exp[iφ̂(r)], where δn̂ and φ̂ are the
density and phase fluctuations, respectively. From Eq. (1) we
obtain the linearized Hamiltonian

Ĥ0 =
∫

dr
[ h̄2ns

2m
(∇φ̂)2 + g

2
(δn̂)2

]
, (4)

where ns is the superfluid density. The long-wavelength exci-
tations are sound waves with velocity

cB =
√

gns

m
. (5)

Following our description in Sec. II, this is the second (first)
sound estimate for weak (strong) interactions. We calculate
cB(T ) by numerically determining ns(T ) using the current-
current correlations, see Appendix. In Fig. 6 we present the
results of cB(T ) determined for low- and high-n2D systems.
cB(T ) shows a density-dependent behavior and is nonzero
above the transition. As mentioned, the sudden jump of the
superfluid density is replaced by a crossover regime due to
the finite size of the system. Both the running-wave and
the standing-wave measurement are consistent with the Bo-

goliubov estimate below the transition. For low densities,
both measurements show an upward trend as the tempera-
tures approach the crossover regime. As demonstrated for the
running-wave measurement earlier, this upward trend contin-
ues at temperatures above the critical temperature. This again
suggests the interpretation that for the low-density regime the
normal sound mode is excited at higher temperatures. For
high densities, the measured velocities both show a downward
trend above the transition temperature. The standing wave
measurement follows the Bogoliubov estimate closely, while
the running wave measurement stays at a slightly higher
value before it approaches zero as well. These measure-
ments indicate that the primary excitation is the diffusive
mode, while being slightly sensitive to the specific excitation
method.

VII. DYNAMIC STRUCTURE FACTOR

We calculate the dynamic structure factor

S(k, ω) = 〈|n(k, ω)|2〉, (6)

where n(k, ω) is the Fourier transform of the density n(r, t )
in space and time. We determine n(k, ω) via

n(k, ω) = 1√
Nl Ts

∑
i

∫
dt e−i(kri−ωt )n(ri, t ), (7)

where Nl is the number of lattice sites and Ts = 328 ms is
the sampling time for the numerical Fourier transform. The
dynamic structure factor displays the overlap of the density
degree of freedom with the collective excitations. We calcu-
late S(k, ω) at various T/Tc for low and high n2D. In Fig. 7(a)
we show S(k, ω) as a function of the wave vector k = ky

and frequency ω for low n2D across the transition. At low
T , S(k, ω) has most of its weight at the Bogoliubov branch.
At intermediate T , an additional branch with higher velocity
appears. For comparison, we plot the Bogoliubov spectrum

h̄ωk =
√

εk (εk + 2mc2
B), where cB(T ) is determined numeri-

cally, as above. εk = 2J[1 − cos(kl )] is the free-particle spec-
trum on the lattice that is introduced to perform the numer-
ical work, and J = h̄2/(2ml2) is the tunneling energy. This
dispersion recovers the continuum dispersion for l → 0. The
Bogoliubov spectrum agrees well with the lower excitation
branch at all k, for all T below Tc. With this, we identify
the lower branch as the Bogoliubov (B) mode and the upper
branch as the non-Bogoliubov (NB) mode. This additional
peak is also visible in Fig. 8(a), where the dynamic structure
factor is depicted at two fixed values of the momentum. As
illustrated in Sec. II, the faster mode is the NB mode and the
slower mode is the B mode, for this density regime. Near Tc,
the B mode vanishes and becomes the diffusive mode, while
the NB mode continuously connects to the normal sound
mode of a thermal gas. Furthermore, the broadening of the
B mode is visible, which corresponds to Landau damping,
discussed before.

In Fig. 7(b) we show S(k, ω) for a high density n2D. At
low T , the weight is again mainly on the Bogoliubov branch,
similarly to the case of low density. At intermediate T , an
additional branch with a lower velocity appears, in contrast
to the case of low density where the velocity was higher. This
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systems, see text. The vertical dotted lines correspond to the fixed-k cuts presented in Fig. 8.

corresponds to the second scenario described in Sec. II. These
two branches are also visible in Fig. 8(b). We note that the
dispersion of the Bogoliubov mode is renormalized to slightly
higher values due to level repulsion between the two branches.
Furthermore, both branches are broadened more strongly than
for low densities, due to the higher interaction. This results in
overlapping branches. At the transition, the B mode crosses
over into the normal sound mode while the second sound
mode transforms into the diffusive mode. The diffusive mode
is broader than for low densities, and has higher weight. This
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FIG. 8. S(k, ω) plots at k = 0.8 μm−1 and 1.7 μm−1, for low
n2D (upper row) and high n2D (lower row). The color scheme is the
same as Fig. 7. The vertical dashed lines mark the frequencies of the
Bogoliubov dispersion shown in Fig. 7.

leads to the previous observation that for this regime it is the
diffusive mode that is primarily excited with a perturbation of
the density.

VIII. EXCITATION OF BOTH SOUND MODES

We propose to excite both sound modes simultaneously by
using a step-pulse density perturbation which is created by
suddenly turning on and off the Gaussian potential at the loca-
tion Ly/2, see also Ref. [44]. We choose the excitation time to
be about 1 ms. For low n2D and various T/Tc, we excite sound
modes using both attractive and repulsive potentials. For all
simulations, we use σ = 2 μm and V0 in the range V0/μ =
0.25–2. We show the results in Fig. 9. At T/Tc = 0.5, the
time evolution of the density profile �n(y, t ) shows primarily
the excitation of the B mode. We do not observe significant
NB mode excitation at and below T/Tc = 0.5 compared to
the numerical noise. At higher T/Tc, the time evolution shows
both B and NB mode excitations which are characterized by
two density pulses traveling at different velocities. The NB
mode travels faster than the B mode. At T/Tc = 1, the B mode
transforms into the diffusive mode and the NB mode into the
normal sound mode of a thermal gas. Above Tc, the time
evolution shows primarily the normal sound propagation, as
well as diffusive dynamics at the location of the perturbation.
We fit the density profile with one or two Gaussians to deter-
mine the locations of one or two density pulses. From these
locations we determine the sound velocities. To cancel out
nonlinear effects due to the perturbation potential, we estimate
the average squared velocity c2 = (c2

att + c2
rep)/2, where catt

(crep) corresponds to the attractive (repulsive) potential.
In Fig. 10 we show the temperature dependence of the two

mode velocities of the step-pulse excitation. For comparison,
we determine the mode velocities from the dynamic structure
factor of low n2D shown in Fig. 7(a). We fit the excitation
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spectrum in the low-energy regime with a Lorentzian function
to determine the mode frequencies. The NB mode frequency
is determined after subtracting the background of the B mode.
From the frequencies of the NB and B modes, we determine
the first and second sound velocities, respectively. We show
these results for various T/Tc in Fig. 10. The results of the
dynamic structure factor show excellent agreement to those
of the step-pulse excitation. Overall, the first sound velocity
shows a weak temperature dependence across the transition
and is in the range c/c0 = 2.6–2.8. The second sound velocity
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FIG. 10. Sound velocities for low density. Temperature depen-
dence of the two sound velocities of the step-pulse excitation
(crosses) and the dynamic structure factor (circles). The results
of running wave (squares), standing wave (plus symbols), and the
Bogoliubov estimate (blue line) are the same as in Fig. 6.

decreases with increasing temperature and vanishes above Tc.
The second sound results are in good agreement with the
Bogoliubov estimates and the running- and standing-wave
velocities. This set of results correspond to the first scenario
of Sec. II.

IX. CONCLUSIONS

We have studied the propagation of sound in a 2D quasi-
condensate of 87Rb atoms across the superfluid-thermal tran-
sition using c-field dynamics. We have identified two sound
modes. To determine one or both velocities of these modes, we
employ several methods. The first two methods are inspired by
Ref. [33]: We excite running and standing waves with a weak
Gaussian potential, from which we obtain a single velocity.
Our simulations are in good agreement with the measurements
of Ref. [33]. Furthermore, we have determined the dynamic
structure factor. It displays two sound modes, and provides
information about the overlap of these modes with the density
degree of freedom. Below the critical temperature, one of the
modes is the Bogoliubov mode. We refer to the other mode
as the non-Bogoliubov mode. Above the critical temperature,
we find the normal sound mode and the diffusive mode. The
modes that are detected in Ref. [33] are the Bogoliubov mode
below the critical temperature and the normal and the diffusive
mode above the critical temperature.

As a key observation, we find that the non-Bogoliubov
mode can have a higher or a lower velocity than the Bogoli-
ubov mode. For weak interactions or low densities, the non-
Bogoliubov mode has a higher velocity than the Bogoliubov
mode, while for stronger interactions or higher density, the
Bogoliubov mode has the higher velocity. While the strongly
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interacting regime is consistent with a hydrodynamic two-
fluid approach, the weakly interacting regime provides a
non-hydrodynamic scenario for the collective modes of Bose-
Einstein condensates. We propose to measure the two sound
modes simultaneously via a step-pulse density perturbation.
By choosing the weak- and the strong-coupling regimes of
a condensate, these two regimes can be identified, which
provides insight into this dynamical regime of condensates.
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APPENDIX: SUPERFLUID DENSITY

To determine the superfluid density we calculate the
current-current correlations in momentum space. The current
density j(r) is defined as

j(r) = h̄

2im
[ψ∗(r)∇ψ (r) − ψ (r)∇ψ∗(r)]. (A1)

By choosing the gradient direction, we calculate the Fourier
transform of the current density ( jk )x/y in the x and y di-
rections. We calculate 〈( j∗k )x( jk )y〉 using equilibrium simula-
tions, with periodic boundary condition. In the limit k → 0,
these correlations are approximated by [45,46],

〈( j∗k )l ( jk )m〉 = kBT

m
A
(

ns
klkm

k2
+ nnδlm

)
, (A2)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5

n
s
/n

2
D
,
n

0
/n

2
D

T/Tc

ns, n2D = 3 µm−2

ns, n2D = 27 µm−2

n0, n2D = 3 µm−2

n0, n2D = 27 µm−2

FIG. 11. Superfluid and condensate density. Superfluid fraction
ns/n2D and condensate fraction n0/n2D as a function of T/Tc for low
and high-n2D.

where ns and nn are the superfluid and the normal fluid density,
respectively. A is the system area. We analyze the correlations
along the line kx = ky = k/

√
2 and determine the k = 0 value

using a linear fit in the low-k regime. This allows us to
determine ns at temperature T following Eq. (A2). In Fig. 11
we show the determined ns as a function of T/Tc for low and
high n2D. ns/n2D shows a density-dependent behavior and no
jump at the transition, due to the finite size of the system.
We note that the temperature dependence of the superfluid
density was also discussed in Refs. [46,47]. For comparison,
we numerically determine the condensate density n0 and show
this result in Fig. 11. ns and n0 show good agreement for low
density, while they deviate for high density. We note that for
finite systems the condensate density scales algebraically with
the system size, where the scaling exponent is associated with
the superfluid density [48].
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