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Interferometer for force measurement via a shortcut to adiabatic arm guiding
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We propose a compact atom interferometer to measure homogeneous constant forces guiding the arms via
shortcuts to adiabatic paths. For a given sensitivity, which only depends on the space-time area of the guiding
paths, the cycle time can be made fast without losing visibility. The atom is driven by spin-dependent trapping
potentials moving in opposite directions, complemented by linear and time-dependent potentials that compensate
the trap acceleration. Thus, the arm states are adiabatic in the moving frames and nonadiabatic in the laboratory
frame. The trapping potentials may be anharmonic, e.g., optical lattices, and the interferometric phase does not
depend on the initial motional state or on the pivot point for swaying the linear potentials.
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I. INTRODUCTION

Atom interferometry [1,2] provides a route to quantum-
enhanced precise sensors. The key idea is to split and later
recombine the atom wave function, to detect the differential
phase accumulated during the separation, which is sensitive,
in particular, to small potential differences between the arms.

Here, we work out a scheme to measure constant forces
using STA-mediated guided interferometry [3–6]. STA stands
for “shortcuts to adiabaticity,” a set of techniques to achieve
the results of adiabatic dynamics in shorter times [7,8], and
“guided” means that the atom is driven in moving traps as
in buckets or conveyor belts [5], so it is never in free flight.
Guiding, e.g., via moving optical lattices, keeps the atom wave
function localized with nanoscale spatial resolution, allowing
for precise measurements at the ultrashort spatial scale [9,10],
whereas the speedup with respect to slow adiabatic processes
can avoid perturbations and decoherence keeping the visibility
and differential phase of adiabatic methods. Moreover, our
STA-mediated interferometer scheme fulfills the ideal goal
of giving a motional-state independent differential phase with
short process times whereas keeping simultaneously a high
sensitivity.

We assume throughout one-particle wave functions either
because the interferometer works, indeed, with single particles
or because interactions are negligible. Similar to Ref. [3]
the arms in the current scheme are separated by means of
“spin,” here, an alias for “internal state”-dependent forces.
Operationally, the current scheme differs from the one in
Ref. [3]. There, a fixed harmonic trap was combined with
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two homogeneous time- and spin-dependent forces to separate
first and then recombine the wave-function branches of an
ion. Here, we use, instead, two moving spin-dependent traps,
not necessarily harmonic, complemented by homogeneous
spin- and time-dependent forces to compensate for inertial
terms due to the motions of the traps [11]. This compensation
is one of the ways to implement STA-driven fast transport
[8] and can be equivalently found by invariant-based inverse
engineering [11], by the “fast-forward approach” [12], or as
a local unitary transformation of a nonlocal counterdiabatic
approach [13,14].

An important difference between this paper and Ref. [3]
is that the phase differential is now independent of the
pivot equipotential point x0 to apply the compensating spin-
dependent potentials, see an example of two different pivot
positions in the outer columns of Fig. 1. When the force to be
measured acts permanently, before and during the experiment,
the natural choice in which x0 is at the initial equilibrium point
of the trap, which depends on the unknown force we want
to measure, canceled the interferometric phase in Ref. [3].
A rotation of the effectively one-dimensional trap to let the
force act only from the initial time t = 0 is a formal but hardly
practical solution. The scheme proposed here is free from such
difficulties and is more broadly applicable.

Using arbitrary trapping potentials rather than harmonic
ones opens the way to apply the proposed scheme to ultracold
neutral atoms where the anharmonicities are usually stronger
than for trapped ions. Different realizations are possible,
e.g., in atom chips [2], but we will discuss optical lattices
as a specific example. Interferometers with two oppositely
moving optical lattices to accelerate the arm wave functions
for a single internal state have been demonstrated [15] and
studied theoretically [9]. Closer to our goal, Mandel et al. [16]
demonstrated transport of the spin-dependent wave functions
in optical lattices moving in opposite directions with a scheme
proposed in Ref. [17], and Steffen et al. [10] built a single-
atom interferometer based on a similar setting. To implement
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FIG. 1. Four schematic snapshots of the potentials for moving optical lattices and two choices of pivot x0. We use arbitrary units, the
specific relative values are not intended to be realistic but are rather chosen to better visualize the process. The corresponding α(t ) and f (t )
are shown in Fig. 3. U (x ∓ α) = U0 sin2(2πx/λ ∓ α). The two left columns are for x0 = 0, and the two right columns are for x0 = λ/2, a
lattice period to the right. Outer columns: compensating potentials for spin-up −(x − x0 ) f (t ) (red dashed line) and for spin-down (x − x0 ) f (t )
(blue solid line). In the central columns, the triangles are a reminder of the pivot position, and the points indicate the moving ±α(t ). The
arrows give the sense of motion of the lattice. −cx (dotted black line) is represented only at t = 0, but this spin-independent potential acts
throughout the process; the wavy lines are the total potentials in Eq. (3), U (x − α) − (x − x0 ) f (t ) − cx for spin up (red dashed line) and
U (x + α) + (x − x0 ) f (t ) − cx for spin down (solid blue).

our scheme, we envision, for each spin, double superlattices
composed by an ultradeep optical lattice as a “conveyor-belt”
trapping potential [18] with negligible tunneling, see Ref. [19]
and references therein, whereas the compensating force may
be achieved by a second lattice with much larger periodicity
than the trapping lattice to make it effectively homogeneous
for each arm wave function. Factors of 10 between the pe-
riodicities of two lattices are routinely found playing with
the angle between the crossing beams [20], and even higher
factors are technically possible [21].

First, we present the main idea of the interferometer and
basic relations in Sec. II and, then, the recipe to move the
arm traps and set the time dependence of the compensating
forces in Sec. III. The theory relies on a transformation to the
“moving-frame” interaction pictures for each arm. An alter-
native formulation is presented in Sec. IV in terms of “invari-
ants” which connects the current approach to “invariant-based
inverse engineering” [3,6,11]. The interferometric phase can
then be simply interpreted as the difference between the
Lewis-Riesenfeld phases for the arms. This connection en-
ables us to use invariant-based concepts and results, for exam-
ple, to apply techniques to enhance robustness with respect to
different noises [19,22,23]. The paper ends with a discussion
on possible applications and open questions.

II. BASIC CONCEPT OF THE INTERFEROMETER

Consider an atom with two internal states, “spin-up” |↑〉,
and “spin-down” |↓〉, and effective motion in one dimension.
A general state at time t is a↑| ↑〉ψ↑(x, t ) + a↓| ↓〉ψ↓(x, t ),
where ψ↑(x, t ) = 〈x|ψ↑(t )〉 and ψ↓(x, t ) = 〈x|ψ↓(t )〉 are the
motional states for the two internal levels in coordinate repre-
sentation. We assume a prepared state |↑〉|�p〉 from which a
π/2 pulse [24] produces two equally weighted components
with a↑ = a↓ = 1/21/2. We set time t = 0 at the end of
the π/2 pulse and, assuming a Lamb-Dicke regime and a
fast pulse compared to motional periods, �(x, 0) ≡ �p(x) =
ψ↑(x, 0) = ψ↓(x, 0). The two branches evolve separately in
coordinate space due to spin-dependent forces. At some final
time t f , the complex overlap can be written in polar form as

〈ψ↓(t f )|ψ↑(t f )〉 = ei�ϕ(t f )|〈ψ↓(t f )|ψ↑(t f )〉|. (1)

A second π/2 pulse gives the populations [3],

P↑↓(t f ) = 1
2 ± 1

2 Re[〈ψ↓(t f )|ψ↑(t f )〉], (2)

where we have neglected the π/2-pulse duration.
The STA driving will achieve maximal visibility, i.e.,
|〈ψ↓(t f )|ψ↑(t f )〉| = 1, note that |〈ψ↑↓(t f )|�(0)〉| =
1 is not required. Then, the populations read
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P↑↓(t f ) = 1
2 ± 1

2 cos[�ϕ(t f )]. If the differential phase
is proportional to a constant force c, �ϕ(t f ) = Sc, and
the sensitivity S is known, c can be measured from
the populations. When c, or its deviation from some
approximately known value, are expected to be small in
the scale of π/S, c is found from the populations using
the relevant branch of the arccosine. More generally, c may
be found unambiguously from the periodicity 2π/c of the
populations P↑↓(t f ) as a function of S [3]. Measuring the
populations requires repetitions in time if the interferometer
works with a single particle, or alternatively, noninteracting
ensembles.

The method to guide the arm wave functions described
below fulfills the hypotheses made so far, namely, the mod-
ulus of the overlap (1) is one, and the differential phase is
proportional to c. Moreover, it will be possible to control the
sensitivity S , and the time t f of the process independently of
|�(0)〉.

III. HOW TO MOVE THE GUIDING TRAPS

For each spin state, we assume a different evolution driven
by the Hamiltonians, (here, and in the following, the super-
script ↑↓ in any equation implies that the sign on top in ∓ or
± is for ↑, whereas the sign on the bottom is for ↓)

H↑↓ = p2

2m
− cx ∓ [x − x0(t )] f (t ) + U [x ∓ α(t )]. (3)

The trap potentials U [x ∓ α(t )] move along opposite trajecto-
ries α↑↓(t ) = ±α(t ). We consider trap trajectories that satisfy
the boundary conditions

α(tb) = α̇(tb) = 0, (4)

at the boundary times tb = 0, t f . The dots stand for time
derivatives. Each trap starts and ends at rest returning to the
starting point, equal for both traps.

The trap potentials are complemented by spin-dependent
linear potentials ∓[x − x0(t )] f (t ) that cross at the pivot point
x0(t ): In a typical experiment, x0 will be constant, however,
we will keep, by now, formally a more general x0(t ). The
force f (t ) will be chosen to compensate inertial terms in
the moving frame as discussed below in detail. Finally, c is
the spin-independent homogeneous-in-space and constant-in-
time force that we want to measure, m is the mass of the atom,
and p2/2m is the kinetic energy. Examples of the potential
terms in Eq. (3) are depicted schematically in Fig. 1 for U as
an optical lattice potential and for two different pivots.

Let us now reorganize the Hamiltonians (3) as follows:

H↑↓ = p2

2m
∓ f (t )x + Ũ (x ∓ α) + 	↑↓(t ), (5)

where we have separated purely time-dependent terms in

	↑↓(t ) = ± f (t )x0(t ) ∓ cα(t ), (6)

and defined effective trap potentials Ũ that include the effect
of the force c,

Ũ [x ∓ α(t )] = U [x ∓ α(t )] − [x ∓ α(t )]c. (7)

To solve the dynamics, it is useful to perform unitary trans-
formations into “moving-frame interaction pictures.” Specif-

ically we define the interaction picture wave-vectors |ψ↑↓
I 〉

in terms of Schrödinger (laboratory frame) wave-vectors
|ψ↑↓〉 as

|ψ↑↓
I 〉 = U↑↓|ψ↑↓〉, |ψ↑↓〉 = (U↑↓)†|ψ↑↓

I 〉, (8)

where the unitary operator U↑↓ is constructed by multiplying
position and momentum shift operators,

U↑↓ = e±iαp/h̄e∓imα̇x/h̄. (9)

Other orderings and, therefore, interaction pictures are possi-
ble but the measurable quantities and the differential phase
are not affected by the different orderings as long as the
intermediate calculations are performed consistently. Using
Eq. (9) for each arm, the effective moving-frame Hamiltoni-
ans become

H↑↓
I = U↑↓H↑↓(U↑↓)† + ih̄ U̇↑↓(U↑↓)†

= p2

2m
+ 1

2
mα̇2 ∓ (x ± α) f (t ) + Ũ (x)

± f (t )x0(t ) ∓ cα ± (x ± α)mα̈. (10)

If the applied f (t ) satisfies

α̈(t ) = f (t )

m
, (11)

which can be interpreted as a Newton equation for the tra-
jectory α(t ) subjected to the force f (t ), this auxiliary force
compensates for inertial effects due to the motion of the Ũ [x ∓
α(t )] potentials in the laboratory frame, note the cancellation
of the third and last terms in Eq. (10). The consequence is that
a stationary state in the moving frame will remain so. Equation
(11) is used inversely, i.e., f (t ) is found from a designed α(t )
and, hereinafter, f (t ) is always assumed to satisfy Eq. (11)
except in point (vii) of the final discussion. To make f (tb)
zero at the boundary times, we will impose, in addition to the
boundary conditions (4), that α̈(tb) = 0. Applying Eq. (11)
in Eq. (10), the moving-frame Hamiltonians take a simple
form with a common time- and spin-independent term HI,0

and terms F↑↓(t ) that depend on time but not on x or p,

H↑↓
I = HI,0 + F↑↓(t ), HI,0 = p2

2m
+ Ũ (x),

F↑↓(t ) = 1

2
mα̇2 ± f (t )x0(t ) ∓ cα(t ). (12)

The resulting structure facilitates the formal solution of the
dynamics as the time-dependent part only accumulates a
phase, whereas the time-independent part gives a simple
evolution operator,

|ψ↑↓
I (t )〉 = exp

(
−i

∫ t

0
F↑↓(t ′)dt ′/h̄

)
|ψ↑↓

I,0 (t )〉,

|ψ↑↓
I,0 (t )〉 = e−iHI,0t/h̄|ψ↑↓

I,0 (0)〉. (13)

As |ψ↑↓
I,0 (0)〉 = |�(0)〉 and HI,0 are spin independent,

|ψ↑↓
I,0 (t )〉 = |�(t )〉 = e−iHI,0t/h̄|�(0)〉 is also a spin-

independent vector.
Noting that e∓iαp/h̄ shifts the position representation as

〈x|e∓iαp/h̄|�〉 = �(x ∓ α), the branch wave functions in the
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laboratory frame are found by Eq. (8),

ψ↑↓(x, t ) = e±imα̇x/h̄ exp

(
−i

∫ t

0
F↑↓(t ′)dt ′/h̄

)
�(x ∓ α, t ).

(14)
In particular, at final time t f ,

ψ↑↓(x, t f ) = exp

(
−im

∫ t f

0
α̇2dt/(2h̄)

)

× exp

(
±ic

∫ t f

0
α(t )dt/h̄

)

× exp

(
∓i

∫ t f

0
x0(t ) f (t )dt/h̄

)
�(x, t f ). (15)

For x0 constant, but otherwise arbitrary, the overlap in
Eq. (1) takes a very simple form since the phase terms
∓x0

∫ t f

0 f (t )dt = 0 vanish because of Eq. (11) and the bound-
ary condition α̇(tb) = 0,

〈ψ↓(t f )|ψ↑(t f )〉 = exp

(
2ic

∫ t f

0
α(t )dt/h̄

)
, (16)

so that c can be measured from the interferometric differential
phase via the populations as explained before. The phase
is, indeed, proportional to c, �ϕ(t f ) = cS with controllable
sensitivity,

S = 2

h̄

∫ t f

0
α(t )dt, (17)

the space-time area 2
∫ t f

0 α(t )dt in units of h̄ swept between
the two trap paths. Because the relative motion of the motional
states with respect to ±α(t ) is identical in both arms, this
is the same area between the state centroids for any initial
motional state |�(0)〉. Thus, the interferometric phase and
sensitivity are independent of the initial motional state, a
robust “geometrical” feature of the proposed interferometer.

t f can be chosen freely, in particular, it can be made short
compared to relevant decoherence times, and α(t ) can be
manipulated to change the sensitivity. Examples on how to
set α(t ) may be found in Ref. [3], the basic idea is to expand it
in some basis, e.g., sines or powers of t with enough number
of terms to satisfy the boundary conditions. More terms are
added if further conditions are imposed, such as a desired
value of S .

Example: Sensitivity for the cesium atom interferometer

Steffen et al. [10] implemented a cesium atom interfer-
ometer which demonstrates some elements of the current
scheme, specifically the atom wave function was split into
separated paths controlled by spin-dependent optical-lattice
potentials. A large displacement of ±α(t ) was technically—
not fundamentally—limited by the maximum voltage that
can be applied to an electro-optical modulator [10,16]. This
limitation was circumvented by accumulating elementary op-
eration blocks which consist of lattice displacements with al-
ternating directions interleaved by π pulses [10,16]. A single
lattice displacement by λ/4 took 18 μs. Figure 2 represents a
contour plot of the sensitivities (17) with a four-term polyno-
mial α(t ) satisfying the boundary conditions (4) and α̈(tb) = 0
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FIG. 2. Contour plot of the sensitivity S = 32Mt f

35h̄ found for α(t )
in Eq. (18), see also Fig. 3. The solid black line is a linear dependence
of M = λ

72μs

t f

2 that extrapolates the one applied in Ref. [10] for an
elementary displacement. λ = 866 nm.

with its maximum value M at t f /2, see Fig. 3,

α(t ) =
6∑

j=3

b j

(
t

t f

) j

,

b3 = 64M, b4 = −192M,

b5 = 192M, b6 = −64M. (18)

The resulting sensitivity S is remarkably simple, namely, S =
32Mt f /(35h̄). Note that the scaling of S with t f can be chosen
at will by fixing the dependence of M on t f , this amounts to
follow a line M(t f ) in Fig. 2, for example, as M ∝ tμ

f with
μ = 0, 1, 2, . . . . Assuming a dependence of the order of the
elementary displacement in Ref. [10] gives M = λ

72 μs
t f

2 , see
the straight line in Fig. 2, and an S that depends quadratically
on t f . With the current scheme, the trap can be subjected to
strong accelerations without spoiling the visibility since they
are compensated. Thus, for a given t f , higher sensitivities can

FIG. 3. Typical forms of α(t ) (dashed line) and f (t ) (solid line)
in arbitrary units: α(t ) is found by imposing the boundary conditions
(4) and α̈(tb) = 0 at times tb = 0, t f to a polynomial ansatz [3], see
Eq. (18). f (t ) is found from α(t ) via Eq. (11), it vanishes at the
boundary times and integrates to zero.
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be achieved for faster dependences M(t f ). Formally, there is
no limit to how large S (t f ) may be. The limit will be set, in
practice, by the technical limitations imposed by the specific
setting to implement α(t ) and f (t ). For a given, desired
sensitivity S0, M(t f ;S0) depends, along a given contour in
Fig. 2, inversely on t f , M(t f ;S0) = 35S0 h̄/(32t f ). If M is
technically limited by some upper value, t f will be lower
limited accordingly.

IV. INVARIANTS

In this section, we will connect the results found so far
with Lewis-Riesenfeld invariants of motion and the inverse
engineering of trap trajectories based on them [7,11].

A key result is the moving-frame Hamiltonian structure
found in Eq. (12). The Hamiltonian HI,0 does not depend on
time, and, therefore, its expectation value 〈�(t )|HI,0|�(t )〉 is
constant. In the laboratory frame, making use of Eq. (8), this
translates into

d

dt
〈ψ↑↓(t )|(U↑↓)†H0,IU↑↓|ψ↑↓(t )〉 = 0, (19)

or, in other words,

I↑↓ ≡ (U↑↓)†H0,IU↑↓ (20)

are “dynamical” Lewis-Riesenfeld invariants of motion for,
respectively, the branch Hamiltonians H↑↓ in Eq. (3), supple-
mented by Eq. (11) to specify f (t ). They satisfy the invariance
equations,

dI↑↓

dt
= ∂I↑↓

∂t
+ 1

ih̄
[I↑↓, H↑↓]. (21)

These invariants may be calculated explicitly with the aid of
Eq. (9),

I↑↓ = 1

2m
(p ∓ mα̇)2 + Ũ (x ∓ α), (22)

and their (constant-in-time) eigenvalues λn are nothing but the
eigenvalues of HI,0,[−h̄2

2m

∂2

∂x2
+ Ũ (x)

]
φn(x) = λnφn(x), (23)

where the φn(x)’s are the eigenfuctions of HI,0. They form a
natural basis to expand |�(t )〉 as

|�(t )〉 =
∑

n

e−iλnt/h̄|φn〉cn,

cn = 〈φn|�(0)〉, (24)

in terms of constant coefficients cn. The vectors,

|ψ↑↓
n 〉 ≡ (U↑↓)†|φn〉 (25)

are eigenvectors of I↑↓ with eigenvalue λn since

I↑↓|ψ↑↓
n 〉 = (U↑↓)†HI,0U↑↓(U↑↓)†|φn〉

= λn(U↑↓)†|φn〉 = λn|ψ↑↓
n 〉. (26)

Using the explicit form of U↑↓ in Eq. (9) their coordinate
representation is

ψ↑↓
n (x, t ) = e±imα̇x/h̄φn(x ∓ α). (27)

The “dynamical modes” are defined as orthogonal solutions
of the time-dependent Schrödinger equations driven by H↑↓

proportional to these eigenfunctions eiθ↑↓
n (t )ψn(x, t ) where the

Lewis-Riesenfeld phases θ↑↓
n (t ) are found from

dθ↑↓
n (t )

dt
= 1

h̄
〈ψ↑↓

n (t )|ih̄ ∂

∂t
− H↑↓|ψ↑↓

n (t )〉, (28)

so that the Schrödinger equations are satisfied. Setting
θ↑↓

n (0) = 0, an explicit calculation gives, see the Appendix,

θ↑↓
n (t ) = −1

h̄

∫ t

0
[λn + F↑↓(t ′)]dt ′. (29)

Arbitrary wave-function solutions of the dynamics ψ↑↓(t )
will combine these elementary solutions with constant
coefficients. For the initial-state |�(0)〉, ψ↑↓(x, t ) =∑

n eiθ↑↓
n (t )ψn(x, t )cn. Factoring out n-independent phase

factors and summing over n as in Eq. (24), the expression (14)
and following results for ψ↑↓(x, t ) in the main text are exactly
recovered. The interferometric phase from this point of view
is nothing but the difference between Lewis-Riesenfeld
phases for the arms. Since the n-dependent part cancels out,
the result is n independent.

V. DISCUSSION

We have put forward a STA-mediated atomic interferom-
eter scheme to measure homogeneous constant forces with
spin- (internal-state-) dependent moving traps to guide the
wave-function components along the two arms. The approach
is robust in different ways:

(i) As the process can be performed fast, decoherence
effects and perturbations can be mitigated or avoided without
necessarily renouncing to some required sensitivity. For a
caveat on the relation between process time and decoherence,
see point (vi) below.

(ii) The moving trapping potentials may be anharmonic, so
the method may be applied, in particular, to optical lattices as
conveyor belts to drive the arms.

(iii) The motional initial wave function is arbitrary, there
is no need to prepare a perfect ground state because the
differential phase is not affected by the initial motional state.

(iv) The moving trap potentials are complemented by time-
dependent linear potentials that compensate inertial forces
“rocking” on a pivot point x0. The differential interferomet-
ric phase is simplified and made pivot independent when∫ t f

0 x0(t ) f (t )dt = 0 in Eq. (15). The integral vanishes when
x0 is a constant because of the way f (t ) is constructed. This
result is, in fact, robust with respect to typical forms of
x0(t ): A noisy x0(t ) with a zero-mean perturbation around
its nominal constant value will give a vanishing integral as
long as the correlation time is short compared to t f . Other
relevant dependence is an undesired linear drift, e.g., x0(t ) =
a + bt . For the linear term bt integrating by parts and using
the boundary conditions (4) gives a zero integral too. It
may also be of interest in practice to set a spin-dependent
x0(t ). For example, for x↑↓

0 (t ) = ±α(t ), the resulting integrals
± ∫ t f

0 [±α(t )] f (t )dt would not vanish, but they would give the
same phase for both arms, which makes the differential phase
again pivot independent.
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(v) There is ample freedom to choose the trap paths ±α(t )
which are only subjected, apart from technical limitations, to
satisfy some boundary conditions at initial and final times.
This flexibility may be used to change the sensitivity S . It
also allows to achieve fast scalings of S with total time t f , in
principle, with an arbitrary power of t f , in contrast to linear
scaling with t f of Ramsey-Bordé interferometers or with t2

f in
a Mach-Zender configuration [25].

(vi) Following techniques developed to enhance the robust-
ness of STA approaches [8,22], the freedom in choosing α(t )
may be used to make the differential phase robust against
specific setting-dependent perturbations, e.g., some particular
type of noise relevant for the experimental arrangement. A
recent study [19] analyzes the motional energy excitation of
atoms due to noises affecting different moving optical lattice
parameters: periodicity, depth, or position. The excitations
may be analyzed in terms of static or dynamical contributions
whose relative importance depends on the parameter affected
by noise.

Static contributions are defined as those which are inde-
pendent of the trap trajectory, they just increase with transport
time t f so the strategy to mitigate them is to shorten process
times. They are dominant, in particular, for position noise.

Dynamical contributions depend on the trap trajectory
so they could be mitigated by a good choice of α(t ). For
“accordion noise” of the lattice periodicity, they dominate and
give minimal excitation at a certain transport time. For noise in
the trap depth, there is also a time t f with minimal excitation
with dynamical terms dominating at shorter transport times
and static terms at larger times.

The existence of minima—for some but not all noise
types—underlines that the naive expectation that shorter and
shorter times t f are always beneficial is not necessarily cor-
rect. The beneficial effect of shortening the time depends on
the noise type and on the time domain. It also points out
that there are no universal recipes, each noise or perturbation
requires a dedicated study. Adapting the analysis in Ref. [19],
which did not include compensating forces, to the current
configuration, is left for a separate work.

(vii) The arm wave functions overlap, and the differential
phases found in Eq. (16) are exact, i.e., no adiabatic approxi-
mation has been performed, and there is no need to calculate
nonadiabatic corrections. In this regard, it is interesting to
sketch how this result is found in the adiabatic slow motion
limit when the compensating force f (t ) is not applied. The
calculation would start in Eq. (10) for H↑↓

I . Taking now
f (t ) = 0, these moving-frame Hamiltonians cannot be sep-
arated into purely t-independent and purely t-independent
terms because of the inertial terms ±xmα̈. In the slow-motion
limit, however, these terms will be negligible compared to
Ũ so that the structure in that limit is again that of a

time-independent Hamiltonian and purely time-dependent
terms. The corresponding dynamics then lead to Eq. (16) but
only as an approximation. In contrast, when the compensation
forces f (t ) = ∓mα̈ are applied, the dynamics is generally
nonadiabatic in the laboratory frame but adiabatic by con-
struction in the moving frames a key property that allows us to
set simultaneously short process times and large sensitivities.

We hope that the unique features of the proposed scheme,
among them independence of the initial state, arbitrary
trap potential, and freedom to choose sensitivity and cy-
cle time will motivate further work. The elements neces-
sary to implement the current scheme have been separately
demonstrated. We have paid some attention to the use of
oppositely moving spin-dependent optical lattices [10,16].
Alternative realizations may be based on the unitary equiv-
alence between: (a) the “local”, position-dependent com-
pensating Hamiltonian terms ∓mα̈(t )x; and (b) counterdia-
batic momentum-dependent terms ±pα̇ [8,13].Whereas im-
plementing the former in the laboratory is quite generally
easier than the latter, the spin-dependent counterdiabatic terms
may be realized in systems with either actual or synthetic
spin-orbit coupling [26–29].
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APPENDIX: CALCULATION OF EQ. (29)

To calculate the Lewis-Riesenfeld phases in Eq. (29), we
start from calculating the matrix elements in Eq. (28). It
proves convenient to write first, using Eqs. (10) and (12),

H↑↓ = I↑↓ + F↑↓ − ih̄(U↑↓)†U̇↑↓. (A1)

Using, now, Eq. (25) we find that

−〈ψ↑↓
n |H↑↓|ψ↑↓

n 〉/h̄= −1

h̄
(λn+F↑↓) + i〈φn|U̇↑↓(U↑↓)†|φn〉,

(A2)

whereas, using again Eq. (25) and noting that U̇↑↓(U↑↓)† =
−U↑↓(U̇↑↓)†,

i〈ψ↑↓
n |ψ̇↑↓

n 〉 = −i〈φn|U̇↑↓(U↑↓)†|φn〉. (A3)

The right-hand side may be calculated explicitly, but, in any
case, it is canceled by the last term in Eq. (A2) when summing
Eqs. (A2) and (A3) in Eq. (28). Integrating, we get finally
Eq. (29).
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