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Centrality fluctuations and decorrelations in heavy-ion collisions in a Glauber model

Jiangyong Jia ,1,2,* Chunjian Zhang,1,† and Jun Xu3

1Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
2Physics Department, Brookhaven National Laboratory, Upton, New York 11796, USA

3Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

(Received 14 February 2020; accepted 4 May 2020; published 11 June 2020)

The centrality or the number of initial-state sources V of the system produced in heavy ion collision is a
concept that is not uniquely defined and subject to significant theoretical and experimental uncertainties. We
argue that a more robust connection between the initial-state sources with final-state multiplicity could be
established from the event-by-event multiplicity correlation between two subevents separated in pseudorapidity,
Na vs Nb. This correlation is sensitive to two main types of centrality fluctuations (CF): (1) particle production
for each source p(n) which smears the relation between V and Na used for experimental centrality and (2)
decorrelations between the sources in the two subevents Vb and Va. The CF is analyzed in terms of cumulants
of Vb and Nb as a function of Na, i.e., experimental centrality is defined with Na. We found that the mean values
〈Vb〉Na

and 〈Nb〉Na
increase linearly with Na in midcentral collisions but flatten out in ultracentral collisions. Such

nonlinear behavior is sensitive to the centrality resolution of Na. In the presence of centrality decorrelations, the
scaled variances 〈(δVb)2〉/〈Vb〉 and 〈(δNb)2〉/〈Nb〉 are found to decrease linearly with Na in midcentral collisions,
while the p(n) leads to another sharp decrease in the ultracentral region. The higher-order cumulants of Vb and
Nb show interesting but rather complex behaviors which deserve further studies. Our results suggest that one can
use the cumulants of the two-dimensional multiplicity correlation, especially the mean and variance, to constrain
the particle production mechanism as well as the longitudinal fluctuations of the initial-state sources.
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I. INTRODUCTION

In heavy-ion collisions, centrality is an important con-
cept for characterizing the size of the produced fireball. The
centrality of an event is often represented by the number
of particle production sources V (for example, participating
nucleons or constituent quarks) in the initial state. These
sources are then used to define other important geometry
quantities, such as the nuclear overlap function [1,2] for jet
quenching studies [3,4] and eccentricities [5,6] for collective
flow studies [7,8]. Since the sources in an event are not
directly measurable, a Glauber model is used to calculate V
and relate it to the final observed particle multiplicity N , with
N = ∑V

i=1 ni calculated as a sum of the multiplicity for each
source ni sampled independently from a common distribution
p(n) [9–11]. Due to fluctuations in the particle production,
events with the same V can have different values of N and vice
versa. The fluctuation of sources at fixed multiplicity, often
referred to as volume fluctuations, is an irreducible centrality
fluctuation (CF) or centrality resolution [12–15]. The main
issue concerning centrality is to understand how the final-
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state multiplicity distribution p(N ) is related to the source
distribution p(V ) and particle production for each source
p(n).1

The centrality or volume of an event is often assumed
to be a global concept, long range in pseudorapidity (η): A
central event should be a central event independent of η. This
assumption can be checked by studying the correlation of
multiplicities between two different η windows, also referred
to as forward-backward (FB) multiplicity correlation [16–20].
In experimental analysis, the observed centrality is usually
defined as the particle multiplicity Na in a forward pseudo-
rapidity window A, and the measurement is performed using
particles with total multiplicity Nb in a different pseudorapid-
ity window B, usually around midrapidity. If the system is
boost invariant and the same sources are responsible for parti-
cles in both subevents [see Fig. 1(a)], the particle multiplicity
distribution in subevent B for fixed Na can be expressed as

p(Nb)Na =
∑

V

p(Nb)V p(V )Na . (1)

The distribution p(V )Na , reflecting the extent of the CF, is
controlled by the smearing from p(n) in subevent A. Narrow
p(V )Na distribution would imply good centrality resolution in
subevent A and vice versa. Equation (1) also shows that the CF

1For simplicity, a general notation p(x) is used to denote the
probability density function for variable x (x = N , V, or n), but the
actual functional forms of p(V ), p(N ), and p(n) are different in
reality.
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FIG. 1. Schematic illustration of the relation between sources (large circles) and final-state particles (small circles) produced in subevent
A for centrality determination and subevent B for measurements for two cases: (1) same sources, wounded nucleons Npart , for both subevents
(a) and (2) different sources, forward-going and backward-going wound nucleons NF

part and NB
part , for the two subevents (b). The second scenario

is particularly relevant for fixed-target experiments, which often use the forward multiplicity for centrality and mid- or backward rapidity for
multiplicity measurements.

arising from subevent A directly contributes to the multiplicity
fluctuations in subevent B, and this is the picture assumed by
most previous analyses [9–11].

Recently, several studies also considered the possibility
that the number of sources and their transverse distributions
may fluctuate along η in a single event. This is because the
number of forward-going and backward-going participating
nucleons, i.e., NF

part and NB
part, are not the same in a given

event [8,20] and they contribute differently in the forward
(backward) rapidity. This FB asymmetry is realized in one
of two ways in dynamical models: (1) In string picture
[21–23], each string originates from a participant nucleon
and extends to the opposite direction. Therefore, the number
of strings, their lengths, and end points fluctuate in rapidity.
(2) In a gluon saturation picture, the subnucleonic degrees
of freedom evolve with rapidity [24]. In the forward rapid-
ity, the projectile nucleons are dominated by a few large-
x partons, while the target nucleons are expected to con-
tribute mainly low-x partons. In this case, Eq. (1) can be
revised as

p(Nb)Na =
∑
Va,Vb

p(Nb)Vb p(Vb)Va p(Va)Na . (2)

The fluctuation between the number of sources in the two
subevents, denoted by p(Vb)Va , can weaken the centrality
correlation between different rapidities [see Fig. 1(b)]. Such
“centrality decorrelation” effects are expected to have a strong
influence on the correlation of multiplicities between two
different η windows. Note that if the sources in the two
subevents are the same, i.e., p(Vb)Va = δ(Vb − Va), Eq. (2)
reduces to the first case in Eq. (1).

Equations (1) and (2) show that information about CFs and
particle production is encoded in a set of one-dimensional
distributions, which are customarily analyzed via multiplicity
cumulants of p(x) [x = N, n or V , and again the functional
form of p(x) depends on the underlying variable x]: mean
x̄ ≡ 〈x〉, variance 〈(x − x̄)2〉, skewness 〈(x − x̄)3〉,.... In this
paper, we use the reduced form to scale out the overall system
size:

k1{p(x)} = x̄, k2{p(x)} = 〈(x − x̄)2〉/x̄, k3{p(x)}
= 〈(x − x̄)3〉/x̄, .... (3)

Previous studies mainly focused on the scaling behavior of the
mean multiplicity per source, N/〈V 〉 [11,25–29]. Our paper

extends these studies to higher-order moments/cumulants of
p(N ) and p(V ), and their dependencies on particle produc-
tion p(n). These cumulants reveal detailed structures of the
two-dimensional correlation between Nb and Na, and provide
constraints on p(n), p(Va) and p(Vb)Va .

A good understanding of CF is also important for other
areas of heavy-ion physics: For any physics observable
x that varies with V , its fluctuation p(x) should be sen-
sitive to p(V ) [15]. The CF is one of the main back-
ground sources in the ongoing search for the critical end
point in the QCD phase diagram based on the fluctua-
tions of conserved quantities [30,31]. The CF also strongly
affects the fluctuations of harmonic flow [15] and is re-
sponsible for the observed sign-change behavior in ultra-
central A+A collisions (UCCs) [32]. Understanding the
longitudinal fluctuations of sources and the resulting cen-
trality decorrelation effects can also help to describe pre-
vious measurements of harmonic flow decorrelations in
η [22,33–35].

In this paper, we study the influence of centrality smearing
from particle production [Fig. 1(a)] and centrality decorre-
lations from the initial sources [Fig. 1(b)] on the event-by-
event FB multiplicity fluctuations. The study is based on an
independent source Glauber model with particle production
tuned to reproduce the ATLAS data [32], and the initial
number of sources is chosen to be the V = Npart for the
scenario shown in Fig. 1(a) and Va ≡ NF

part and Vb ≡ NB
part for

the scenario shown in Fig. 1(b). We found that the fluctuations
in the UCC region are very sensitive to the source distribu-
tion p(V ) and particle production p(n), due to the steeply
falling distributions (upper boundary effect) [13,36,37]. We
also found that the multiplicity dependence of the mean and
variance of p(V ) have a very simple interpretation in terms of
the two types of CFs, and they can constrain the longitudinal
structure of initial sources and particle production mechanism
via comparison between data and model. The structure of the
paper is the following. Sections II and III discuss the expected
general behavior of the CF in the presence of multiplicity
smearing and centrality decorrelations, respectively. After a
brief description of the Glauber model setup in Sec. IV, the
results for the two types of CF are given in Secs. V and
VI, respectively. The summary of the results are given in
Sec. VII. Appendix A gives a derivation of the formulas
used in this paper, and some additional results are given in
Appendix B.

023319-2



CENTRALITY FLUCTUATIONS AND DECORRELATIONS IN … PHYSICAL REVIEW RESEARCH 2, 023319 (2020)

FIG. 2. Schematic illustration of correlation between V and Na

before (solid line) and after multiplicity smearing (shaded average)
which broadens the Na distribution at fixed V . The average V for
fixed Na, 〈V 〉Na

(red dashed line), deviates from a linear relation in
ultracentral collisions. The inset distributions show the V distribution
for fixed Na in midcentral collisions (left panel), central collisions
(middle panel), and ultracentral collisions (right panel).

II. CENTRALITY FLUCTUATIONS DUE TO
MULTIPLICITY SMEARING

The CF arising from multiplicity smearing effects [Fig. 1
a)] is considered in an independent source model framework
by assuming that the total particle multiplicity is a sum of
particles from each source N ≡ ∑V

i=1 ni sampled from p(n).
In this case, one can show that the cumulants of p(Nb)V in
Eq. (1) are related to p(n) by a factor V [13], i.e., 〈Nb〉V =
V 〈n〉 , 〈δN2

b 〉V = V 〈δn2〉 , 〈δN3
b 〉V = V 〈δn3〉 , ...., and that

km{p(Nb)V } = km{p(n)}, m = 2, 3, 4.... (4)

From this, Skokov et al. [13] find the following relations
connecting the cumulants for the three distributions in Eq. (1):

N̄b = n̄b〈V 〉Na
,
(
N̄b ≡ K1,b , n̄b ≡ k1,b , 〈V 〉Na

≡ k1,V |Na

)
K2,b = k2,b + n̄bk2,V |Na ,

K3,b = k3,b + 3k2,bn̄bk2,V |Na + n̄2
bk3,V |Na ,

K4,b = k4,b + (
4k3,b + 3k2

2,b

)
n̄bk2,V |Na + 6k2,bn̄2

bk3,V |Na

+ n̄3
bk4,V |Na , (5)

where we have used a simpler notation, kn{p(N )} →
Kn, kn{p(N )V } → kn and kn{p(V )} → kn,V .

The behavior of centrality cumulants kn,V |Na for p(V )Na in
Eq. (1) can be understood qualitatively from the correlation
between V and Na in Fig. 2. In the absence of smearing from
particle production, i.e., by setting p(na) = δ(na − n̄a), V and
Na are related by a linear function Na = V n̄a (thick solid
line). In the presence of smearing, p(na) broadens the corre-
lation along the x axis (shaded area). As a result, the 〈V 〉Na

deviates from the linear relation in the UCC region (thick
dashed line). This deviation arises because the distribution
p(V )Na is bounded above by V max (twice of the atomic num-
ber for Npart), leading to an asymmetric shape in the UCC
region as illustrated by the middle and right inset panels.
For even larger Na values, the p(V )Na becomes narrower and
more asymmetric, and eventually converges to V max. For this

reason, the cumulants of p(V ) as a function of Na are strongly
modified in the UCC collisions: In addition to the departure
of the mean from the linear relation, the variance of p(V )Na is
expected to approach zero, the skewness of p(V )Na becomes
negative and then approaches zero, and the kurtosis of p(V )Na

oscillates from negative to positive then approaches zero.
Outside the UCC region, where p(V )Na is not constrained
by the upper boundary effect (left inset panel), the 〈V 〉Na

is
expected to overlap with the solid line, and the higher-order
cumulants of p(V )Na are determined mainly by p(na). In
this paper, we focus on the first four cumulants of CF, as
their importance can be clearly identified from the shape of
p(V )Na .

The origin of CFs and the behavior of centrality cumulants
kn,V |Na for n = 2–4 were studied in detail in Ref. [15]. In the
UCC region, the moments of CF (and therefore kn,V |Na ) are
driven mainly by the shape of p(V ),

〈(δV )k〉Na

≈
∫

(δV )k 1√
2πσ̂ 2V

exp

(
− (V − 〈V 〉Na

)2

2σ̂ 2V

)
p(V )dV ,

(6)

where we assume p(Na)V ≈ 1√
2πσ̂ 2V

e−(Na−n̄aV )2/2σ̂ 2V via the

central-limit theorem for large V , and σ̂ 2 = 〈(δna)2〉/n̄2
a is the

relative width for p(na). In the midcentral region where p(V )
is slowly changing, kn,V |Na are found to be approximately con-
stant, and the scaled variance of the multiplicity fluctuation in
subevent B is sensitive to both p(na) and p(nb):

〈(δNb)〉2

N̄2
b

= 1

〈V 〉Na

( 〈(δnb)2〉
n̄2

b

+ 〈(δna)2〉
n̄2

a

)
. (7)

This relation implies that for midcentral collisions and within
the independence source picture, the variance of the measured
multiplicity fluctuations has the same functional dependence
on p(na) and p(nb) in the two subevents.

III. CENTRALITY DECORRELATIONS DUE TO
LONGITUDINAL FLUCTUATIONS

Next we consider the CF due to centrality decorrelations as
illustrated by Fig. 1(b). Equation (2) can be decomposed into
two equations:

p(Nb)Na =
∑
Vb

p(Nb)Vb p(Vb)Na , (8)

p(Vb)Na =
∑
Va

p(Vb)Va p(Va)Na . (9)

The cumulants for the first equation are given by Eqs. (5).
The second equation contains the effects of centrality decor-
relations from p(Vb)Va , which, unlike the p(Nb)Vb , is not de-
scribed by the independent source picture (i.e., Vb is not an
independent sum of Va number of sources via some common
distribution). Indeed, we find that the cumulants of p(Vb)Va

are not strictly proportional to Va. However, by assuming
the departure from such proportionality is small, we have
derived the relations including the first-order correction (see
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Appendix A):

V̄b = k1,ab〈Va〉Na
,

k2,Vb = k2,ab + k′2
1,ab

k1,ab
k2,Va|Na ,

k3,Vb = k3,ab + 3k′
2,abk′

1,abk2,Va|Na + k′3
1,ab

k1,ab
k3,Va|Na ,

k4,Vb = k4,ab + (
4k′

3,abk′
1,ab + 3k′2

2,abk1,ab
)
k2,Va|Na

+ 6k′
2,abk′2

1,abk3,Va|Na + k′4
1,ab

k1,ab
k4,Va|Na . (10)

The kn,ab are the reduced cumulants for p(Vb)Va , while k′
n,ab

also include the leading-order correction:

k′
1,ab = ∂ (k1,abVa)

∂Va
= k1,ab + Va

∂k1,ab

∂Va
,

k′
n,ab = ∂ (k1,abkn,abVa)

k1,ab∂Va
= kn,ab + Va

∂ (k1,abkn,ab)

k1,ab∂Va
, n � 2.

(11)

These relations are also valid for other fluctuation observables
commonly used in beam-energy scan programs, such as net-
proton cumulants.

The total multiplicity cumulants in subevent B, Kn,b, can be
obtained by replacing the kn,V |Na in Eqs. (5) by Eqs. (10). If the
centrality resolution of subevent A is very good, kn,Va|Na ≈ 0
and kn,Vb ≈ kn,ab for n > 1, and we recover Eqs. (5). In this
case, the behavior of Kn,b is dictated by the FB fluctuations.

IV. GLAUBER MODEL SETUP

For quantitative study of the effects of multiplicity smear-
ing and longitudinal centrality decorrelations, we follow the
implementation of our previous work [15], which is described
briefly here. The number of sources in subevents A and B
are chosen to be NF

part and NB
part, calculated for each event in

a standard Glauber model framework [10]. The nucleons are
assumed to have a hard core of 0.3 fm in radii, their trans-
verse positions are generated according to the Woods-Saxon
distribution as provided by Ref. [38]. A nucleon-nucleon cross
section of σ = 68 mb is used to simulate the collisions at√

sNN = 5.02 TeV. Since the p(V ) distribution as well as
the correlation between NF

part and NB
part change with system

size, we studied several nuclei covering a broad range of the
V : Xe+Xe, Cu+Cu, S+S, and O+O collisions, with total
number of nucleons 2A = 258, 126, 64, 32, respectively.

The particle productions for each source are chosen to
follow the negative binomial distribution (NBD),

p(n) = (n + m − 1)!

(m − 1)!n!
pn(1 − p)m, p = n̄

n̄ + m
, (12)

where n̄ is the average number of particles in a given
subevent. One important quantity is the relative width σ̂ :
σ̂ 2 ≡ 〈(δn)2〉/n̄2, which controls the strength of fluctuations
for each source.

Table I lists the three NBD parameter sets used to produce
particles in subevents A and B, taken directly from Ref. [15].
Par0 and Par1 are adjusted to approximately describe the

TABLE I. The three parameters sets for the NBD [Eq. (12)] used
for modeling the particle production in the wounded nucleon model
from Ref. [15]. The corresponding values of reduced cumulants
k2, k3, and k4 are also listed.

p m mean k1 = n̄ RMS/mean σ̂ k2 k3 k4

Par0 0.688 3.45 7.6 0.65 3.2 17.3 139
Par1 0.831 1.55 7.6 0.88 5.9 63.8 1031
Par2 0.928 0.593 7.6 1.35 13.8 368 14692

shapes of the experimental distributions of N rec
ch (|η| < 2.5)

and �ET (3.2 < |η| < 4.9) from the ATLAS Collaboration
[32], while the Par2 corresponds to a case with much larger
fluctuations.

The calculation of cumulants follows the standard proce-
dure. Each A+A event has two subevents: subevent A for
centrality selection and subevent B for the calculation of
multiplicity cumulants. The particle multiplicities in these two
subevents, Na and Nb, are generated independently from (1)
the same sources Va = Vb = Npart for the study of multiplicity
smearing effect or (2) Va = NF

part and Vb = NB
part for the study

of longitudinal centrality decorrelations. The generated events
are divided into classes according to Na. The cumulants are
first calculated from V and Nb distributions for events with the
same Na, which are then combined into broader Na ranges to
reduce the statistical uncertainty. In the following, we first dis-
cuss the behavior of cumulants by assuming Va = Vb = Npart;
we then show results for cumulants calculated by assuming
Va = NF

part and Vb = NB
part.

V. RESULTS ON CENTRALITY FLUCTUATIONS
FROM PARTICLE PRODUCTION

We first consider the case when participant nucleons are
used as common sources for subevents A and B, Va = Vb =
Npart ≡ V . Figure 3 illustrates the behavior of the CFs by
selecting events with fixed Na in Pb+Pb collisions. The top
three panels show the correlation between V and Na generated
with Par0, Par1, and Par2 in Table I. The centrality cumulants
kn,V for distribution p(V )Na are calculated and shown in the
bottom panels.

The behavior of these cumulants follows the naive expec-
tation of Fig. 2. The k1,V = 〈V 〉 is proportional to Na, except
in the UCC region where it turns over. For larger σ̂ values,
this turnover starts earlier and extends to larger Na range, as
expected from a poorer centrality resolution. The inset panel
shows the ratio Na/(n̄〈V 〉) to quantify the deviation of particle
per source from n̄. This ratio should be unity in the absence of
centrality smearing effects. The ratio exhibits a suppression
in the peripheral region and an enhancement in the central
region, as expected from the boundary effects. We notice that
in the central region, the ratios for different parameter sets
are nearly parallel to each other. We found that the slopes of
the ratios are mainly controlled by the shape of the p(Npart )
distributions for the UCC events. The larger σ̂ value only
shifts the turnover point to a smaller Na value and extends the
suppression region to a larger Na value, but has little impact
on the slope.
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FIG. 3. Top row: The correlation between V ≡ Npart and Na in Pb+Pb collisions generated with Par0 (left), Par1 (middle), and Par2 (right)
parameter sets from Table I. Bottom row: The corresponding cumulants of V, kn,V , calculated for the three parameter sets, with n = 1, 2, 3,
and 4 from left to right panels. The inset panel shows the ratio of Na/(n̄〈V 〉) to quantify the deviation of particle per source from n̄ (or from
the linear relation).

The behavior of higher-order centrality cumulants follows
what was observed before in Ref. [15]. The kn,V are flat
in midcentral collisions but show strong variations in the
central region: the k2,V decreases to 0, the k3,V decreases to
negative minimum values and then approaches 0 from below,
while the k4,V decreases to a negative minimum, increases to
reach a positive maximum, and then decreases to approach
0. The larger smearing associated with Par2 further enhances
the magnitudes of kn,V and their oscillating behaviors in the
ultracentral region.

The source distributions for events with fixed Na, p(V )Na

is then used to produce the distribution of Nb according to a
common distribution p(nb) for each source. The top panels
of Fig. 4 show the correlation between Nb and Na, obtained
by smearing the 2D distributions in Fig. 3 along the y axis
using the Par1 for p(nb). The cumulants of p(Nb)Na , Kn,b,
are calculated and shown in the bottom panels. According to
Eqs. (5), they are expressed as a linear combination of kn,V ,

N̄b = 7.6〈V 〉,
K2,b = 5.9 + 7.6k2,V ,

K3,b = 63.8 + 135k2,V + 57.8k3,V ,

K4,b = 1031 + 2733k2,V + 2045k3,V + 439k4,V , (13)

where the coefficients are determined from the kn for Par1 in
Table I. Equations (13) shows that the 〈Nb〉 is related to 〈V 〉
in Fig. 3 by a constant scale factor. The K2,b is related to
k2,V by a constant offset and a constant scale factor, etc. In
general, one could isolate the kn,V iteratively order by order:
k2,V can be extracted from K2,b by identifying and subtracting
a constant, which then can be subtracted from K3,b to isolate
the k3,V , etc. Note that this is only true in the independent

source model framework and considering only multiplicity
smearing effects.

The CFs are sensitive to the shape of p(V ≡ Npart ), which
changes with the size of the collision system. The top-left
panel of Fig. 5 shows the distribution p(V ) from five collision
systems in the central collision region. The same distribution
is replotted in the bottom-left panel, but the x axes have been
rescaled by V max = 2A. The smaller system shows a broader
tail in the V distributions. For system-size-dependence stud-
ies, the centrality cumulants kn,V are calculated with Par1
from Table I. The results are presented both as a function of
Na and as a function of Na/Nknee, where the knee is defined
as the average multiplicity for maximum V = 2A nucleons,
Nknee = 2An̄. The second column of Fig. 5 shows the k1,V =
〈V 〉 as a function of Na and Na/Nknee. The 〈V 〉 increases almost
linearly with Na, and flattens out close to Nknee. To quantify
the nonlinear behavior in the UCC region, we calculate the
ratios Na/(n̄a〈V 〉) and present them in the third column. In
the very small Na region, the ratios are below unity and agree
with each other, reflecting the fact that the p(V ) distributions
have a very similar shape in the small V region. Toward
the large Na region, the ratios separate from each other and
increase to above unity with the smaller system showing a
larger deviation from unity. The third bottom panel shows the
ratios as a function of Na/Nknee, where the increase in UCC is
linear for all systems. For a smaller system, the rate of increase
is smaller but over a broader range in Na/Nknee, consistent with
the smoother fall-off for a smaller system in the central region
shown of the bottom-left panel.

Previous studies on particle production often focused on
the scaling behavior of the particle production per source,
i.e., N/〈V 〉, with V defined as Npart or the number of quark
participants. They found that the sources based on the quark
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FIG. 4. Top row: The correlation between Nb generated with Par1 and Na generated with Par0 (left), Par1 (middle), and Par2 (right) in
Pb+Pb collisions. Bottom row: The corresponding cumulants of Nb, i.e., Kn,Nb , calculated from the three distributions in the top row, with
n = 1, 2, 3, and 4 from left to right panels. The inset panel shows the ratio of Na/〈Nb〉 to quantify the deviation of Na dependence of 〈Nb〉 from
the linear relation.

participant number have a better scaling behavior than that
based on the nucleon participant number from pp, p + A
to A+A systems [11,25–28]. However, a detailed study by
the ALICE Collaboration showed that both types of sources
show a sharp increase of N/〈V 〉 vs 〈V 〉 in the UCC region

[28]. To perform a similar check, the right column of Fig. 5
shows Na/(n̄a〈V 〉) as a function of 〈V 〉 and 〈V 〉/2A, where
〈V 〉 is obtained by mapping from Na using the data in the top
panel in the second column. The linear increase in the third
column now appears as a sharp increase in the UCC region,

FIG. 5. The distribution of sources p(V ) (left panel), its 〈V 〉 vs Na (second panel), ratio Na/(n̄〈V 〉) vs Na (third panel), and ratio Na/(n̄〈V 〉)
vs 〈V 〉 (right panel) for different collision systems. The bottom panels show the same distributions but normalized by the knee, defined as 2A
for left and right panels, and 2An̄ for the middle two panels. The Na is generated with Par1 parameter set in Table I.
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FIG. 6. The centrality cumulants, k2,V (left panel), k3,V (middle panel), and k4,V (right panel) as a function Na (top row) or as a function of
Na/Nknee (bottom row) for various collision systems. The Na is generated with the Par1 parameter set in Table I.

similar to the data. The increase is stronger and affects most
of the centrality range in a small system, consistent with the
experimental observation.

On the other hand, the experimental observable is defined
as Nb/〈V 〉 as opposed to Na/〈V 〉 in our study. In the indepen-
dent source model framework, Nb/〈V 〉 would always equal to
n̄ by construction. Therefore, one natural explanation would
be that there are strong correlations between the particle
production in subevents A and B, i.e., na and nb are strongly
correlated. In an extreme case of na = nb, Nb = Na will be
valid for each event, and Nb/〈V 〉 will also show an increase in
the UCC region just like in the data; we leave this point to a
future investigation.

Figure 6 shows higher-order kn,V as a function of Na

(top row) or Na/Nknee (bottom row). The kn,V have the
same constant values in midcentral collisions but deviate
from each other toward a more peripheral or more central
region where the lower and upper boundary effects from
the p(V ) distribution are important. Such deviation appears
over a larger fraction of the Na range for smaller collision
systems. In the central region, the magnitudes of the k3,V

and k4,V are smaller for smaller collision systems. At the
same time, the widths of the maxima region are larger in
terms of Na/Nknee, implying that the CFs influence a larger
fraction of the centrality region. This can be understood
from the bottom-left panel in Fig. 5, which shows that the
decrease in the central region is smoother in smaller collision
systems.

VI. RESULTS ON FORWARD-BACKWARD
CENTRALITY DECORRELATIONS

To study the effects of centrality decorrelations, we con-
sider Va = NF

part and Vb = NB
part as the sources for particles in

subevents A and B, respectively. According to Eqs. (10), the
cumulants of p(Vb) are expressed in terms of cumulants kn,ab

and k′
n,ab describing p(Vb)Va , as well as kn,Va describing the

fluctuation of Va. In the following, we first discuss the behav-
iors of kn,Va , kn,ab, and k′

n,ab, and then show quantitatively how
well kn,Vb are described by Eqs. (10).

Figure 7 shows the centrality cumulants kn,Va for Pb+Pb
and O+O collisions. The magnitudes of kn,Va depend on the
centrality resolution of subevent A and are calculated with
Par0–Par2 as a function of Na. The results for Pb+Pb are
similar to those presented in the bottom row of Fig. 3. The
only difference is that NF

part instead of Npart is used as the
source in this figure, therefore the maximum range of Na

reaches only about half of that in Fig. 3. The results for
O+O are much more affected by the boundary effects, such
that no plateau is observed for the second- and higher-order
cumulants.

Next we discuss the behavior of kn,ab and k′
n,ab describing

p(Vb)Va . The latter is rather spread out as shown in the left
panels of Fig. 8 for Pb+Pb and O+O collisions. In principle,
p(Vb)Va is not necessarily described by the independent source
picture, i.e., the value of Vb cannot be treated as a sum of inde-
pendent contributions from Va number of sources. In practice,
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FIG. 7. The centrality cumulants for p(Va) with Va ≡ NF
part, k1,Va = 〈Va〉 (left column), k2,Va (second column), k3,Va (third column), k4,Va

(right column) as a function of Na from Pb+Pb system (top row) and O+O system (bottom row). The inset panels show the ratios Na/(n̄〈Va〉)
to quantify the deviation of Na dependence of 〈Va〉 from the linear relations.

the deviation from the independent source picture is small and
the cumulants of p(Vb)Va are approximately proportional to
Va. Nevertheless, we need to use Eqs. (11) to calculate k′

n,ab,
which includes the first-order correction to account for the
residual dependence of kn,ab on Va. Such corrections can be
quite important if the centrality resolution of subevent A is
poor (i.e., kn,Va are large).

The right panels of Fig. 8 show kn,ab and k′
n,ab as a function

of Va. The first-order cumulants k1,ab and k′
1,ab are close to

unity in midcentral collisions, where 〈Vb〉Va
≈ Va. The rather

sharp decrease of k′
n,ab in the central region is due to Va

∂k1,ab

∂Va
in

Eqs. (11), which are quite large in the central region. Overall,
the influence of k1,ab and k′

1,ab to the higher-order kn,Vb should
be small except in the very central and peripheral collisions.

FIG. 8. The 2D correlation between Va = NF
part and Vb = NB

part (left column) and corresponding kn,ab and k′
n,ab for n = 1 (second column),

n = 2 (third column), n = 3 (fourth column), and n = 4 (right column) in Pb+Pb system (top row) and O+O system (bottom row).
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FIG. 9. The centrality cumulants kn,Vb in subevent B as a function of Na, obtained from full calculation (thick solid line) or calculation via
Eqs. (13) (thick dashed lines) and its various components (thin solid lines) for n = 1 (the first column), n = 2 (second column), n = 3 (third
column), and n = 4 (right column) in the Pb+Pb system (top row) and the O+O system (bottom row).

The third column of Fig. 8 shows that the scaled variance
k2,ab increases sharply and then decreases gradually for the
remaining Va range. This behavior can be understood from
the leaflike shape of the 2D correlation between Vb and Va:
Although the variance of Vb is small toward small and large
Va regions, the scaled variance of Vb (i.e., normalized by
〈Vb〉) is large in the small Va region and decreases to nearly
zero at largest Va. The higher-order cumulants k3,ab and k4,ab

have more complex behaviors. In the small Va region, kn,ab

are positive since Vb > 0. At large Va, the fluctuations of
Vb are bounded by Vb � A, leading to a negative kn,ab. Note
that the sign change of cumulants occurs in the midcentral
region, around Va ≈ 110 for k3,ab and Va ≈ 60 for k4,ab for
Pb+Pb. This behavior is very different from the influence
of pure multiplicity fluctuations in Sec. V, where the sign
change happens only in the UCC region. For higher-order
cumulants, we note that the value of k′

n,ab are very different

from kn,ab over the full range of Va due to Va
∂ (k1,abkn,ab)

k1,ab∂Va
in

Eqs. (11). This implies that the deviation from the independent
source assumption has a stronger impact for the third- and
higher-order cumulants.

In the smaller O+O system, even k1,ab and k′
1,ab already

show a quite sizable deviation from unity. In general, the
higher-order cumulants kn,ab and k′

n,ab have smoother varia-
tions but over a much broader Va range.

From kn,Va in Fig. 7 and kn,ab and k′
n,ab in Fig. 8, we

calculate the kn,Vb via Eqs. (10) and compare with the results

from full calculations. This comparison is shown in Fig. 9
for Pb+Pb and O+O collisions, together with the breakdown
of the contributions from its individual components. The
behavior of cumulants and the comparison can be summarized
as follows:

(1) The 〈Vb〉Va
in the left panels agrees very well with

Eqs. (10). In Pb+Pb collisions, the 〈Vb〉Va
is nearly identical to

〈Va〉, but significant deviation is observed in O+O collisions,
which can be fully explained by the behavior of k1,ab shown
in Fig. 8. The flattening behavior of 〈Vb〉Va

in the central
collisions is expected to be dominated by pure multiplicity
smearing effects in subevent A, and the centrality decorrela-
tions is important only for small collision systems.

(2) The results of k2,Vb are shown in the second column.
The Na dependence of k2,Vb in Pb+Pb collisions is described
nearly perfectly by Eqs. (10), while a small deviation is
observed in O+O collisions around the maximum of k2,Vb .
In Pb+Pb collisions, the decrease of k2,Vb as a function of
Na is mainly driven by k2,ab, while k2,Va mainly contributes
an offset in the midcentral region and a sharp decrease in the
UCC region. In O+O collisions, these two components have
more similar shapes, although the k2,ab term dominates in the
central region and the most peripheral region.

(3) The results of k3,Vb are shown in the third column. In
Pb+Pb collisions, the description by Eqs. (10) is also very
good except that it slightly underestimates the magnitude
in the most central collisions. In O+O collisions, Eqs. (10)
underestimate the magnitude of k3,Vb in the central region
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FIG. 10. The centrality cumulants in subevent A kn,Va as a function of Na (top row), the cumulants for forward-backward source correlation,
kn,ab and k′

n,ab, as a function of Va (middle row), and the centrality cumulants in subevent B kn,Vb as a function of Na (bottom row) for various
collision systems, for n = 1 (first column), n = 2 (second column), n = 3 (third column), and n = 4 (right column).

and around its maximum in the peripheral region. Looking
at the three individual components of Eqs. (10), the genuine
FB decorrelation term k3,ab dominates only in the peripheral
region, but its contribution is not as important as the second
term associated with k2,Va|Na . The last term associated with
k3,Va|Na is nearly a constant and it has little influence on the
shape of k3,Vb , except in central collisions. These behaviors
also imply that k3,ab can only be reliably extracted if k3,Va|Na

are small; otherwise, one has to first measure k′
2,ab and k′

1,ab
using the information in the first two columns.

(4) The behavior of k4,Vb shown in the right column ais
much more complex. In Pb+Pb collisions, the description of
k4,Vb by Eqs. (10) is only good in peripheral and the most

central collisions. In O+O collisions, Eqs. (10) has a poor
description over most of the region for the Par1 parameter
set. When the Par0 parameter set is used, the agreement is
much better in Pb+Pb collisions, but is still relatively poor
in O+O collisions. Looking at the contributions of individual
terms, the intrinsic kurtosis term k4,ab from FB fluctuations is
important only in the very peripheral and central regions. The
mixing terms between lower-order kn,ab and kn,Va dominate in
the midcentral collisions and are also important in the other
centrality range.

Figure 10 summarizes the results in the five collision sys-
tems for Par1 parameter set. The results of kn,Vb in the bottom
row are related to kn,Va in the top row and kn,ab and k′

n,ab in the
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middle row via Eqs. (10). For the first-order cumulants shown
in the left column, the behavior of 〈Vb〉Va

largely resembles
that of 〈Va〉, except for very small systems where the k1,ab

show a significant deviation from one. For all higher-order
cumulants, the values of kn,Va are much smaller than kn,ab.
In fact, in the absence of the centrality resolution effect in
subevent A, kn,Va vanish and kn,Vb approach kn,ab. We find that
if Par2 is chosen for multiplicity smearing in subevent A, the
kn,Va are much larger and dominate the behavior of kn,Vb . The
shapes of kn,ab and k′

n,ab are similar between different collision
systems, but the magnitudes are smaller for smaller collision
systems. This leads to a similar system-size ordering for the
values of kn,Vb .

Given the fact that k1,ab and k′
1,ab are close to one, the

features of k2,Vb can be used to separate k2,ab and k2,Va via
Eqs. (10): the increase and decrease from peripheral to mid-
central collisions mainly reflects the contribution of k2,ab,
while the sharp decrease and flattening-out behavior in the
central region are dominated by the k2,Va . In contrast, we
find that k3,Vb and k4,Vb are much more sensitive to mixing
terms between kn,ab, k′

n,ab, and kn,Va , especially in mid-central
and central regions, similar to Fig. 9. Separate these different
components would be a rather challenging task.

In the final step, the centrality cumulants kn,Vb shown in
Figs. 9 and 10 are used to obtain the full results of multiplicity
cumulants, including the smearing effects in subevent B via
Eqs. (5) or Eqs. (13) for Par1. Examples can be found in
Appendix B.

VII. SUMMARY AND DISCUSSION

In heavy ion collisions, the centrality or the volume of
the fireball, characterized by the number of sources V in the
initial state geometry, is not fixed but fluctuates for events
with the same final-state particle multiplicity N . This so-called
centrality or volume fluctuation (CF) can arise from either (1)
fluctuations in the particle production process which smears
the mapping between N and V or (2) longitudinal fluctuations
of V within the same event which decorrelates the N between
different η ranges. In this paper, we propose to study CFs us-
ing the correlation of multiplicities Nb and Na in two subevents
separated in pseudorapidity. This two-dimensional correlation
is analyzed via cumulants of the conditional probability dis-
tribution p(Nb)Na as a function of Na. The contributions from
the two types of CFs can be identified from features in the Na

dependence of these cumulants.
For a quantitative study of the CF, a standard Glauber

model based on an independent source picture is used: The
Glauber model is used to produce the V for each event
and the final-state particle multiplicity in each event is then
calculated as a sum of particles from each source N = ∑V

i=1 ni

with ni sampled independently from a common p(n). For
the study on the effects of multiplicity smearing, the sources
for subevents A and B are chosen as Va = Vb = Npart. For
the study on the effects of centrality decorrelations, they
are chosen as Va = NF

part and Vb = NB
part. The centrality se-

lection is based on Na for both cases, i.e., cumulants are
calculated up to fourth order: mean 〈V 〉, scaled variance
k2,V = 〈(δV )2〉/〈V 〉, skewness k3,V = 〈(δV )3〉/〈V 〉, and kur-
tosis k4,V = (〈(δV 4)〉 − 3〈(δV 2)〉2 )/〈V 〉.

The 〈V 〉 is observed to be linearly proportional to Na, ex-
cept in UCCs where the increase slows down as Na approaches
the upper bound. This means that Na/〈V 〉 exhibits a sharp
increase in the UCC region similar to what is observed in the
experimental data [28,32]. We also verified that (not shown)
this linearity is not affected much by the centrality decorrela-
tions considered in this paper, except in smaller systems where
the correlation between Va and Vb has significant deviations
from diagonal. Such behavior in the UCC is very sensitive to
the properties of p(V ) and p(n).

When including only effects of multiplicity smearing, the
scaled variance k2,V is nearly constant in midcentral colli-
sions, but decreases to zero in UCC events as Na approaches
the upper bound. In the presence of centrality decorrelations,
the k2,V also exhibits a linear decrease in the midcentral colli-
sions. The rate of decrease should be a robust measure of the
extent of longitudinal fluctuations in the particle production
sources.

The Na dependence of higher-order centrality cumulants
are more complex. In the presence of centrality decorrelations,
they receive significant contributions from several mixing
terms related to the lower-order cumulants, which are also
much larger in smaller systems. Furthermore, additional cor-
rection terms need to be included to account for the fact that
the cumulants for p(Vb)Va are not proportional to Va except
for the first order. Due to these reasons, the 〈V 〉 and k2,V are
considered the most valuable observables to probe the nature
of p(V ) and p(n).

From the centrality cumulants kn,V , we calculated the
cumulants for final-state multiplicity Nb in subevent B, Kn,b

via Eqs. (5). We find that the flattening behavior of 〈Nb〉
as a function of Na in UCC remains. Experimentally, one
can calculate both 〈Nb〉(Na) and 〈Na〉(Nb) from p(Nb, Na) to
quantify the relative centrality resolution of the two subevents.
If 〈Nb〉(Na) is more diagonal than 〈Na〉(Nb), it would imply
that Na has a better centrality resolution on V than Nb (a
similar conclusion was reached from ATLAS data [32]). For
the scaled variance K2,b, we find that most of the features of
k2,V have been preserved; therefore, experimentally measured
scaled variance in subevent B for events selected in subevent
A can also be used to extract information about the centrality
decorrelations.

The centrality decorrelations considered in this paper are
rather simplistic. This can be improved by considering the
partonic degree of freedom in the nucleons and assuming
the quark participant number nqp to be a number that varies
with η. In addition, one should consider the situation used
by most collider experiments, where the subevent A for cen-
trality is defined in both forward and backward rapidity, and
subevent B is defined at midrapidity. In this case, although
Va and Vb are largely correlated with Npart, they should still
be decorrelated due to the difference in nqp. Another possible
direction is to investigate how the decorrelation effects depend
on the rapidity gap between the two subevents. The cumulant
formulas in Eqs. (10) can be used to quantify such effects in
any dynamical model. We leave this to future investigations.

In summary, we have studied the CFs in terms of the num-
ber of initial sources V using the correlation of the final-state
multiplicity between two subevents Na and Nb. The sources
and final multiplicity are generated with a Glauber model
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within an independent source picture. This correlation is
analyzed in terms of cumulants for multiplicity distribution in
one subevent (Nb) for events selected in another subevent with
a fixed multiplicity (Na). The Na dependence of the cumulants
are affected by both pure multiplicity smearing in the particle
production as well as the decorrelation between the sources
in the two subevents. We find that the behavior of cumulants
in UCCs are very sensitive to the particle production for
each source p(n) and p(V ) due to the steeply falling p(V )
distribution. The FB centrality decorrelations have very little
impact on the mean multiplicity but lead to an decrease of
scaled variance 〈(δVb)2〉/〈Vb〉 and 〈(δNb)2〉/〈Nb〉 as a function
of Na. These features can be used to constrain the particle
production mechanism as well as the longitudinal fluctuations
of the initial-state sources.
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APPENDIX A: CUMULANTS FOR
CORRELATED VARIABLES

The cumulants for a given probability density func-
tion (PDF) p(x), c1,x = x̄, c2,x = 〈(δx)2〉, c3,x = 〈(δx)3〉, ...
are defined from the cumulant generating function χx(t ):

χx(t ) = ln
∫

dxp(x)ext ≡ ln〈ext 〉 =
∑

n

cn,x
t n

n!
. (A1)

Let’s consider a quantity B, whose value is related to the size
of the system described by the number of sources V :

p(B) =
∫

dV p(B)V p(V ). (A2)

The p(B)V is the distribution of B for a fixed value of V .
There are three PDFs p(B), p(B)V , and p(V ) with their own
cumulant-generating functions:

χB(t ) = ln〈eBt 〉, (A3)

χB|V (t ) = ln〈eBt 〉V , (A4)

χV (t ) = ln〈eV t 〉. (A5)

In the independent source picture, the value of B in each
event is given by B = ∑V

i=1 bi, with bi generated indepen-
dently from a common PDF p(b). The additivity of cumulants
implies that χB|V (t ) = V × χb(t ), where

χb(t ) = ln〈ebt 〉 (A6)

is the cumulant generating function for p(b). Therefore,

χB(t ) = ln〈eBt 〉 = ln〈〈eBt 〉V 〉 = ln〈eV χb(t )〉

=
∑

n

cn,V
(χb(t ))n

n!
=

∑
n,m

cn,V
(cm,btm/m!)n

n!
. (A7)

Collecting terms in power of t on both sides, one obtains the
general formula of Ref. [13], which expresses the cumulants
of p(B) in terms of those for p(b) and p(V ), i.e.,

cn,B =
n∑

i=1

ci,V Bn,i(c1,b, c2,b, ..., cn−i+1,b), (A8)

where Bn,i are Bell polynomials.
This paper considers deviations from the independent

source picture, i.e., when χB|V is not exactly proportional
to V ,

χB|V (t,V ) = V χb(t,V )

= V

(
χb(t, V̄ ) +

∞∑
n=1

χ
(n)
b (t, V̄ )

(δV/V̄ )n

n!

)

= V̄ χb + δV
(
χb + χ

(1)
b

)
+ 1

V̄
(δV )2[χ (1)

b + χ
(2)
b

/
2
] + ... + 1

V̄ n
(δV )n+1

× [
χ

(n)
b /n! + χ

(n+1)
b /(n + 1)!

] + ..., (A9)

where we have Taylor-expanded χb in ln V around V̄ , i.e.,

χ
(n)
b (t ) = ∂nχb(t,V )

(∂ ln V )n
|V =V̄ . (A10)

Dropping terms that are suppressed by the system size 1/V̄ n

and plugging the first two terms back into Eq. (A7) gives

χB(t ) = ln〈eV χb(t,V )〉 ≈ ln
〈
eV (χb(t )+χ

(1)
b (t ))

〉 − V̄ χ
(1)
b (t ).

(A11)

Following the remaining steps of Eq. (A7), we obtain

cn,B = c1,V cn,b +
n∑

i=2

ci,V Bn,i

×
(

∂ (c1,bV )

∂V
,
∂ (c2,bV )

∂V
, ...,

∂ (cn−i+1,bV )

∂V

)
. (A12)

This result can also be expressed with the normalized cumu-
lant notation, i.e.,

k1,B = k1,V k1,b or B̄ = V̄ b̄,

kn,B = kn,b +
n∑

i=2

ki,V Bn,i

×
(

∂ (k1,bV )

∂V
,
∂ (k1,bk2,bV )

k1,b∂V
, ...,

∂ (k1,bkn−i+1,bV )

k1,b∂V

)
.

(A13)

For large collision systems, this leading-order approximation
works very well. For small collision systems, where the vari-
ance of CF may not be small in comparison to V̄ , higher-order
correction terms in Eq. (A9) should also be considered. The
expressions of the corrections for cn,B are quite lengthy, so we
only show the result for first and second cumulants up to all
orders and the third-order cumulants to 1/V̄ ,

δc1,B =
∞∑

k=1

1

V̄ k
〈(δV )1+k〉D(k)

1 ≈ 1

V̄
c2,V D(1)

1 ,

δc2,B =
∞∑

k=1

1

V̄ k

(〈(δV )1+k〉D(k)
2 + 2〈(δV )2+k〉D(0)

1 D(k)
1

)
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FIG. 11. The cumulants kn,Vb as a function of Na to quantify the influence of centrality decorrelations in Pb+Pb system (top row) and O+O
system (bottom row). They are calculated with Va = NF

part and Vb = NB
part for the three parameter sets, with n = 1, 2, 3, and 4 from left to right

panels. The inset panels show the ratio of Na/(n̄〈V 〉), to quantify the deviation from the linear relation.

≈ 1

V̄

(
c2,V D(1)

2 + 2c3,V D(0)
1 D(1)

1

)
,

δc3,B ≈ 1

V̄

(
c2,V D(1)

3 + 3c3,V
(
D(0)

1 D(1)
2 + D(0)

2 D(1)
1

)
+ 3

(
c4,V + 4c2

2,V

)
D(0)

1 D(0)
1 D(1)

1

)
, (A14)

with the short-hand notation D(k)
n ≡ c(k)

n,b/k! + c(k+1)
n,b /(k + 1)!.

We should point out the relations derived above are quite
general; it is suitable for cumulants of any observable that
is approximately linearly proportional to the V of the sys-
tem. For example, since average net-proton number depends
approximately linearly on V , the formulas Eqs. (10) can
be directly used. This procedure is more natural and more
economic compared to the direct Taylor expansion of the k2,Vb

as a function of V used in Ref. [39].
As a concrete application of Eqs. (A12) and (A13), it is

useful to consider the CF due to the finite centrality bin-width
effect [14]. Assuming centrality is defined in a finite multi-
plicity range in subevent A, whose distribution is described
by p(A), the corresponding CF is given by

p(V ) =
∫

dAp(V )A p(A). (A15)

In general, p(V )A is not described by the independent source
picture, i.e., the number of V per particle is not independent,
even if p(A)V is. But the correlation between V and A is
expected to be close to linear, and thus the approximation
described by Eqs. (A12) or (A13) can be directly used.

When one needs to consider both the CF in subevent B and
the centrality bin-width effect in subevent A, the relations can

be expressed as

p(B) =
∫

dV p(B)V p(V ),

p(V ) =
∫

dV p(V )A p(A).

(A16)

We consider the probability distribution p(v) of V per particle,
whose cumulant generating function χv (t ) is related to those
for p(V )A as

χV |A(t, A) = Aχv (t, A). (A17)

Combining Eqs. (A8) and (A12), we obtain

B̄ = Āv̄b̄,

cn,B =
n∑

i=2

⎛
⎝c1,Ac j,v +

i∑
j=2

c j,ABi, j

(
∂ (c1,vA)

∂A
,
∂ (c2,vA)

∂A
, ...,

∂ (ci− j+1,vA)

∂A

)⎞
⎠Bn,i(c1,b, c2,b, ..., cn−i+1,b). (A18)

APPENDIX B: ADDITIONAL RESULTS

Figures 11 and 12 compare the kn,Vb and Kn,b, respectively,
as a function of Na for the three parameter sets. This relation
is described by Eqs. (13).

Figure 13 shows the decomposition of Kn,b for the case of
considering only multiplicity smearing and Fig. 14 shows the
decomposition of Kn,b, also considering centrality decorrela-
tions, i.e., Va = NF

part and Vb = NB
part.
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FIG. 12. The cumulants of total multiplicity in subevent B Kn,b as a function of Na to quantify the influence of centrality decorrelations in
Pb+Pb system (top row) and O+O system (bottom row). They are calculated with Va = NF

part and Vb = NB
part for the three parameter sets, with

n = 1, 2, 3, and 4 from left to right panels. The inset panels show the ratio of Na/(n̄〈V 〉), to quantify the deviation from the linear relation.

FIG. 13. Decomposition of Kn,b containing only multiplicity smearing effects as a function of Na into contributions from various terms
according to Eqs. (13). The Kn,b are obtained with V = Npart for Par1 in Pb+Pb (top row) and O+O systems (bottom row) with n = 2, 3, and
4 from left to right panels.

023319-14
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FIG. 14. Decomposition of Kn,b containing centrality decorrelation effects as a function of Na into contributions from various terms
according to Eqs. (13). The Kn,b are obtained with Va = NF

part and Vb = NB
part for Par1 in Pb+Pb (top row) and O+O systems (bottom row)

with n = 2, 3, and 4 from left to right panels.
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