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Kondo effect driven by chirality imbalance
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We propose a novel mechanism of the Kondo effect driven by a chirality imbalance (or chiral chemical
potential) of relativistic light fermions. This effect is realized by the mixing between a right- or left-handed
fermion and a heavy impurity in the chirality imbalanced matter even at zero density. This is different from the
usual Kondo effect induced by finite density. We derive the Kondo effect from both a perturbative calculation
and a mean-field approach. We also discuss the temperature dependence of the Kondo effect. The Kondo effect
at nonzero chiral chemical potential can be tested by future lattice simulations.
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I. INTRODUCTION

The Kondo effect [1–5] is known as a phenomenon which
occurs in metal including heavy impurities. It leads to drastic
modifications of the transport properties of conducting (or
itinerant) electrons at low temperature. While, in the conven-
tional case, itinerant electrons are treated as nonrelativistic
fermions, recent studies show that the Kondo effect can be
realized also in systems with relativistic fermions.

One example of the Kondo effect realized in the relativistic
system is the isospin Kondo effect. This effect can be induced
near the Fermi surface of nucleons with a heavy hadron
such as �(∗)

c or D̄(∗) existing as an impurity, where the non-
Abelian SU(2) interaction between the light nucleon and the
heavy hadron is supplied by an isospin exchange [6–9]. In
the context of quantum chromodynamics (QCD) in which
the non-Abelian SU(3) interaction is governed by the color
interaction mediated by gluons, the so-called QCD Kondo
effect which may be realized in quark matter composed of up
and down (and also often strange) quarks with a heavy (charm
or bottom) quark, has been studied in the literatures [6,10–22].
Moreover, in the context of electron systems with Dirac or
Weyl dispersion in solid states, called Dirac or Weyl semimet-
als, it has been seen that the vanishing density of states
around the Dirac or Weyl points leads to an anomalous Kondo
screening behavior, distinct from normal metals [14,23–35].

In relativistic massless fermions, one of the interesting
characteristics is their chirality, i.e., the left-handed and right-
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handed degrees of freedoms. In this paper, we propose a
novel type of Kondo effect: the Kondo effect driven by a
chirality imbalance (or chiral chemical potential μ5). This
is similar to the “usual” Kondo effect induced on the Fermi
surface but slightly different in the sense that it occurs even
at zero chemical potential, μ = 0. We particularly study the
Kondo effect at finite μ5 perturbatively and nonperturbatively:
The former is accomplished by the renormalization group
(RG) analysis at one loop, and the latter is by the mean-field
analysis. In the present work, we do not take into account the
effects from interactions between two light fermions such as
chiral condensate in order to focus on the Kondo effect in a
transparent way.

To investigate systems with μ5 will give a motivation
for Monte Carlo (lattice) simulations of strongly correlated
quantum systems such as the Kondo effect and quark-gluon
dynamics, which is one of the promising tools to nonper-
turbatively study them. While Monte Carlo simulations with
a finite chemical potential μ suffer from the sign problem,
at finite chiral chemical potential μ5, the sign problem is
absent [36] (also see Refs. [37–41]). Therefore, when the
Kondo effects are induced by finite μ5, we expect that Monte
Carlo simulations with μ5 would be promising for measuring
the Kondo effect.

In the context of QCD, a chirality imbalance might be
realized in the heavy-ion collision (HIC) experiments. Argu-
ments on its possibility have a long history [42], and there
are some scenarios leading to local parity violation, such as
the sphaleron transition [43–45], the parallel color electric
and magnetic fields (or the Glasma) [44,46], and disoriented
pseudoscalar condensates [47,48]. At early state of HIC,
heavy quarks are also produced by hard processes mediated
by gluons from nucleon-nucleon scattering at high energy.1

1These heavy quarks can play a role of heavy impurities without
satisfying any chemical equilibrium conditions, when we focus on
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Thus HIC is expected to be a possible environment to study
the Kondo effect with chirality imbalance.2

Our analyses can also be extended to Dirac or Weyl
semimetals with energy splitting among Dirac or Weyl cones
in electronic band structure, such as in Weyl semimetals with
broken inversion symmetry [49–51]. Such an effect may be
reproduced as well by Zeeman splitting of spin-degenerate
Dirac cones in topological Dirac semimetals [52], such as
Cd3As2 [53,54].

This paper is organized as follows. In Sec. II, we consider
the Kondo effect at finite μ5 from an effective Lagrangian
and a perturbation calculation. In Sec. III, to study the Kondo
effect in the nonperturbative region, we formalize a mean field
approach, and show the phase diagram of the Kondo effect on
the plane of temperature and μ5. Section IV is devoted to our
conclusion and outlook.

II. PERTURBATIVE APPROACH

In this section, we show the emergence of the Kondo
effect at finite μ5 within a perturbative scheme, which can be
signaled by existence of a Landau pole in the renormalization
group (RG) flow for the effective coupling between a light
fermion and a heavy fermion [55].3

We start our discussion by the following Lagrangian to
describe a scattering between a light fermion and a heavy
fermion:

L = ψ̄ (i/∂ + μ5γ0γ5)ψ + �̄(i/∂ − MQ)�

+ G(ψ̄t aγ μψ )(�̄t aγμ�) , (1)

in which ψ and � denote the light-fermion and heavy-fermion
fields, respectively. μ5 is the chiral chemical potential and MQ

is the heavy-fermion mass whose value is significantly larger
than the typical scale of the theory. t a with an index a =
1, . . . , N2 − 1 is the generator of the SU(N ) group charac-
terizing a non-Abelian interaction. In terms of the interaction
manner between the light fermion and the heavy fermion, we
have employed a vector-type contact interaction.4 G > 0 is the
coupling constant. We notice that, in this section, we introduce
the heavy-fermion field (�) as a Dirac spinor which includes
an antiparticle as well as a particle component. However, later,
we will take a limit of MQ → ∞ to describe the emergence of
the Kondo effect in more transparent way.

the short time scale in which the weak decay of the heavy quarks
does not take place. The Kondo effect can evolve regardless of any
chemical equilibriums on the heavy quarks.

2The realization of chiral chemical potential large enough in ex-
periments is an open question. For example, chiral charges are not
conserved because of the existence of the quantum anomaly.

3A perturbative calculation of the QCD Kondo effect at finite μ5

was also done in an early work by Ozaki and Itakura (unpublished).
4In the context of QCD, the interaction term in Eq. (1) can be

motivated by a one-gluon exchange interaction between the light
quark and the heavy quark with a large Debye mass, as demonstrated
in Ref. [10]. This is confirmed at one-loop calculation for μ5 without
ordinary chemical potential μ.

The scattering amplitude between the light fermion and the
heavy fermion up to one loop is of the form

M = M(0) + M(1), (2)

where M(0) and M(1) are the amplitude at tree level and at
one-loop level, respectively. Explicitly, M(0) and M(1) are
obtained as

M(0) = Gū(p f )t aγ μu(pi )Ū (q f )t aγμU (qi ) (3)

and

M(1) = M(1a) + M(1b), (4)

with

M(1a) = −G2T
∑

n

∫
d3k

(2π )3
ū(p f )t aγ μSl (k)t bγ νu(pi )

× Ū (q f )t aγμSh(qi − k + pi )t
bγνU (qi ), (5)

and

M(1b) = −G2T
∑

n

∫
d3k

(2π )3
ū(p f )t aγ μSl (k)t bγ νu(pi )

× Ū (q f )t bγνSh(qi + k − p f )t aγμU (qi ), (6)

respectively, which are diagrammatically indicated in Fig. 1.
u(p) and U (q) are the Dirac wave functions for the light and
heavy fermions, respectively, with p = pi (p f ) and q = qi (q f )
the initial (final) momenta. In Eq. (4), we have employed
the imaginary-time formalism to take into account the finite
temperature effect, so that the propagators Sl (k) and Sh(k) take
the form of

Sl (k) =
∑
ε5=±

Pε5
̃l (i(ωn − iε5μ5)) (7)

and

Sh(k) = 
̃h(iωn), (8)

with


̃l (i(ωn − iε5μ5)) = − i(−ωn + iε5μ5)γ0 + �k · �γ
(ωn − iε5μ5)2 + |�k|2 (9)

and


̃h(iωn) = −−iωnγ0 + �k · �γ − MQ

ω2
n + |�k|2 + M2

Q

, (10)

where �γ ≡ (γ 1, γ 2, γ 3) is the spatial components of the Dirac
gamma matrices. In these expressions, P± = (1 ± γ5)/2 is the
right-handed or left-handed projection operator, and the Mat-
subara frequency is ωn = (2n + 1)πT (n = 0,±1,±2, . . . ).
The detailed calculation of the one loops in Eqs. (5) and (6)
within the imaginary-time formalism is provided in Ap-
pendix A.

Before showing the results of Eq. (2), we notice some
important points about the fermion wave functions u(p) [ū(p)]
or U (q) [Ū (q)]. First, in terms of the light-fermion wave
function, it is useful to separate the light-fermion transition
part in Eq. (2) into the right-handed and left-handed ones by
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FIG. 1. The diagrammatical picture of the scattering amplitude between the light fermion and the heavy fermion in Eqs. (3), (5), and (6).

defining uR = P+u and uL = P−u, since the Lagrangian (1)
preserves the axial current.

Next, in terms of the heavy-fermion wave function, as is
well known, the free Dirac spinor can be decomposed into

U (q) = �+U (q) + �−U (q) = U+(q) + U−(q), (11)

with U±(q) ≡ �±U (q), by defining the projection operator
with respect to the positive-energy (+) and negative-energy
(−) solutions of the Dirac equation:

�± ≡ MQ ± (q0γ0 − �q · �γ )

2MQ
, (12)

with q0 =
√

| �q|2 + M2
Q. When we measure the energy of

the fermion from MQ as in the nonrelativistic system, i.e.,
by shifting the energy of the positive-energy and negative-
energy components commonly as q0 → q0 − MQ, we need
to cost at least 2MQ for the excitation of the negative-energy
component, which can be ignored in the limit of MQ → ∞.
Therefore, when we consider such a situation, we can drop
U−(q) in Eq. (11), and replace U (q) by U+(q).

By taking the above arguments into account, the tree-level
amplitude in Eq. (3) can be reduced to

M(0) = G ūR(p f )t aγ0uR(pi )Ū+(q f )t aU+(qi )

+ G ūL (p f )t aγ0uL(pi )Ū+(q f )t aU+(qi ), (13)

in which we have used a fact of Ū+(q f )t a �γU+(qi ) = 0 with
MQ → ∞. The one-loop amplitude M(1) in Eq. (4) is calcu-
lated in detail in Appendix A. According to Eq. (A24), the
resulting M(1) is of the form

M(1) ≈ G2

2

Nρ0

2

∫ ∞

−μ5

dE
1 − f̃β (E )

E

× ūR(p f )t aγ0uR(pi )Ū+(q f )t aU+(qi )

+ G2

2

∫
d3k

(2π )3

1

μ5 − |�k|
× ūL(p f )t at bγ0uL(pi )Ū+(q f )t bt aU+(qi ), (14)

in the limit of MQ → ∞ with the initial- and final-state
light fermions inhabiting the “Fermi surface,” i.e., the
initial- and finial-state light fermions satisfy the kinemat-
ics of (p0, | �p|) = (0, μ5) for the right-handed fermion while
(p0, | �p|) = (2μ5, μ5) for the left-handed fermion (pμ stands
for pμ

i and pμ

f collectively), due to the Dirac equation. f̃β (E )

is the Fermi distribution function, f̃β (E ) = 1/(eβE + 1) with
inverse temperature β = 1/T . In obtaining Eq. (14), we notice

that the density of states at Fermi surface ρ0 = μ2
5/(2π2) is

employed since we assume implicitly a hierarchy of MQ(→
∞) � μ5 � T .

From the above considerations, it turns out that Eqs. (13)
and (14) lead to the RG equation [55] as

�
dG(�)

d�
= −Nρ0G2(�)

4
(1 − f̃β (�)), (15)

for the coupling G(�) of only the right-handed fermion,
where the effective coupling G(�) depends on the energy
scale � measured from the Fermi surface. Alternatively, the
RG equation (15) can be converted into the dimensionless one
as

�̄
dḠ(�̄)

d�̄
= −NḠ(�̄)2

8π2
(1 − f̃β̄ (�̄)), (16)

by defining �̄ = �/μ5, Ḡ(�̄) = G(�)μ2
5, and β̄ = βμ5 (T̄ =

T/μ5). We comment that Eq. (16) is reduced to the simple
form

�̄
dḠ(�̄)

d�̄
= −NḠ(�̄)2

8π2
, (17)

at T̄ = 0.
The resulting RG flow of the dimensionless coupling Ḡ

with N = 3 is shown in Fig. 2. In this plot, the results with
T̄ = 0, 0.02, and 0.2 are shown. As an example, the initial
values are taken to be Ḡ0 ≡ Ḡ(�0) = 3 at the initial high-

FIG. 2. The RG flow of the (dimensionless) coupling Ḡ with N =
3 for T̄ = 0 (red), T̄ = 0.02 (purple) and T̄ = 0.2 (blue). The initial
values are Ḡ0 = 3 at �̄0 = 0.2.
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energy scale �0 = 0.2. The results clearly show the logarith-
mic divergences at lower-energy scales and the emergence
of the Landau poles at the energy scale �̄ = �̄K lower than
�̄0 (or temperature), implying the appearance of the Kondo
effect. We call �̄K the Kondo scale. This behavior is easily
understood by the fact that the right-hand side of Eq. (16)
is always negative. It is important to note that the Kondo
scale is generated dynamically through the quantum processes
accompanying the non-Abelian interaction.5 The existence of
the Kondo scale is more clearly confirmed in the case of zero
temperature (T̄ = 0). In fact, from Eq. (17), we obtain the
analytic form of the solution as

Ḡ(�̄) = Ḡ0

1 + NḠ0
8π2 ln �̄

�̄0

, (18)

leading to

�̄K = �̄0e− 8π2

NḠ0 	 �̄0. (19)

The last inequality indicates that the Kondo scale is the
low-energy scale, so that it is exponentially smaller than the
high-energy scale �̄0. At finite temperature, we notice that,
as the temperature becomes higher, the value of �̄K becomes
smaller. Thus this behavior implies the suppression of the
Kondo effect by finite temperature effects.

III. MEAN-FIELD APPROACH

At the low-energy scale below the Kondo scale, we need to
describe the Kondo effect in a nonperturbative way. For this
purpose, we adopt a mean-field approach describing a mixing
between a light relativistic fermion and a heavy fermion based
on the treatment in Refs. [12,16].

A. Mean-field Lagrangian

For the light relativistic fermions, we use the one-flavor
light-fermion field ψ with a chemical potential μ and a chiral
chemical potential μ5.6 For the heavy fermions, we use a
redefined field based on the so-called heavy-quark effective
theory [56,57] (see Refs. [58,59] for reviews): �v ≡ 1

2 (1 +
vμγμ)eiMQv·x�, where MQ and vμ = (1, �0) are the mass and
four-velocity of the heavy fermion at rest (the rest frame),
respectively. After this redefinition, only the positive-energy
component of the original Dirac spinor of the heavy-fermion

5If there is no non-Abelian interaction (or the generator t a) in
the Lagrangian (1), all the logarithmic divergences from M(1) in
Eqs. (14) are canceled, and hence the Kondo scale disappears.

6The one flavor is a simplified setup, but we can easily extend our
formalism to multiflavor fermions, ψ ≡ (ψ t

1, ψ
t
2, · · · , ψ t

Nf
) [12,16].

field survives by the projection operator 1
2 (1 + γ0). The origi-

nal mass MQ is subtracted by the factor eiMQv·x.
As a result, the effective Lagrangian is given by

L = ψ̄ (i∂/ + μγ0 + μ5γ0γ5)ψ + �̄vivμ∂μ�v

+ G̃[|ψ̄R�v|2 + |ψ̄L�v|2 + |ψ̄R �γ�v|2 + |ψ̄L �γ�v|2]

− λ(�̄v�v − nQ), (20)

where the SU(N ) non-Abelian interaction term is a four-point
vertex, and G̃ is the coupling constant in the interaction
between a light fermion and a heavy particle.7λ and nQ are the
Lagrange multiplier and heavy-particle density, respectively,
for the constraint condition �̄v�v = nQ [12,16].8 Thus the
number density of heavy particles are controlled by the La-
grange multiplier (λ) independent of light fermions, so that
the heavy particles need not to satisfy chemical equilibrium
conditions because they are impurities. Therefore one needs
not to regard λ as a chemical potential of heavy particles.9 The
value of nQ is determined by solving a stationary condition of
the thermodynamic potential: ∂�/∂λ = 0 [� will be provided
in Eq. (28) explicitly]. Here, we notice that choosing λ = 0
does not necessarily impose nQ = 0.

As a mean-field approximation, we assume the following
form of the condensate, which is the so-called Kondo conden-
sate [12,16]:

G̃〈ψ̄R�v〉 = 
R, G̃〈ψ̄L�v〉 = 
L, (21)

G̃〈ψ̄R �γ�v〉 = 
R p̂, G̃〈ψ̄L �γ�v〉 = 
L p̂, (22)

where p̂ ≡ �p/p (p ≡ | �p|) is the unit vector for the three-
dimensional momentum �p.10 The angle brackets 〈O〉 denote
the vacuum expectation value for an operator O. Note that

R(L) is a complex number, which indicates the mixing be-
tween the light fermion and the heavy particle. Thus |
R(L)|
gives the absolute value of the Kondo condensate. From
Eq. (20), as a result, the mean-field Lagrangian is written as

LMF = φ̄ G(p0, �p )−1φ − 2|
R|2
G̃

− 2|
L|2
G̃

+ λnQ, (23)

7Note that the four-point interaction in Eq. (20) can be obtained by
the Fiertz transformation from Eq. (1). See, e.g., Refs. [12,16]. Using
the projection operators for the chirality of the light fermions, ψR =
1+γ5

2 ψ and ψL = 1−γ5
2 ψ , we can easily check the chiral symmetry for

the four-point interaction terms:

|ψ̄�v|2 + |ψ̄ iγ5�v|2 + |ψ̄ �γ�v|2 + |ψ̄γ5 �γ�v|2

= 2[|ψ̄R�v|2 + |ψ̄L�v|2 + |ψ̄R �γ�v|2 + |ψ̄L �γ�v|2].

8Notice that �̄v = �†
v in the rest frame.

9The Kondo effect for a single heavy particle within the same
mean-field ansatz is formalized in Ref. [13].

10The momentum dependence in Eq. (22) is called the hedgehog
solution. We assumed the scalar and hedgehog condensate have the
same value of 
R(L).
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where φ ≡ (ψ t , (�pos
v )t ) contains the six components with the Dirac four-spinor of the light-fermion field ψ and the positive-

energy projected components (two-spinor) of the heavy-particle field �t
v ≡ ((�pos

v )t , 0). The factor 2 in front of |
R(L)|2 comes
from the ansatz (21) and (22). The inverse propagator of φ is given by

G(p0, �p )−1 ≡

⎛
⎜⎝

p0 + μ −�p · �σ + μ5

∗

R
2 (1 + p̂ · �σ ) + 
∗

L
2 (1 − p̂ · �σ )

�p · �σ − μ5 −(p0 + μ) −
∗
R

2 (1 + p̂ · �σ ) + 
∗
L

2 (1 − p̂ · �σ )

R
2 (1 + p̂ · �σ ) + 
L

2 (1 − p̂ · �σ ) 
R
2 (1 + p̂ · �σ ) − 
L

2 (1 − p̂ · �σ ) p0 − λ

⎞
⎟⎠, (24)

in the standard representation of the Dirac matrices.
Before closing this subsection, we comment the symme-

try breaking pattern in the present analysis. Originally, the
Lagrangian (20) possesses U(1)R × U(1)L chiral symmetry,
SU(2)HFS heavy-fermion spin (HFS) symmetry, and U(1)h

heavy-fermion number symmetry. Namely, the original global
symmetry is G = U(1)R × U(1)L × SU(2)HFS × U(1)h. Af-
ter the Kondo condensate in Eqs. (21) and (22) dominates
the ground state, the symmetry will be broken to be H =
U(1)R+L+h if 
R �= 
L, where the U(1)R+L+h symmetry is
associated with a conservation of the sum of the light-fermion
number and the heavy-fermion number. As a particular case, if
the Kondo condensate satisfies 
R = 
L, then the remaining
global symmetry is H = U(1)R+L+h × U(1)R−L+HFSh , where
the U(1)R−L+HFSh stands for the so-called chiral-HFS locked
(χHFSL) symmetry argued in Refs. [12,16].

B. Dispersion relations

By solving det[G(p0, �p)−1] = 0, we obtain the six energy-
momentum dispersion relations

ER±(p) ≡ 1

2
(p + λ − μR ±

√
(p − λ − μR)2 + 8|
R|2),

(25)

EL±(p) ≡ 1

2
(p + λ − μL ±

√
(p − λ − μL )2 + 8|
L|2),

(26)

ẼR(p) ≡ −p − μR, (27)

ẼL(p) ≡ −p − μL. (28)

with μR,L ≡ μ ± μ5. The four modes, ER± and EL±, are the
mixing modes (quasiparticles) between the light fermion and
the heavy particle, which are induced by the nonzero value of
the Kondo condensate 
R(L). On the other hand, ẼR and ẼL are
the decoupling anti-particle modes. The obtained dispersion
realtions and the wave functions lead to the quasiparticle
fermions, but they preserve the topological properties for the
original massless Dirac fermions, where the Berry curvature
induces the monopoles in momentum space [16].

A schematic figure of these dispersion relations is shown
in Fig. 3. Among them, the quasiparticles with ER− and
EL− are essential for the Kondo effect because the Kondo
condensate is induced by the occupation of quasiparticles
under E (p) = 0.

C. Thermodynamic potential

From the modes in Eqs. (25)–(28), the thermodynamic
potential at finite temperature T is obtained as

�(T, μ, μ5, λ; 
R(L) ) = N
∫ �cut

0
f (T, μ, μ5, λ; p)

p2d p

2π2

+ 2|
R|2
G̃

+ 2|
L|2
G̃

− λnQ, (29)

where �cut is an ultraviolet cutoff parameter of the momentum
integral and the integrand is

f (T, μ, μ5, λ; p)

= −1

2

∑
i=R,L

[Ei+(p) + Ei−(p) + Ẽi(p)]

− 1

β
ln

[ ∏
i=R,L

(1 + e−βEi+(p) )(1 + e−βEi−(p) )

× (1 + e−βẼi (p) )

]
. (30)

From the minimization condition of Eq. (29) or the gap equa-
tion ∂�/∂
R = ∂�/∂
L = 0, we can determine 
R(L) in a
self-consistent way. In this model setting, the free parameters

FIG. 3. Dispersion relations of quasiparticles [ER±(p), EL±(p),
ẼR(p), and ẼL (p)] with Kondo condensate 
R(L) at finite μ5. The
shadow area [E (p) < 0] is the region where the (quasi)particles are
occupied up to the cutoff momentum. Here, we set 
R = 
L as an
example.
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FIG. 4. Kondo condensate 
R at finite μ5 > 0 and T = μ = λ =
0 using G̃ = 2/�2

cut or G̃ = 4/�2
cut and N = 3. Note that 
L ≈ 0

within these parameters. The black curves are the results from an
analytic solution (31).

are G̃ and �cut (and N), and they can be tuned for a specific
system, as it will be explained later.

D. Numerical results

The Kondo condensate 
R as a function of μ5 > 0 is
plotted in Fig. 4. Here we use, for example, G̃ = 2/�2

cut and
4/�2

cut at N = 3. We find that 
R is enhanced as μ5 increases.
This behavior indicates that the (relativistic) Kondo effect is
induced by finite μ5. This is consistent with the result from the
perturbative analysis in Sec. II. We emphasize that the usual
(nonrelativistic and relativistic) Kondo effects occur at finite
μ, but the Kondo effect at finite μ5 appears even when μ = 0.
See Appendix B for the discussion at finite μ. This is a unique
property of relativistic fermions composing matter including
impurities. Such Kondo effects can be realized in relativistic-
fermion matter, i.e., Weyl/Dirac metal/semimetals and quark
matter.

Within our parameters, we numerically find that, for μ5 >

0, the Kondo effect is dominated by the right-handed conden-
sate 
R, and the value of the left-handed condensate 
L is
almost zero. On the other hand, in the case of μ5 < 0, 
L

dominates the Kondo effect.
For a typical parameter in the QCD Kondo effect, we

apply the coupling constant, G̃ = Gc, where Gc ≡ 2/�2
cut and

�cut = 0.65 GeV, and the number of the colors is N = 3.
These parameters are the same as those used in the Nambu–
Jona-Lasinio model with a four-point interaction between a
light quark and a light antiquark [60]. When we use Gc, we
find 
R = 7.9 MeV at μ5 = 0.5 GeV. If we use a stronger
coupling constant, the Kondo effect is increasingly enhanced,
as shown by the blue curve in Fig. 4. Note that, if we ex-
trapolate the results to 0.75 � μ5/�cut, then we find a sudden
decrease of 
R, but this behavior is an artifact from the cutoff
�cut in our model.

For a better understanding of the plot in Fig. 4, here, we
show the analytic expressions of μ5 dependence of 
R and

FIG. 5. The phase diagram on the T -μ5 plane for the Kondo
condensate 
R at μ = λ = 0. The parameters, G̃ = 2/�2

cut and N =
3, are used. Note that 
L ≈ 0 within this parameter.


L. Under an assumption of 
R,
L 	 μ5,�cut with T =
μ = λ = 0, the gap equation is solved analytically as


R ≈ α

√
μ5(�cut − μ5)

2
exp

(
− π2

Nμ2
5G̃

)
, (31)


L ≈ 0, (32)

with α = exp[(�2
cut + 2�cutμ5 − 6μ2

5)/(4μ2
5)], as shown in

Refs. [12,16]. Thus the value of 
R at μ5/�cut � 0.3 does not
vanish but is simply suppressed exponentially. The analytic
solution of μ5 dependence of 
R in Eq. (31) is shown by the
black curve in Fig. 4, which is in good agreement with the
numerical result.

We comment the possible setup on lattice QCD simula-
tions. At finite μ, the Monte-Carlo simulations suffer from
the sign problem, so that it is difficult to measure the QCD
Kondo effect (by finite μ) by using lattice simulations. On
the other hand, at finite μ5, we can escape from the sign
problem [36–41], and the QCD Kondo effect (by finite μ5)
will be observed.

Finally, we give a discussion on the temperature depen-
dence of 
R at finite μ5. In Fig. 5, we show 
R on the
T -μ5 plane. We observe that, when a finite T is switched
on, the value of 
R decreases: the Kondo effect is suppressed
by finite-temperature effects, which is again consistent with
the perturbative analysis in Sec. II. The order of the phase
transition at finite T > 0 is of second order (see Appendix C
for examination based on a susceptibility).

IV. CONCLUSION AND OUTLOOK

In this paper, we proposed the Kondo effect driven by a
chirality imbalance (or chiral chemical potential μ5) from
the point of view of the two theoretical approaches. Using
the perturbative approach, we found the infrared divergence
of scattering amplitude as a signal of the Kondo effect.
Using the mean-field approach, we found that the Kondo
condensate is enhanced by finite μ5. These are universal
properties in relativistic-fermion matter with heavy impurities
and a chirality imbalance, which can be attributed to the
enhancement of the density of states at the Fermi surface. Our

023312-6



KONDO EFFECT DRIVEN BY CHIRALITY IMBALANCE PHYSICAL REVIEW RESEARCH 2, 023312 (2020)

findings generalize the analysis of the Kondo effect in Dirac or
Weyl electron systems with an energy splitting among Dirac
cones [26], involving various types of SU(N ) exchange inter-
actions, such as spin, isospin, and color. The interplay effect
between the exchange interaction and particular spin-orbit
coupling in crystalline electron systems, such as topological
Dirac semimetal Cd3As2, is left for further analysis.

As a topics not covered in the present study, we comment
that the response to magnetic and electric fields would be
interesting. For example, when μ5 is coupled to a magnetic
field, an electric current can be induced, which is the so-
called chiral magnetic effect [36,45]. The correlation between
the chiral transport phenomena and the Kondo effects will
be worth to be studied. See, for example, the discussion of
the transport coefficients in the Kondo effect in relativistic-
fermion gas [18].

In the context of QCD, lattice simulations at finite μ5 evade
from the sign problem [36–41], so that we can numerically
measure the QCD Kondo effects in a fully nonperturbative
way. The ground state of QCD in the low-temperature and/or
low-chemical potential region is the chiral-symmetry breaking
phase characterized by the chiral condensate, and the ground
state in the high-chemical potential region is expected to
be the color superconducting phase characterized by diquark
condensate. These condensates could exclude the Kondo con-
densate [14,17] or might induce a “coexistence” phase with
two order parameters [17]. The topological properties of the
QCD Kondo effect is also an interesting issue [16]. However,
the conclusion from the effective models depends on the
coupling constants of the interactions, and in the future it
should be checked based on QCD.

In particular, the properties of chiral condensates at finite
μ5 have been studied from chiral effective models [36,61–
81], Schwinger-Dyson equations [82,83], and lattice QCD

simulations [39–41]. One of the characteristic properties is the
catalysis effect of the chiral symmetry breaking by finite μ5.
Therefore, in matter with a chirality imbalance and impurities,
the two catalysis effects of the chiral symmetry breaking and
Kondo effect could be correlated.

If we attempt to experimentally observe the Kondo ef-
fect in environments with a chirality imbalance, the finite-
temperature effect will be practically important. In particular,
high-energy HICs produce high-temperature medium, and it
could suppress the Kondo effect. The melting temperature of
Kondo effect estimated in this paper will be useful for future
study.

In addition, in two- (or multi-) component fermion sys-
tems, the situation including an imbalance between the chem-
ical potentials of different fermions would be also important.
In QCD, the isospin chemical potential μI , an imbalance
between up- and down-quark chemical potentials, is realized
in neutron-rich nuclei and neutron stars, and lattice QCD
simulations are also applicable [84–87]. For a similar external
parameter to μ5, the effects from the chiral isospin chemical
potential μI5 could be also interesting [77,78,88–92].
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APPENDIX A: MATSUBARA SUMMATION IN EQS. (5) AND (6)

In this Appendix, we show a detailed calculation of Matsubara summation in the one-loop amplitudes in Eqs. (5) and (6).
Within the imaginary-time formalism, Eqs. (5) and (6) are rewritten to

M(1a) = −G2
∑
ε5=±

T
∑

n

∫
d3k

(2π )3
ū(p f )t aγ μPε5
̃l (i(ωn − iε5μ5))t bγ νu(pi )Ū (q f )t aγμ
̃h(iωqi − iωn + iωpi )t

bγνU (qi )

(A1)

and

M(1b) = −G2
∑
ε5=±

T
∑

n

∫
d3k

(2π )3
ū(p f )t aγ μPε5
̃l (i(ωn − iε5μ5))t bγ νu(pi )Ū (q f )t bγν
̃h(iωqi + iωn − iωp f )t aγμU (qi ),

(A2)

respectively, where the Matsubara Green’s functions for the light and heavy fermions are given by


̃l (i(ωn − iε5μ5)) = − i(−ωn + iε5μ5)γ0 + �k · �γ
(ωn − iε5μ5)2 + |�k|2 (A3)

and


̃h(iωn) = −−iωnγ0 + �k · �γ − MQ

ω2
n + |�k|2 + M2

Q

, (A4)
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with the Matsubara frequency ωn = (2n + 1)πT (n = 0,±1,±2, . . . ). Therefore, apart from the spinor and SU(N ) non-Abelian
algebras, we need to calculate

I1 ≡ T
∑

n

∫
d3k

(2π )3

̃l (i(ωn − iε5μ5)) ⊗ 
̃h(iωqi − iωn + iωpi ) (A5)

and

I2 ≡ T
∑

n

∫
d3k

(2π )3

̃l (i(ωn − iε5μ5)) ⊗ 
̃h(iωqi + iωn − iωp f ), (A6)

for the evaluation of M(1a) and M(1b).
First, let us demonstrate a detailed calculation of I1. The three-momentum integral in Eq. (A5) is performed by the

conventional procedure as in the vacuum, such that we show only the zeroth components of the momentum or coordinate
space explicitly below. The inverse Fourier transformations of the Matsubara Green’s functions 
̃l (i(ωn − iε5μ5)) and 
̃h(iωn)
given in Eqs. (A3) and (A4) can be defined by


̃l (i(ωn − iε5μ5)) =
∫ β

0
dτ
̃l (τ )ei(ωn−iε5μ5 )τ , 
̃h(iωn) =

∫ β

0
dτ
̃h(τ )eiωnτ . (A7)

Then, by making use of the Poisson summation formula

∑
n

δ(x + βn) = T
∞∑

n=−∞
ei 2πn

β
x = T

∞∑
n=−∞

eiωnxe−i πx
β , (A8)

we get the following equation:

J1 ≡ T
∑

n


̃l (i(ωn − iε5μ5)) ⊗ 
̃h(iωqi − iωn + iωpi ) =
∫ β

0
dτ
̃l (τ ) ⊗ 
̃h(τ )eε5μ5τ+i(ωqi +ωpi )τ . (A9)

The Matsubara Green’s function 
̃l (h)(τ ) is defined by an analytic continuation of the greater Green’s function

S>
l (t ) = 〈ψ (t )ψ̄ (0)〉β, S>

h (t ) = 〈�(t )�̄(0)〉β, (A10)

as


̃l (h)(τ ) = S>
l (h)(−iτ ). (A11)

Here, we remind that the Fourier transformation of the greater Green’s function S>
l (h)(t ) can be expressed as [93]

S>
l (t ) =

∫
dk0

2π
(1 − f̃β (k0 − ε5μ5))ρ̃l (k0)e−ik0t , S>

h (t ) =
∫

dk0

2π
(1 − f̃β (k0))ρ̃h(k0)e−ik0t , (A12)

in which f̃β (k0) is the Fermi distribution function, f̃β (k0) = 1/(eβk0 + 1) (β = 1/T ), and ρ̃l (h) is the spectral function

ρ̃l (k0) = 2πε(k0)/kδ(k2), ρ̃h(k0) = 2πε(k0)(/k + MQ)δ
(
k2 − M2

Q

)
. (A13)

Then, we find that Eq. (A9) can be rewritten to

J1 =
∫ β

0
dτS>

l (−iτ ) ⊗ S>
h (−iτ )e(ε5μ5+iωqi +iωpi )τ =

∫
dk0

2π

dk′
0

2π

1 − f̃β (k0 − ε5μ5) − f̃β (k′
0)

k0 + k′
0 − iωqi − iωpi − ε5μ5

ρ̃l (k0) ⊗ ρ̃h(k′
0)

= − 1

4|�k|Ek′

[
(1 − f̃β (|�k| − ε5μ5) − f̃β (Ek′ ))F (|�k|; Ek′ )

iωqi + iωpi + ε5μ5 − |�k| − Ek′
+ ( f̃β (|�k| − ε5μ5) − f̃β (Ek′ ))F (|�k|; −Ek′ )

iωqi + iωpi + ε5μ5 − |�k| + Ek′

− ( f̃β (|�k| + ε5μ5) − f̃β (Ek′ ))F (−|�k|, Ek′ )

iωqi + iωpi + ε5μ5 + |�k| − Ek′
− (1 − f̃β (|�k| + ε5μ5) − f̃β (Ek′ ))F (−|�k|; −Ek′ )

iωqi + iωpi + ε5μ5 + |�k| + Ek′

]
, (A14)

with Ek′ =
√

| �qi − �k + �pi|2 + M2
Q, where F (k0; k′

0) is defined as F (k0; k′
0) = /k ⊗ (/k′ + MQ). By performing the analytic

continuations of iωqi → q0
i + iε, iωpi → p0

i + iε, and replacing the energy of the external heavy fermion by its mass as
q0 → MQ, together with the MQ → ∞ limit, we find that Eq. (A14) is reduced to

J1 ≈ − 1

2|�k|

[
1 − f̃β (|�k| − ε5μ5)

p0
i + ε5μ5 − |�k| + iε

(|�k|γ 0 − �k · �γ ) ⊗ �̄+ − f̃β (|�k| + ε5μ5)

p0
i + ε5μ5 + |�k| + iε

(−|�k|γ 0 − �k · �γ ) ⊗ �̄+

]
, (A15)
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with �̄+ ≡ limMQ→∞(/q + MQ)/(2MQ) = (1 + γ0)/2. Hence, by combining the three-momentum integral, finally we can
evaluate I1 in Eq. (A5) as

I1 ≈ −1

2

∫
d3k

(2π )3

[
1 − f̃β (|�k| − ε5μ5)(

p0
i + ε5μ5

) − |�k| + f̃β (|�k| + ε5μ5)(
p0

i + ε5μ5
) + |�k|

]
γ 0 ⊗ �̄+. (A16)

Note that we are interested in only the real part of the amplitude, so that the imaginary parts have been omitted. Therefore M(1a)

in Eq. (A1) becomes

M(1a) ≈ G2

2

∫
d3k

(2π )3

[
1 − f̃β (|�k| − μ5)

p0
i + μ5 − |�k| + f̃β (|�k| + μ5)

p0
i + μ5 + |�k|

]
ū(p f )t aγ μP+γ0t bγ νu(pi )Ū+(q f )t aγμ�̄+t bγνU+(qi )

+ G2

2

∫
d3k

(2π )3

[
1 − f̃β (|�k| + μ5)

p0
i − μ5 − |�k| + f̃β (|�k| − μ5)

p0
i − μ5 + |�k|

]
ū(p f )t aγ μP−γ0t bγ νu(pi )Ū+(q f )t aγμ�̄+t bγνU+(qi ), (A17)

by replacing U (qi ) → U+(qi ) (Ū (q f ) → Ū+(q f )) together with the MQ → ∞ limit.
In a similar manner, we can evaluate I2 in Eq. (A6) as

I2 ≈ −1

2

∫
d3k

(2π )3

[
f̃β (|�k| − ε5μ5)

p0
f + ε5μ5 − |�k| + 1 − f̃β (|�k| + ε5μ5)

p0
f + ε5μ5 + |�k|

]
γ 0 ⊗ �̄+, (A18)

which yields that M(1b) in Eq. (A2) becomes

M(1b) ≈ G2

2

∫
d3k

(2π )3

[
f̃β (|�k| − μ5)

p0
f + μ5 − |�k| + 1 − f̃β (|�k| + μ5)

p0
f + μ + |�k|

]
ū(p f )t aγ μP+γ0t bγ νu(pi )Ū+(q f )t bγν�̄+t aγμU+(qi )

+ G2

2

∫
d3k

(2π )3

[
f̃β (|�k| + μ5)

p0
f − μ5 − |�k| + 1 − f̃β (|�k| − μ5)

p0
f − μ5 + |�k|

]
ū(p f )t aγ μP−γ0t bγ νu(pi )Ū+(q f )t bγν�̄+t aγμU+(qi ), (A19)

in the same limit. The total one-loop amplitude is given by the sum of Eqs. (A17) and (A19): M(1) = M(1a) + M(1b).
In the present study, we are interested only in the vicinity of the “Fermi surface” defined for the right-handed fermion with

μ5 > 0. Namely, we assume that the initial- and finial-state light fermions satisfy the kinematics of (p0, | �p|) = (0, μ5) for the
right-handed fermion while (p0, | �p|) = (2μ5, μ5) for the left-handed fermion (pμ stands for pμ

i and pμ

f collectively), due to the
Dirac equation. Thus, upon this assumption, M(1) reads

M(1) ≈ G2

2

∫
d3k

(2π )3

[
1 − f̃β (|�k| − μ5)

μ5 − |�k| + f̃β (|�k| + μ5)

μ5 + |�k|

]
ūR(p f )t at bγ0uR(pi )Ū+(q f )t at bU+(qi )

+ G2

2

∫
d3k

(2π )3

[
1 − f̃β (|�k| + μ5)

μ5 − |�k| + f̃β (|�k| − μ5)

μ5 + |�k|

]
ūL(p f )t at bγ0uL(pi )Ū+(q f )t at bU+(qi )

+ G2

2

∫
d3k

(2π )3

[
f̃β (|�k| − μ5)

μ5 − |�k| + 1 − f̃β (|�k| + μ5)

μ5 + |�k|

]
ūR(p f )t at bγ0uR(pi )Ū+(q f )t bt aU+(qi )

+ G2

2

∫
d3k

(2π )3

[
f̃β (|�k| + μ5)

μ5 − |�k| + 1 − f̃β (|�k| − μ5)

μ5 + |�k|

]
ūL(p f )t at bγ0uL(pi )Ū+(q f )t bt aU+(qi ). (A20)

When we choose μ5 > 0 and assume its value is large compared to the temperature T , but small enough so that MQ → ∞ limit
is justified, the terms including 1/(|�k| + μ5) or f̃β (|�k| + μ5) in Eqs. (A17) and (A19) can be neglected. Hence, we find that M(1)

is reduced to

M(1) ≈ G2

2

∫
d3k

(2π )3

1 − f̃β (|�k| − μ5)

μ5 − |�k| ūR(p f )t at bγ0uR(pi )Ū+(q f )t at bU+(qi )

− G2

2

∫
d3k

(2π )3

f̃β (|�k| − μ5)

|�k| − μ5

ūR(p f )t at bγ0uR(pi )Ū+(q f )t bt aU+(qi )

+ G2

2

∫
d3k

(2π )3

1

μ5 − |�k| ūL(p f )t at bγ0uL(pi )Ū+(q f )t bt aU+(qi ). (A21)
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This expression clearly shows that the transition amplitude of the left-handed fermion is not affected by the Fermi surface, as
naively anticipated. Then, by defining E = |�k| − μ5 for the first line in Eq. (A21), while E = μ5 − |�k| for the second line, we
find

M(1) ≈ −G2

2
ρ0

∫ ∞

−μ5

dE
1 − f̃β (E )

E
ūR(p f )t at bγ0uR(pi )Ū+(q f )t at bU+(qi )

+ G2

2
ρ0

∫ ∞

−μ5

dE
f̃β (−E )

E
ūR(p f )t at bγ0uR(pi )Ū+(q f )t bt aU+(qi )

+ G2

2

∫
d3k

(2π )3

1

μ5 − |�k| ūL(p f )t at bγ0uL(pi )Ū+(q f )t bt aU+(qi ), (A22)

where we have replaced the density of states by that on the
Fermi surface, ρ0 = μ2

5/(2π2), since we assumed a hierarchy
of MQ(→ ∞) � μ5 � T .

By using a relation f̃β (−E ) = 1 − f̃β (E ) and the identities

(t at b)kl (t
at b)i j = N2 − 1

4N2
δklδi j − 1

N
(t a)kl (t

a)i j,

(t at b)kl (t
bt a)i j = N2 − 1

4N2
δklδi j − 2 − N2

2N
(t a)kl (t

a)i j,

(A23)

finally we arrive at

M(1) ≈ G2

2

Nρ0

2

∫ ∞

−μ5

dE
1 − f̃β (E )

E

×ūR(p f )t aγ0uR(pi )Ū+(q f )t aU+(qi )

+G2

2

∫
d3k

(2π )3

1

μ5 − |�k|
×ūL(p f )t at bγ0uL(pi )Ū+(q f )t bt aU+(qi ), (A24)

which yields Eq. (14).

APPENDIX B: MEAN-FIELD APPROACH FOR KONDO
EFFECT AT FINITE μ

In this Appendix, in order to compare the Kondo effects at
finite μ and μ5, we show the phase diagram at finite μ using
the same formalism as those in the main text. In the upper
panel of Fig. 6, we show the μ-μ5 phase diagram of 
R. In the
region with large μ and/or μ5, we find the appearance of the
Kondo phase with nonzero 
R. Note that, in the region with
large μ + μ5, 
R is suddenly suppressed and becomes zero,
but this behavior is an artifact from the ultraviolet cutoff, as
mentioned in the main text. Therefore we cannot conclude the
true physics in this region, which is beyond the scope of this
model. As shown in the lower panel of Fig. 6, in the region
with large μ but small μ5, we find that 
L is also enhanced.
This behavior indicates that the “usual” Kondo effect induced
by only finite chemical potential is realized, where both the
right-handed and left-handed condensates contribute to the
Kondo effect (namely, 
R ≈ 
L).

APPENDIX C: ORDER OF PHASE TRANSITION
AT FINITE T

As shown in Sec. III D, at zero temperature, the value
of the Kondo condensate is exponentially suppressed as μ5

decreases. On the other hand, when a nonzero temperature
is switched on, the transition is transformed into the second-
order phase transition.

FIG. 6. μ-μ5 phase diagram of Kondo condensate 
R(L) at T =
λ = 0 using G̃ = 2/�2

cut and N = 3. (Top) 
R. (Bottom) 
L . Van-
ishing 
R in the large μ + μ5 region is a model artifact.
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FIG. 7. μ5 dependence of specific heat CV at T/�cut = 5 × 10−6

and 5 × 10−5.

A second-order phase transition is characterized by the
discontinuous behavior of a susceptibility (the second deriva-
tive with respect to a parameter) near the transition region.
Here, in order to check the phase transition for the Kondo
condensate at finite temperature, we investigate two types of
susceptibilities.

First, we investigate the specific heat defined as CV ≡
−T ′ ∂2

∂T ′2 �(T ′, μ5; 
R(L) )|μ5,T ′=T at a fixed temperature T ,
where the thermodynamic potential �(T, μ5; 
R(L) ) is given
by Eq. (29). As shown in Fig. 7, we find a discontinuous
behavior of CV between the normal phase at low μ5 and the
Kondo phase at high μ5. This discontinuity indicates that
the transition at μ5 �= 0 and T �= 0 is second order. Note
that the entropy density [s ≡ − ∂

∂T ′ �(T ′, μ5; 
R(L) )|μ5,T ′=T ] is
confirmed to be a continuous function for all μ5. We also note
that the discussion at finite μ5 is the same as the transition of
the Kondo condensate at finite μ [12,16].

Second, we also investigate the Kondo susceptibility for the
Kondo condensate 
R defined as

χ
R ≡ − ∂2

∂h2
R

�̃(T, μ5; 
R(L) )

∣∣∣∣
hR=0

, (C1)

FIG. 8. μ5 dependence of Kondo susceptibility χ
R at T/�cut =
0, 5 × 10−6 and 5 × 10−5.

where we put the minus sign in order for χ
R to be positive.
In this expression, �̃(T, μ5; 
R(L) ) is the thermodynamic po-
tential in the presence of an external field hR(L) for the Kondo
condensate, which is obtained by the modified Lagrangian

L̃MF ≡ LMF +
∑

i=R,L

[hi�̄v (1 + p̂ · γ )ψi + H.c.], (C2)

where LMF is defined as Eq. (23).
The resultant μ5 dependence of the Kondo susceptibility

at zero and finite temperatures is shown in Fig. 8. This figure
shows that, at zero temperature, χ
R monotonically decreases
as μ5 increases. On the other hand, when a temperature is
switched on, χ
R has a sharp peak at nonzero μ5, which
clearly shows that the phase transition is of second order. Note
that, because it is difficult to numerically obtain the curve for
T = 0 in Fig. 8, we plotted an approximate analytic solution

χ
R|T =0 ≈ 4

G̃

(
π2

NG̃μ2
5

− 1

)
, (C3)

which is obtained under an assumption of 
R 	 μ5,�cut as
in Eq. (31).
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