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Understanding the transition from paroxysmal to persistent atrial fibrillation
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Atrial fibrillation (AF) is the most common cardiac arrhytmia, characterized by the chaotic motion of electrical
wavefronts in the atria. In clinical practice, AF is classified under two primary categories: paroxysmal AF, short
intermittent episodes separated by periods of normal electrical activity; and persistent AF, longer uninterrupted
episodes of chaotic electrical activity. However, the precise reasons why AF in a given patient is paroxysmal
or persistent is poorly understood. Recently, we have introduced the percolation-based Christensen-Manani-
Peters (CMP) model of AF which naturally exhibits both paroxysmal and persistent AF, but precisely how these
differences emerge in the model is unclear. In this paper, we dissect the CMP model to identify the cause of
these different AF classifications. Starting from a mean-field model where we describe AF as a simple birth-
death process, we add layers of complexity to the model and show that persistent AF arises from reentrant
circuits which exhibit an asymmetry in their probability of activation relative to deactivation. As a result, different
simulations generated at identical model parameters can exhibit fibrillatory episodes spanning several orders of
magnitude from a few seconds to months. These findings demonstrate that diverse, complex fibrillatory dynamics
can emerge from very simple dynamics in models of AF.
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I. INTRODUCTION

Atrial fibrillation (AF) is the most common cardiac ar-
rhythmia with a growing prevalence worldwide [1]. It is char-
acterized by the rapid, irregular beating of the atria, caused
by the chaotic motion of electrical wavefronts. This lack of
coordinated contraction may allow blood to clot, making AF
the leading cause of ischaemic stroke in people over 75 years
of age [2].

Despite over 100 years of extensive research, the mecha-
nisms underlying the initiation and maintenance of AF are still
poorly understood [3–8]. There are numerous controversies
and conflicts in AF research, primary of which is the question
of whether AF is driven and sustained by local (spatially
fixed) sources of new fibrillatory waves, or whether AF is self-
sustaining from the interaction and fragmentation of multiple
meandering electrical wavelets in the atria [4,6,8]. Although
this dispute is yet to be resolved, recent evidence appears to
strengthen the case for local drivers as the primary mechanism
of AF [5,9–18].
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Questions concerning the underlying mechanism of AF are
of particular importance because they inform potential treat-
ment strategies. Historically, treatment for AF has focused on
mitigating potential symptoms and lowering the risk of stroke
through the use of rate control, and anti-arrhythmic drugs [19].
However, these treatments do not “cure” AF. Surgical ablation
strategies have been developed to destroy, or isolate, the
regions of atrial muscle thought to be responsible for initiating
and sustaining AF [8]. If local drivers are responsible for AF,
then ablating the focus of these drivers may terminate and
prevent AF. If meandering wavelets underlie AF, then ablation
strategies which minimise the space wavelets can move into
may be preferable. Although the leading ablation strategy,
pulmonary vein isolation [20], has a success rate of around
60%, ablation still fails in a large subset of patients and AF
reoccurs in many patients who were initially free of AF after
surgery.

One of the key factors determining the likelihood of ab-
lation success is the fraction of time a patient spends in AF
[8]. Clinically, AF is defined as paroxysmal if episodes are
short and self-terminating. Conversely, long, uninterrupted
AF episodes are referred to as persistent. In general, patients
are much more likely to be free of AF after ablative treatment
if AF is paroxysmal. The success rate is around 60% for
paroxysmal AF while it is 40% for persistent AF after a three
year follow-up [21]. Recurrence rates are also significantly
higher for persistent AF after an initially successful treatment.
However, why a patient exhibits paroxysmal or persistent AF
is unclear. In many cases paroxysmal AF will develop into
persistent AF, but reversion to paroxysmal AF after years of
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persistent AF has also been observed [22]. Additionally, of the
patients who initially exhibit paroxysmal AF, many develop
persistent AF rapidly (after a few months), but others do not
progress at all over several years [23].

The progression of AF from paroxysmal to persistent is of-
ten associated with the idea that “AF begets AF,” most notably
in the goat model [24], but also with some evidence in human
AF [25]. During AF, the atria undergo electrophysiological
and structural changes which promote the progression of AF.
Among these changes, the accumulation of fibrosis is a key
factor in determining a patient’s susceptibility to AF [26–28].
Fibrosis is also critical for the formation of reentrant circuits
that drive AF [14,16,27]. The emergence of a reentrant circuit
begins when the regular propagation of electrical wavefronts
is disrupted by unidirectional blocks. These blocks leave an
opening for the conduction to reenter back from adjacent
muscle fibers [14,29]. When the atria accumulate fibrosis, the
distribution of gap junctions between fibers becomes highly
anisotropic, that is, adjacent fibers become less and less cou-
pled. In this scenario, the reentering conduction is less likely
to be obstructed by refractory atrial muscle cells (myocites),
finding the appropriate conditions for initiating a spatially
stable circuital conduction (i.e., a reentrant circuit) which
drives AF. However, the relationship between the absolute
fibrosis burden in the atria and the persistence of AF is not
clear—two patients with an equivalent fibrosis burden may
have drastically different heart rhythms (e.g., sinus rhythm
versus paroxysmal AF versus persistent AF) [23].

In this paper, our aim is to better understand the rela-
tionship between AF persistence and the atrial microstructure
using computational modeling. Computer models are a well
established tool in cardiac electrophysiology, allowing for a
range of experimental investigations that are not possible in
a clinical, or laboratory setting. There are a wide variety of
model types pitched at different scales and levels of complex-
ity [30]. Highly detailed, biophysical models focus on pre-
cisely modeling the exchange of ions across cardiomyocyte
gap junctions to study the propagation of action potentials
across topologically realistic cardiac tissue. However, the
resolution of these models is often not ideal and they typi-
cally assume continuous cardiac tissue. Conversely, simplified
discrete models focus on understanding the microstructure
of cardiac tissue and how this effects the propagation of
electrical wavefronts. The former are typically preferable
when studying what effect a prospective drug might have on
AF [30,31], whereas the latter are most often used to study
the effect of discontinuous tissue that might arise from the
accumulation of fibrosis [29,32,33]. The latter also have the
benefit that their simplicity allows for much larger simulations
suited to statistical analysis [18,34,35], both in the duration
of individual simulations and the resolution of phase spaces
which can be generated.

Previously, we have introduced the Christensen-Manani-
Peters (CMP) model of AF, a simple percolation-based model
that investigates how the formation of reentrant circuits is
dependent on the decoupling of neighboring muscle fibers,
through the action of fibrosis or otherwise [29]. The model is
not a fully realistic representation of the atria and it does not
consider the precise evolution and propagation of action po-
tentials across the atrial tissue. However, the model effectively

demonstrates from basic principles how reentrant circuits can
form if fibrosis accumulates in sufficient quantities in a given
local area. Additionally, adaptations of the CMP model to
3D [18] and to a realistic atrial topology based on a sheep
heart [36,37] have been successful at explaining a number
of key clinical results and have generated a number of new
hypotheses. This includes the distribution of reentrant circuits
in the atria, notably in the pulmonary vein sleeves and the
atrial appendages, the appearance of reentrant circuits as both
reentrant and focal sources, and the increased probability of
ablation failure as AF becomes more persistent. Machine
learning has been applied to the model to test prospective
methods for automated reentrant circuit detection from elec-
trogram data [34], and other models inspired by the CMP
approach have been used to study the heart rhythm of patients
following a heart transplant [33].

Consistent with clinical knowledge, the CMP model has
shown that two tissues with the same total fibrosis burden
may exhibit very different forms of AF [38]—at the same
level of coupling, different simulations may exhibit sinus
rhythm, paroxysmal AF, persistent AF, or persistent AF before
reverting to paroxysmal AF, see Sec. IV. This is because the
formation of reentrant circuits appears to be dependent on
the local distribution of fibrosis, not the total fibrosis burden
across the atria [38]—this is in line with other computational
studies on the effect of fibrosis on AF persistence [39].
Despite these intriguing results, it is so far unclear how the
variability in AF persistence arises from the specific processes
taking place at the microscopic scale in the CMP model.
Hence, the aim of this paper is to dissect the CMP model
into its constituent parts to understand which parts of the
model microstructure are responsible for the progression from
paroxysmal to persistent AF.

A detailed overview of the CMP model will be given in
Sec. II, however, the key constituent elements include the lat-
tice representing the atrial tissue, nodes representing individ-
ual muscle cells (or a block of cells), locations susceptible to
unidirectional conduction block (where the propagating signal
has a small probability of extinguishing), and lattice bonds
representing the electrical connections between neighboring
nodes. The reentrant circuits that form in the CMP model
are spatially stable, but temporally intermittent—they can turn
on and off as a result of local conduction blocks. This has
similarities to the self-regenerating renewal process proposed
by others to explain cardiac fibrillation, where fibrillation
is driven by the continuous birth and death of temporally
intermittent drivers [40].

To dissect the CMP model, we first remove all spatial ele-
ments of the model. We do this by deriving a mean-field (MF)
model where AF is described by a set of particles, representing
critical structures which, when active, correspond to reentrant
circuits, evolving as a simple birth-death process. Our results
indicate that the MF model significantly underestimates the
probability of inducing AF relative to the CMP model, and
that the MF model does not explain the emergence of persis-
tent AF.

At a second level of abstraction, we reintroduce the spatial
components of the model, but carefully control the reentrant
circuits that form by inhibiting the interaction of multiple suc-
cessive conduction blocks (within the same activation cycle).
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Like the MF model, this controlled version of the CMP model
(cCMP) also underestimates the probability of inducing AF
and the time in AF. However, the spatial elements of the cCMP
model do not appear to make a difference to the absolute
time spent in AF relative to the MF model. Only very small
differences in the time in AF are observed between the MF and
cCMP models, explained by small differences in the duration
of individual fibrillatory events.

Finally, we show that the difference in the probability of
inducing AF and the persistence of AF between the cCMP and
CMP models can be explained by a series of complex reen-
trant circuits that exhibit an assymetry between the probability
of activating and deactivating. These circuits have a special
property that they require fewer successive conduction blocks
to initiate fibrillation than are needed to terminate fibrillation.
We also demonstrate that in some cases several of these struc-
tures are coupled together such that the termination of one
reentrant circuit immediately activates a dormant neighboring
structure. These mechanisms result in a spectrum of individual
fibrillatory events spanning several orders of magnitude from
seconds to months.

In the remainder of the paper, we outline the CMP model
and review key results including previous work on the per-
sistence of AF. Subsequently, we introduce the MF model
and the cCMP model and explain why both these models
underestimate the time spent in AF and the persistence of AF
relative to the original CMP model. Finally, we put the CMP
model and our results into a wider context and discuss their
potential clinical impact, the limitations of our approach, and
outline proposals for future work.

II. THE CMP MODEL

A. Model definition

The atrial muscle consists of tubiform cells (myocytes)
of length �x′ ≈ 100 μm and diameter �y′ = �z′ ≈ 20 μm
[41,42]. Myocytes are mainly connected longitudinally, com-
posing discrete fibers that sporadically connect transversally.
The Christensen-Manani-Peters (CMP) model condenses this
branching network of anisotropic cells into an L × L square
lattice of nodes [29]. A node represents a single (or mul-
tiple) atrial cell(s). Nodes are longitudinally connected to
their neighbours with probability ν‖ = 1 and transversally
with probability 0 � ν⊥ � 1. This creates long arrangements
of nodes, mimicking the protracted, interlaced fibers in the
atrium. This simplified representation of the myocardial archi-
tecture captures the anisotropic distribution of gap junctions
[41]. Furthermore, it reproduces the dynamics of electrical
impulses which mainly propagate longitudinally (along single
muscle fibers) rather than transversally (across multiple fibers)
[34]. A cylindrical topology is obtained by applying open
boundary conditions longitudinally and periodic boundary
conditions transversally.

Nodes follow a well defined electrical cycle characterized
by three different states: resting (a node that can be excited),
excited, or refractory (after exciting, the node cannot be
excited for the next τ time steps). This course mimics the
membrane potential of real myocardial cells. At a given time
t , an excited node prompts the neighboring resting nodes

FIG. 1. (a) Propagation of the wave of excitation across a small
region of the CMP lattice. Nodes are connected longitudinally with
probability ν‖ = 1 and transversally with probability 0 � ν⊥ � 1.
Excited nodes (white squares) continue the propagation of the wave-
front by activating their neighboring resting nodes (black squares)
before entering into a refractory state (grayscale squares with yellow
borders) for the next τ time steps. Depending on the architecture of
the region, the excitation can proceed forward, backward and across
fibers. (b) The full progression of a node through the three states of
the electrical cycle: resting (black), excited (white), and refractory
(grayscale with yellow borders).

to become excited at time t + 1. An excited node at time t
enters into a refractory state at time t + 1. The duration of the
refractory period is τ time steps; see Fig. 1.

In the CMP model, a fraction δ of nodes are susceptible to
conduction block. These nodes are identified at the beginning
of a simulation and are fixed in space. The probability that
nodes that are susceptible to conduction block fail to excite is
arbitrarily set to ε = 0.05; the effect of varying this parameter
is discussed in Sec. II C. This probability of failure refers to
the probability that a node susceptible to conduction block
will not excite when prompted to do so by a neighboring active
node. This leaves us with a very simple framework in which
the fraction of transversal connections, ν⊥, and the fraction
of nodes that are susceptible to conduction block, δ, serve
as control parameters. For simplicity, we set δ = 0.01 and
examine how the behavior of the system varies with ν⊥. The
effect of changing δ is demonstrated in Sec. IV and has been
investigated in Ref. [43].

The pacemaker (sinus node) is placed on the left side of
the two-dimensional (2D) sheet and nodes lying on this edge
regularly excite every T time steps. The excitation propagates
as a planar wavefront, mimicking the coordinated contrac-
tion of the real atrial muscle. The parameters of the CMP
model reflect clinical observations of real human atrial tissues
[14,41,42,45–47]. Clinical measurements are translated into
model parameters, followed by a coarse-graining procedure
leading to a square lattice of size L = 200 nodes, pacemaker

023311-3



ALBERTO CIACCI et al. PHYSICAL REVIEW RESEARCH 2, 023311 (2020)

period of T = 220 time steps, and refractory period of a
node of τ = 50 time steps. A single time step in the model
corresponds to approximately 3 ms such that T = 660 ms and
τ = 150 ms. This refractory period is relatively short and cor-
responds to what may be seen clinically during burst pacing.
The dynamics of the model are maintained under changes of
τ , but the transition from sinus rhythm to fibrillation takes
place at a different point in the coupling phase space. The
longer (shorter) the refractory period, τ , the smaller (larger)
the coupling value, ν⊥, needs to be to induce AF [43].

The CMP model reveals that reentrant circuits may emerge
due to a combination of the electrical signal propagating
on the branching structure of a heart muscle network, the
three-state dynamics of nodes, and the occurrence of nodes
susceptible to unidirectional conduction block. These latter
nodes may fail to excite in response to an excited neighbor
with small probability ε, stopping the regular propagation of
the wavefront [29]. The wave of excitation proceeds forwards
in the adjacent fiber until it reaches a transversal connec-
tion, leaking back through the fiber in which conduction has
been previously blocked. For reentrant circuits to emerge,
the segment between the reentry point and the node that has
previously failed to excite must be long enough to prevent the
backward propagating wave from being stopped by unrespon-
sive refractory nodes. This happens when the probability of
transverse connections decreases, for example, due to fibrosis.
In the CMP model the formation of reentrant circuits triggers
AF. These activities survive until the circuital motion of the
wavefront is annihilated by a subsequent conduction block
occurring within the path of the circuit (i.e., self-termination)
or by other waves spreading from the neighboring regions;
see Fig. 2. For full activation maps see Ref. [29]; snapshots
are shown in Appendix D with accompanying videos.

Note, in the CMP model nodes are coupled with probabil-
ity ν⊥ across the whole tissue. However, in the real atrium
only a small patch of fibrosis may be necessary to decouple
fibers and induce a reentrant circuit. Such small patches of fi-
brosis may be too small to see using current MRI technologies
[48], inhibiting effective treatment.

B. Theoretical CMP model results

The CMP model allows us to analytically compute the risk
of developing AF with respect to the fraction of transversal
connections ν⊥, as shown in Ref. [29]. The risk is defined as
the likelihood that the L × L grid has at least one region that
can host a simple reentrant circuit. The probability of having
at least one transversal link on a given node is

pν⊥ = 1 − (1 − ν⊥)2. (1)

Let � be the distance (in number of nodes) between a node
that is susceptible to conduction block and the first node to
the right which has at least one transversal connection. By
making use of Eq. (1), we find that the probability of � being
equal to k nodes is

P (� = k) = (1 − pν⊥ )k pν⊥ . (2)

A given region cannot sustain a reentrant circuit if � is strictly
smaller than τ/2; see Fig. 2. The likelihood of this event can
be calculated by summing over the probabilities of � from 0

FIG. 2. The formation of a reentrant circuit in the CMP model.
The node that is susceptible to conduction block is marked by a red
square. (a) An incoming planar wavefront (green arrows) reaches the
susceptible node. (b) The node fails to excite (red cross), blocking
the progression of the wavefront in the lower fiber. The wavefront
advances in the upper fiber, reaching the node with a transversal
connection to the lower fiber. (c) At this point, the wavefront spreads
both longitudinally and transversally, initiating a retrograde propa-
gation through the lower fiber. (d) If the path denoted by the black
segment includes at least τ/2 nodes, then the reentering wavefront
will not encounter refractory nodes while propagating backward in
the lower fiber. This establishes a structural (i.e., spatially stable)
reentrant circuit in the region surrounded by the blue rectangular
box. When the conduction blocking node fails to fire again, the
reentrant circuit is terminated. The full evolution of this critical struc-
ture is shown in the Supplemental Material with an accompanying
video [44].
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to τ/2 − 1,

P (� < τ/2) =
τ/2−1∑

j=0

(1 − pν⊥ ) j pν⊥ = 1 − (1 − ν⊥)τ . (3)

Because the average number of nodes that are susceptible to
conduction block is δL2, the risk, R, of having at least one
region that can host a reentrant circuit is the complementary of
the probability that the segments departing from these nodes
are shorter than τ/2,

R = 1 − [P (� < τ/2)]δL2 = 1 − [1 − (1 − ν⊥)τ ]δL2
. (4)

Equations (1)–(4) have been derived in Ref. [29]. Equation
(4) provides a simple analytical tool to estimate the risk
of developing AF in the CMP model. The result indicates
that the risk of AF increases as the tissue becomes more
decoupled/fibrotic, in agreement with the current clinical
understanding [49]. Likewise, the theory predicts that the
risk of fibrillation increases as the size of the atrial tissue
increases, in agreement with clinical practice where left atrial
volume is used as a predictor of the risk of developing AF
[50]. The theoretical analysis presented here has additional
value in that we can predict how the model will change if the
rules or parameters are changed, allowing for a comparison
with similar computational models of AF. This is discussed in
detail in Sec. V.

This theoretical result builds on the assumption that reen-
trant circuits form from the failure of a single conduction
blocking node. However, this assumption does not account
for all instances in which AF is triggered in the model. For
instance, the probability of triggering a reentrant circuit varies
across the lattice depending on the architecture of the hosting
region; see Fig. 3. Notably, some reentrant circuits may only
activate if two nodes susceptible to conduction block fail
successively (i.e., in a single activation cycle).

These details indicate that the CMP theory represents an
ideal case for AF driven by simple reentrant circuits only. The
theory assumes that if a simple circuit exists, the tissue spends
100% of the time in AF. Therefore, the theory curve sets a
limit on the maximum time the model can spend in AF due to
simple circuits only.

C. Model behavior

Local regions that are capable of hosting reentrant circuits
are called critical structures; see Fig. 2. A critical structure
is active (inactive) when it hosts (does not host) a reentrant
circuit. In the CMP model, critical structures are classified
according to the complexity of their activation and deactiva-
tion mechanisms. Structures which can activate and terminate
from the failure of a single conduction blocking node from
sinus rhythm are referred to as simple. This includes cases
where a critical structure contains multiple conduction block-
ing nodes, but only one must fail to allow for the formation of
a reentrant circuit. All other configurations in which the planar
wavefront from sinus rhythm requires multiple conduction
blocks to fail to form a reentrant circuit are referred to as
complex. The latter class includes critical structures that are
only triggered by waves of excitation not originating from

FIG. 3. Critical structures in the CMP model. The black seg-
ment on top of each structure represents the minimum distance (in
number of nodes) between the relevant conduction blocking node
(red squared border) and the first regular node to the right which
has at least one transversal connection for the structure to sustain
a reentrant circuit. The wavefront direction is indicated by the green
arrows. (a, b) Simple critical structures are triggered by a single block
of the incoming planar wavefront originating from sinus rhythm.
These structures might include multiple nodes that are susceptible
to conduction block, increasing the probability of self-termination.
(c–f) The activation of complex critical structures requires a se-
quence of conduction blocks of the planar wave front or waves
of excitation not originating from sinus rhythm. The probability of
triggering these regions is much smaller than in panels (a, b). (c) The
presence of at least one transversal connection departing from the
conduction blocking node makes the activation more difficult as this
node must fail to excite twice before prompting a reentrant circuit.
(d) This structure cannot be triggered from sinus rhythm but it can be
triggered by a single block of a wave of excitation originating from
elsewhere. (e, f) The activation of these structures requires multiple
blocks of the planar wavefront to occur in different nodes. Examples
of the evolution of each structure are shown in the Supplemental
Material with accompanying videos [44].

sinus rhythm (proceeding from right to left on the lattice); see
Fig. 3(d).

For large values of ν⊥, the model is in sinus rhythm indef-
initely. The high number of transversal connections excludes
the presence of regions that are critical for AF initiation and
preservation as there are no sections of length �τ/2 without a
transverse connection. When ν⊥ decreases, for example due
to increasing fibrosis [51], we observe a more pronounced
branching structure of the lattice which favours the sponta-
neous emergence of structures that can host reentrant circuits.
This increases the risk of developing AF.

When ν⊥ is sufficiently small, increasing δ extends the
time the system spends in AF. This occurs because a
larger fraction of nodes are susceptible to conduction block
and this increases the number of regions that can host a
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reentrant circuit. However, the sensitivity of the system to
the fraction of conduction blocking nodes, δ, rapidly vanishes
as ν⊥ increases, suggesting that weak branching prevents the
formation of critical structures independent of the fraction
of nodes that are susceptible to conduction block [43]. The
probability that a conduction blocking node fails to excite, ε,
does not significantly influence the relationships between ν⊥
and the fraction of time the system spends in AF [43]. This
implies that ε is mainly used to set the timescale of the model.
More precisely, for simple reentrant circuits, we note that ε

does not appear in the derivation of the risk of AF in Eq. (4).
This is because ε effects both the probability that a simple
reentrant circuit activates and deactivates. If ε is reduced, then
it will, on average, take longer for a simple reentrant circuit
to activate. However, once active, that reentrant circuit will
take longer to de-activate than the equivalent circuit with a
larger value of ε. That means that ε determines the duration
of paroxysmal AF episodes and the time between paroxysmal
AF episodes, but has a minimal effect on the overall risk of AF
in the CMP model. Likewise, ε has no effect on the period of
any simple reentrant circuits formed. However, if circuits exist
with an asymmetry between the probability of activation and
deactication, ε may play a role in the duration of individual
fibrillatory events.

The length of the refractory period, τ , sets the minimum
distance between the conduction blocking node and the first
regular node to the right which has at least one transversal
connection for the structure to sustain a reentrant circuit, see
Figs. 2 and 3. Given a fixed value of δ, lowering τ increases
the number of regions that can host reentrant circuits, increas-
ing the time the system spends in AF.

In the CMP model, the system is defined to have entered
AF if the number of active nodes per time step a(t ) exceeds
1.1 × L (220) nodes for T consecutive time steps,

pAF
CMP(t ) =

{
1 if min([a(t − T ), . . . , a(t )]) � 220,

0 otherwise,
(5)

where t can take integer values in the range t = T, . . . , S and
S is the duration of the experiment (in time steps) [52]. We
use Eq. (5) to study how the probability of inducing AF varies
with the amount of coupling ν⊥ and compare this statistic with
its theoretical estimations; see Eq. (4). Note, Eq. (5) gives a
working definition of AF in the CMP model and was derived
by inspection in previous work [29,38,43].

The definition used here is not unique and is not robust
against changes in the pacing frequency T . The definition is
designed to measure whether nodes in the model are activated
more frequently than would be expected in sinus rhythm. This
is based on the principle that if nodes are being activated at a
rate higher than the pacing rate, then there must a source of
fibrillatory wavefronts other than the sinus node. A superior
method would be to measure the average activation frequency
of nodes relative to the pacing frequency explicitly, rather
than the number of active nodes, since this would be more
robust against changes in T . However, to be consistent with
previous work we use the existing definition in the current
paper. We stress that for fixed T , the two methods give
almost identical results. Both methods compare well with a
clinical definition of AF where AF is diagnosed from ECG or

FIG. 4. Phase diagram of the probability of inducing AF as a
function of the fraction of transversal connections ν⊥. The violet line
represents the theoretical risk curve; see Eq. (4). For each value of
ν⊥, we perform 200 simulations of the CMP model and compute the
average probability of inducing AF (black square); see Eq. (5). The
duration of each simulation is S = 106 time steps. For both the model
and the theory, we observe that the system never (always) develops
AF for ν⊥ � 0.2 (ν⊥ � 0.1). Within this interval, the probability of
developing AF rapidly increases as ν⊥ is lowered. For any value of
ν⊥ between 0.1 and 0.2, the probability of inducing AF in the CMP
model (black) is always higher than in the CMP theory (violet).

electrogram recordings; see Appendix C. We do not generate
electrograms as standard in the CMP model since this signifi-
cantly increases the computational burden of the simulations.
Additionally, we do not explicitly distinguish between AF and
atrial tachycardia (AT) in the CMP model; see Appendix E for
further details.

The probability of inducing AF in simulations of the CMP
model is systematically higher than in the CMP theory, see
Fig. 4. These findings are somewhat surprising since the CMP
theory assumes the most favourable conditions for the emer-
gence of AF from simple reentrant circuits only. We assert
that this excess could be explained by the fact that reentrant
circuits in the CMP model might have multiple mechanistic
origins that are not accounted for in the CMP theory. Fur-
thermore, the CMP theory assumes that reentrant circuits are
triggered by single unidirectional conduction blocks, that is,
AF is exclusively driven by simple critical structures; see
Fig. 3.

To better understand the discrepancy between theory and
experiment, we look at the trace of the number of active nodes
in the model. AF is paroxysmal when this statistic exhibits
large fluctuations which prevent it from stabilizing above the
AF threshold, i.e., the number of active nodes frequently falls
below 220 nodes with only short periods of high frequency
activity. AF is persistent when the number of active nodes
consistently exceeds the AF threshold for extended periods
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FIG. 5. The number of excited nodes per time step a(t ) (black thin line) and its moving average 〈a(t )〉 calculated over T = 220 successive
time steps (red solid line) in eight different simulations of the CMP model. All simulations are generated with identical model parameters.
The coupling value is set at ν⊥ = 0.11. The system is in AF when the number of excited nodes per time step exceed 220 (blue dashed line)
for at least T time steps. The figure demonstrates the broad spectrum of AF persistence that naturally emerges in the CMP model, from
(a) sinus rhythm, through (b–g) various forms of paroxysmal AF, to (h) fully persistent AF. The figures exhibit a range of different event
times, and asymmetries between the period of time in and out of AF. Subfigures (b, e, h) are dominated by short, intermediate, and long AF
events respectively. Subfigures (f, g) exhibit an interplay between short and intermediate, and intermediate and long event times respectively.
These figures demonstrate that complex behavior can emerge at the model macrostructure from specific details at the model microstructure,
independent of the parameters of the model.

of time. If AF in the model has a unique mechanistic origin,
then we would expect tissues at the same level of coupling
to exhibit statistically similar behaviors in the number of the
active nodes over time. However, we find that this is not
the case—there is significant heterogeneity among systems
characterized by the same parameters, e.g., the amount of
uncoupling, or the fraction of conduction blocking nodes.

In Fig. 5 all tissues are generated using the same param-
eters, with ν⊥ = 0.11. Tissue (a) remains in sinus rhythm
indefinitely. Tissue (b) remains mostly in sinus rhythm, with
rare fibrillatory events on the order of 103 time steps in the
model. In real time, these events are on the order of 1 s. It is
plausible that clinically, such short events may be interpreted
as an ectopic beat rather than AF. From tissue (c), through
to tissue (g), we observe a spectrum of AF persistence. This
includes short frequent events in tissue (c), rare intermediate
events in tissue (d), frequent intermediate events in tissue (e), a
combination of short and intermediate events in tissue (f), and
long events with brief interruptions in tissue (g). Only in tissue
(h) do we see a permanent transition from short paroxysmal
AF, to persistent AF. The event shown in tissue (h) is on the
order of 30 min when converting to real time. Repeating those
simulations where persistent AF appears to last until the end
of the simulation, these simulations are extended to 109 time
steps without the simulation reverting to sinus rhythm. In real

time, these events are on the order of 1 month. For practical
reasons, we have not investigated events on timescales longer
than 109 time steps. Note, that for visual clarity, the example
chosen in Fig. 5(h) is driven by a single dominant driver which
may be defined as AT rather than AF. However, in most cases,
persistent activity is maintained for long time periods with the
presence of multiple competing drivers, see Appendix D for
an example.

The variability in the persistence of AF in the CMP model
has been studied previously in Ref. [38]. The authors focused
on the relationship between the amount of uncoupling in the
lattice (i.e., ν⊥) and the features of the developed AF in 32
independent experiments. In agreement with clinical observa-
tions [23,53], they report high degrees of heterogeneity in the
progression to persistent AF and in the amount of uncoupling
required for AF to emerge. Similarly to Fig. 5, they observe
very different AF patterns across systems characterized by
the same amount of uncoupling, asserting that the emergence
of reentrant circuits is subject to the local distribution of
transversal connections, not the global amount of coupling,
i.e., ν⊥. However, the authors do not satisfactorily explain how
and why different AF patterns emerge from the microstructure
of the CMP model.

The findings presented in Figs. 4 and 5 provide two im-
portant pieces of evidence against the assumption that AF
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is exclusively driven by simple reentrant circuits. First, they
show that the probability of inducing AF is systematically
higher in the CMP model than in the CMP theory; see Fig. 4.
Second, they reveal different activation patterns do not appear
consistent with simple structures activating and deactivat-
ing with fixed rates. Individual events exhibit a spectrum
of lifetimes before reverting to sinus rhythm, from seconds
to months. This motivates us to assess whether different
mechanistic origins of AF are effectively present in the CMP
model and how they eventually relate with the progression to
persistent AF from paroxysmal AF.

In the following sections, we take up these challenges by
removing layers of complexity from the CMP model. This
allows us to derive simpler frameworks in which we can
examine whether reentrant circuits have different mechanistic
origins and how the features of these activation processes
influence the development of AF.

In Sec. III, we start with the simplest approach by removing
all the spatial elements of the CMP model. This is done by
condensing the CMP model into a mean-field (MF) model
in which complex critical structures and interactions between
reentrant circuits (i.e., wave collisions) are neglected. This
simple framework allows us to study AF under the assumption
that fibrillation is exclusively driven by independently acti-
vated simple reentrant circuits. We show that the MF model
systematically underestimates the probability of inducing AF
and the persistence of AF.

In Sec. IV we dissect this discrepancy by reintroducing the
spatial elements of the CMP model while carefully controlling
the placement of nodes susceptible to conduction block. This
prevents the formation of complex critical structures. The
main advantage of this controlled CMP model (cCMP) over
the simpler MF model is that it allows us to quantify how
different activation mechanisms contribute to AF emergence
and maintenance. Like the MF model, the cCMP model
underestimates the probability of inducing AF and the persis-
tence of AF with respect to the CMP model. However, the
cCMP model does not increase the time in AF relative to
what is found in the MF model with the exception of very
small fluctuations explained by differences in individual event
times.

Finally, we confirm that the difference in the probability
of inducing AF and the persistence of AF between the CMP
and cCMP models stems from the contribution of complex
reentrant circuits which exhibit an asymmetry between the
probability of activating and deactivating a reentrant circuit.
These complex structures may only require a single failure
from a conduction blocking node to initiate, but multiple
failures to terminate, resulting in long individual event times.
Additionally, these structures may be coupled as part of a
larger critical structure such that the termination of a reen-
trant circuit anchored to a specific substructure immediately
initiates a new reentrant circuit in a coupled substructure.
We demonstrate these mechanisms explicitly and show that
as the probability that a node is susceptible to conduction
block is lowered, the spatial density of conduction blocking
nodes falls to the extent that multiple failing nodes are not
required for the termination of a reentrant circuit. As a result,
the time the CMP and cCMP models spend in AF collapse
onto a single curve. This demonstrates that an increase in

the local density of conduction blocking nodes is highly
proarrhythmic.

III. MEAN-FIELD MODEL OF AF

In the CMP model, critical structures activate and deac-
tivate to sustain AF. Initially, the system is in sinus rhythm
as planar waves of excitation released from the sinus node
(pacemaker) propagate on the lattice. The motion of the
planar waves is disrupted now and then by conduction blocks
occurring across the grid. At some point in time, a conduc-
tion block forms the initial reentrant circuit. This reentrant
circuit cannot maintain AF indefinitely because it will either
self-terminate or be terminated by waves spreading from the
surrounding regions. However, its circuital motion intensifies
the model activity, generating disorganized, high-frequency
activation wavefronts that spread across the lattice. When the
system enters this state, nonplanar waves of excitation spread-
ing from the active reentrant circuit reach dormant critical
structures at a much higher frequency than the pacemaker
waves. This initiates a chain of asynchronous activations and
deactivations of different critical structures located across the
lattice, protracting the current AF episode until the complete
disappearance of reentrant circuits brings the system back to
sinus rhythm.

In the CMP model, it is unclear whether these interactions
between simple critical structures are the only drivers of AF.
In particular, the results discussed in Figs. 4 and 5 motivate
us to examine whether other activation mechanisms drive AF
and how differences between paroxysmal and persistent AF
emerge. The simplest approach to this problem is to derive
a framework in which fibrillation is solely driven by inde-
pendently activated simple reentrant circuits and to compare
AF-related statistics against the CMP model.

To do so, we translate the features of the CMP lattice into
a simple mean-field (MF) model of AF in which N particles
independently turn on and off. For a one-to-one comparison,
the number of particles, N , is directly observed from the
number of simple critical structures present in the CMP lattice
at a given level of coupling. The fact that simple critical
structures are characterized by a few well defined architectural
features allows us to systematically inspect the grid and detect
each region falling into this category.

In the MF model, the system is represented by a simple
Markov chain. At a given time t , the state of the chain is
the number of active particles Na(t ), such that t : Na(t ) =
{0, 1, . . . , N}. When Na(t ) = 0, the system is defined as being
in sinus rhythm where any existing critical structure has a
chance to be triggered every T time steps (pacemaker fre-
quency). However, Na(t ) � 1 is defined as the MF model ex-
hibiting AF. In this case, the length of active reentrant circuits
sets the frequency (in time steps) at which inactive critical
structures can be triggered. For the sake of simplicity, we
assume that particles have the same length 〈�〉 corresponding
to the average length (in number of nodes) of the simple
critical structures tracked across the CMP lattice. At any time
step, inactive particles activate with rate p and active particles
deactivate with rate q; see Fig. 6.

Activation rates change depending on the state of the
system, mimicking the fact that the presence of at least one
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FIG. 6. The CMP model is condensed into a mean-field (MF)
model of AF. (a) Simple critical structures are mapped into particles
which can take two distinct states: active (i.e., hosting a reentrant
circuit, blue path) or inactive. We enforce the following assumptions:
(i) the location (spatial positioning) of a particle is irrelevant, (ii) all
particles activate with rates ε/T when the system is in sinus rhythm
and ε/〈�〉 when the system is in AF, (iii) all particles deactivate with
rate ε/〈�〉, (iv) all particles have the same length 〈�〉, and (v) particles
can change their states at any time step. (b) Simple critical structures
(black filled rectangles) found in the CMP lattice are condensed into
particles (black filled circles). (c) The evolution of the MF system is
driven by N independent particles that activate and deactivate with
probability p and q, respectively, depending on the current state of
the particle and the system.

reentrant circuit significantly increases the frequency at which
dormant critical structures can be triggered. It follows that p
and q are given by

p =
{ ε

T , if Na = 0,
ε

〈�〉 , if Na > 0,
(6a)

q = ε

〈�〉 . (6b)

The probability Pi, j of transitioning from i to j active
particles is analytically derived,

Pi, j =
min{i,N−i}∑

k=0

B(i, k, q)B(N − i, j − i + k, p) if j � i,

(7a)

Pi, j =
min{i,N−i}∑

k=i− j

B(i, k, q)B(N − i, j − i + k, p) if j < i,

(7b)

where B(N, k, r) = (N
k )rk (1 − r)N−k is the binomial distribu-

tion yielding the probability of getting exactly k successes in
N trials when the probability of success is r [43].

This simple model allows us to calculate the same AF-
related statistics that one can compute in simulations of the
CMP model. For instance, we can easily adapt Eq. (5) to the
MF model,

pAF
MF(t ) =

{
1 if Na(t ) � 1,
0 otherwise,

(8)

where t = 1, . . . , S and S is the duration of the experiment
(in time steps). In addition, we are interested in measuring the
time the system spends in AF as a function of the amount of
coupling ν⊥. In the MF model, this statistic corresponds to the
ratio between the number of time steps in which at least one
particle is active and the duration of the experiment,

T AF
MF = S−1

S∑
t=1

pAF
MF(t ). (9)

By taking a continuous approximation and deriving a mas-
ter equation, a full analytic solution can be derived for the
fraction of time the model spends in AF,

T AF
cMF = 1 − p̃(0) = 2N − 1

2N + p/p0 − 1
, (10)

where p0 is the probability of activating a particle when Na =
0, and p̃(0) is the probability that no particles are active; see
Appendix A for the derivation. Equation (10) indicates that
the fraction of time spent in fibrillation approaches 1 only
when N → ∞. However, for finite N , the fraction of time in
AF is finite. In the case of N = 2, T AF

cMF = 0.405, whereas for
N = 10, T AF

cMF = 0.996. While the N = 10 case may explain
very long individual events, for the examples shown in Fig. 5
at ν⊥ = 0.11, the average value of N is approximately 3, see
Appendix E, giving T AF

cMF = 0.614. Hence, the persistent AF
observed in Fig. 5(h) is not explained by the simple birth-
death–like dynamics of simple reentrant circuits underlying
the continuous and discrete MF models.

For convenience, given the discrete nature of fibrillatory
events and our interest in the probability of inducing fibrilla-
tion within a given time frame, we choose to use the discrete
version of the MF model as described above for the remainder
of the paper.

In the MF model, the spatial elements of the CMP model
are neglected to prevent the potential formation of reentrant
circuits from collisions between multiple waves of excitation.
Furthermore, the correspondence between the numbers of
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FIG. 7. Phase diagram of the time in AF as a function of the
fraction of transversal connections, ν⊥, for the CMP (black) and MF
(blue) models. For each value of ν⊥ we perform 200 simulations
of the CMP model and measure the time in AF over S = 106 time
steps, see Eq. (11). For each simulation of the CMP model we
derive the associated MF model, see Fig. 6, and compute the time
in AF according to Eq. (9). The time the system spends in AF is
significantly higher in the CMP model (black) than in the MF model
(blue). Sharp transitions in the time in AF occur around the threshold
values ν∗

⊥ ≈ 0.11 (CMP, black dashed line) and ν∗
⊥ ≈ 0.09 (MF, blue

dashed line).

simple critical structures and system particles excludes any
eventual contribution from complex critical structures. The
number of tracked simple critical structures reflects, to a good
extent, the key architectural properties of the CMP lattice,
namely, the amount of coupling, i.e., ν⊥, and the fraction
of nodes that are susceptible to conduction block, i.e., δ.
Pegging the number of particles to the number of simple
critical structures allows us to calibrate the MF model with
the CMP model.

To compare the MF model with the CMP model, we define
the time in AF for the CMP model equivalently to Eq. (9),

T AF
CMP = S−1

S∑
t=1

pAF
CMP(t ). (11)

The MF model spends significantly less time in AF than
the CMP model; see Fig. 7. This may be because the ne-
glected spatial features of critical structures, such as different
lengths and asynchronous activation and deactivation, have a
significant role in AF emergence and maintenance. However,
an enhanced version of the MF model, see Appendix B,
reintroduces these omissions and indicates that these changes
have no noticeable effect of the time the MF model spends
in AF. Alternatively, higher order structures may exist which
provide an additional contribution to the time in AF in the
CMP model.

IV. EMERGENCE OF COMPLEX CRITICAL STRUCTURES

A. The controlled CMP model

The problem of detecting the variety of activation mech-
anisms and disentangling their roles in the patterns of AF
can be approached in two ways. We may attempt to devise a
detection algorithm to identify all simple and complex critical
structures located across the lattice and assess their contri-
bution to the phase diagrams in Fig. 7. However, the wide
variety and complexity of these structures poses a significant
challenge with no easy method to verify that all circuits have
been detected.

A more straightforward approach involves deliberately
constructing simple reentrant circuits by controlling the place-
ment of conduction blocking nodes across the lattice, referred
to as the controlled CMP model (cCMP). For simplicity, we
achieve this by identifying the isolated segments of length
�τ/2 in the lattice and note which nodes in the segment,
if susceptible to conduction block, would form a simple
reentrant circuit consistent with those simple structures shown
in Fig. 3. A fraction δ of these nodes are set to be susceptible
to conduction block. All other nodes are not susceptible to
conduction block. This leads to a special CMP lattice in
which AF is driven by simple reentrant circuits only since
conduction blocking nodes are only found in simple critical
structures and not across the lattice as a whole.

To compare the cCMP and CMP models, we make a copy
of the cCMP lattice and randomly place conduction blocking
nodes across the lattice as a whole with probability δ—this
model is equivalent to the regular CMP model. We simulate
the two models and compare the probability of inducing AF
and the time in AF. In this scenario, the eventual differences
in AF related statistics quantify the contribution of complex
critical structures to AF persistence and maintenance.

The probability of inducing AF and the time in AF are sig-
nificantly higher in the CMP model than in the cCMP model;
see Fig. 8. This indicates that local regions with complex ac-
tivation dynamics (e.g., multiple conduction blocks) provide
a tangible contribution to AF emergence and maintenance.
However, the cCMP and MF models do not show a significant
difference in the time spent in AF, with the exception of small
fluctuations above and below the critical coupling value, ν∗

⊥.
The small differences between the MF and cCMP models

can be understood as a consequence of the interaction between
multiple active critical structures. By definition, the MF and
cCMP models contain the same number of potential critical
structures (or particles), N . In the MF model, particles activate
independently of any other particles (with the exception of
changes in the absolute rate of activation). Conversely, in
the cCMP model high frequency waves emitted from a given
reentrant circuit may suppress the activation of new reentrant
circuits. Therefore, at low ν⊥ < ν∗

⊥ where there are many
simple critical structures, the time spent in AF is slightly
higher in the MF model than in the cCMP model since the
presence of multiple simultaneous reentrant circuits is not
suppressed in the MF model; see Appendix E.

In the reverse case at ν⊥ > ν∗
⊥, the cCMP slightly exceeds

the MF due to slight differences in the rules of activation and
deactivation. More precisely, a critical structure only has one
opportunity to activate, or deactivate, in a given pacing cycle
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FIG. 8. Phase diagrams of (a) the probability of inducing AF
and (b) the time in AF as a function of the fraction of transversal
connections, ν⊥, for the CMP (black), cCMP (red), and MF (blue)
models. Both statistics are significantly higher in the CMP model
than in the cCMP and MF models. The probability of inducing AF
is the same in both the cCMP and MF models since the number of
particles in the MF model is taken from the cCMP model. Hence,
if the cCMP has at least one critical structure, then the MF model
also has at least one particle. For both the cCMP and MF models,
the probability of a structure/particle activating approaches 1 as the
simulation time is extended. The time in AF in the MF model is
slightly higher than in the cCMP model for ν⊥ � 0.1. In contrast,
the cCMP model marginally overtakes the MF model for ν⊥ � 0.1,
see Appendix E. Sharp transitions in the time in AF occur around
the threshold values ν∗

⊥ ≈ 0.11 (CMP, black dashed line), ν∗
⊥ ≈ 0.10

(cCMP, red dashed line), and ν∗
⊥ ≈ 0.10 (MF, blue dashed line).

with probability ε in the cCMP model. However, particles can
activate in the MF model every time step with probability ε/T .
This results in the cCMP model spending marginally longer
in AF if the number of potential simple reentrant circuits is
small; see Appendix E.

B. Critical structures with asymmetric activation

Since the spatial components of the CMP model do not
account for the difference in the time spent in AF between
the MF and CMP models, we note that the only remaining
difference between the cCMP and CMP models is the distribu-
tion of conduction blocking nodes. By construction, the cCMP
and CMP models contain the same number of simple critical
structures. Therefore, some higher order critical structures
must exist which rely on conduction blocking nodes which
cannot form critical circuits by themselves, but which enhance
the time spent in AF.

Returning to Fig. 5, we draw particular attention to
Figs. 5(b), 5(c), 5(d), and 5(f). In Fig. 5(b), we see an
isolated number of very short events. Given the duration of
the observed AF events, let us assume these dynamics are
driven by a simple reentrant circuit. With T = 220, τ = 50
and ε = 0.05, the time for a single inactive reentrant circuit
to activate is approximately 4400 time steps. Similarly, once
active, the time for a single active reentrant circuit to deac-
tivate is approximately 1000 time steps. This implies that, on
average, from a single simple reentrant circuit we expect to see
a transition from sinus rhythm to fibrillation and back to sinus
rhythm in approximately 5400 time steps. For a simulation
lasting 106 time steps, this suggests a single simple reentrant
circuit might generate on the order of ∼185 individual fibrilla-
tory events. Such behavior is visible in Fig. 5(c), but Fig. 5(b)
only exhibits five events during this time span. This suggests
that, although the probability of an active reentrant circuit
terminating is consistent with the presence of a simple reen-
trant circuit, the probability of activating a reentrant circuit
is significantly suppressed. This implies the critical structure
present in Fig. 5(b) requires multiple successive failures of
conduction blocking nodes to activate, but only one to fail
once active for the circuit to terminate. Examples of complex
structures with these properties are described in Fig. 3.

We now consider Fig. 5(d) where we observe a small
number of isolated fibrillatory events similar to those shown
in Fig. 5(b), implying the presence of a limited number of
reentrant circuits. However, unlike Fig. 5(b), the lifetimes
of individual fibrillatory events in Fig. 5(d) are signficantly
longer than the ∼1000 time steps predicted for a single simple
reentrant circuit. This suggests that the reentrant circuit in
Fig. 5(d) has both a suppressed activation rate, and a sup-
pressed deactivation rate relative to a simple reentrant circuit.
In these cases, multiple reentrant circuits must fail simultane-
ously for fibrillation to be terminated, extending the lifetime
of individual episodes. If we assume that the reentrant circuit
in Fig. 5(d) requires two successive failures for the circuit
to terminate, then this would imply an average fibrillatory
event duration of ∼20 000 time steps. This demonstrates that
a range of different reentrant circuits can exist, at the same set
of model parameters, which result in a spectrum of AF event
durations.

023311-11



ALBERTO CIACCI et al. PHYSICAL REVIEW RESEARCH 2, 023311 (2020)

FIG. 9. The formation of a complex reentrant circuit with asym-
metric activation and deactivation rates. (a) An excitation (white cell,
not from sinus-rhythm) emerges from below the part of the CMP
lattice in question, and propagates in the direction indicated by the
green arrows. (b) The excitation is terminated by two conduction
blocking nodes (red crosses), but the excitation successfully con-
tinues to the left of the lattice region. Refractory cells are shown
in grayscale with a yellow border. (c, d) The excitation branches to
the adjacent fiber, propagates to the right, and branches back to the
lower fiber forming a reentrant circuit (blue box). (e–h) The reentrant
circuit is terminated from four successive failures of conduction
blocking nodes. Hence, this complex circuit requires two failures to
initiate and four failures to terminate, resulting in long, persistent
AF episodes. The full evolution of this structure is shown in the
Supplemental Material with an accompanying video [44].

The example given in Fig. 5(d) requires two successive
(in the same activation cycle) failures of conduction blocking
nodes. However, we observe that in some cases, such as
Fig. 5(h), activity persists for durations approaching 106 time
steps. For fibrillatory events to last this duration, circuits
must form which require more than two successive failures
of conduction blocking nodes to terminate.

Inspecting the CMP model, we identify two structural
mechanisms by which reentrant circuits can form with asym-
metric activation rates such that the probability of entering
AF exceeds the probability of returning to sinus rhythm once
AF has been initiated. The two mechanisms are as follows:
(1) Self-contained critical structures where the number of cell
failures required to initiate the structure is less than the num-
ber of failures required to terminate the structure. An example
of such a structure is shown in Fig. 9. (2) Coupled critical
structures whereby a fiber can be shared between multiple
possible adjacent substructures such that when a reentrant
circuit has formed, its termination immediately initiates a new
reentrant circuit in a neighboring fiber. Depending on the
structures coupled, these circuits can require a vast number
of cell failures for the activity to be terminated and for sinus

FIG. 10. The coupling of multiple reentrant circuits such that
the termination of one circuit immediately activates a secondary
circuit. This coupled behavior suppresses the probability that activity
terminates in the CMP model. Colours as described previously. (a) A
wavefront enters a region of the CMP model from sinus rhythm.
(b–f) Two successive failures of conduction blocking nodes result
in the initiation of a reentrant circuit in the lower two fibers. (g)
Activity propagating through the top fiber is blocked by the failure
of a conduction blocking node. (h, i) The failure of both conduction
blocking nodes in the central fibers allows the wavefront to reenter
the top fiber, forming a new reentrant circuit. In this process, the
termination of the initial reentrant circuit has initiated a secondary
reentrant circuit, rather than restoring sinus rhythm. In total, two
cell failures initiated the reentrant activity, but activity has not been
terminated after three additional cell failures. The full evolution
of this structure is shown in the Supplemental Material with an
accompanying video [44].

rhythm to be restored. An example of such a structure is
shown in Fig. 10.

In Fig. 9, a critical structure is initiated (not from sinus
rhythm), which requires the successive failure of two conduc-
tion blocking nodes to activate. However, once active, four
successive failures are required to terminate the reentrant cir-
cuit. This is because even if a single conduction blocking node
fails to excite, secondary pathways exist such that reentry
can move around the conduction blocking region unimpeded.
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FIG. 11. A simulation of the CMP model for 109 time steps at
ν⊥ = 0.05. Persistent AF is maintained throughout the simulation.
Converted into real time, this corresponds to an AF event of at least
1 month in duration.

Only if all secondary pathways are blocked does the circuit
terminate.

In Fig. 10, individual critical structures are coupled by
sharing common segments. While an individual fiber may
not have a higher probability of activation than termination,
the coupled structures have the property that if one struc-
ture is terminated from a succession of conduction blocks,
one of the coupled critical structures in the adjacent fibers
can immediately initiate. Note, the probability of any of the
substructures terminating is not fixed. Some critical structures
may require only one cell failure to terminate, whereas other
structures may persist in the presence of multiple successive
cell failures. Through the inspection of many instances of the
CMP model, there does not appear to be any clear limit to
how many individual subregions can be coupled together in
such a way that the termination of a given substructure doesn’t
initiate a new reentrant circuit. If a large enough number of
critical structures are coupled, and if some of those critical
structures have asymmetric activation rates as shown in Fig. 9,
then individual fibrillatory events can become, to all practical
purposes, indefinite. In a sample of one hundred simulations at
very low coupling, ν⊥ = 0.05, every simulation is observed to
enter AF, and of those simulations, not a single case returns to
sinus rhythm within 106 time steps. Such observations suggest
that, particularly at low coupling, coupled structures with very
low termination probabilities dominate the CMP model.

To emphasise the extent to which these mechanisms can
enhance the probability of persistent AF, Fig. 11 shows the
number of active cells for a simulation which requires a small
number of conduction blocks to activate, but at least five
successive failures to terminate. In such situations, fibrillation
can be maintained for durations in excess of 109 time steps.
This indicates that with simple dynamics and rules, the CMP
model is capable of exhibiting fibrillatory events which, if

FIG. 12. Phase diagrams for the probability of inducing AF in
the CMP model (black) and the cCMP model (red) as a function of
the coupling probability, ν⊥. Each subfigure is for a different value
of δ, the fraction of nodes that are susceptible to conduction block.
In general, the figures indicate that reducing δ reduces the risk of
AF. This is consistent with the theoretical risk shown in Eq. (4).
Additionally, the figures indicate that as δ is reduced, the excess
risk of entering AF in the CMP model relative to the cCMP model
reduces until both the CMP and cCMP models collapse onto the
same curve. This indicates that at high δ, the density of conduction
blocking nodes in the lattice is sufficiently high such that complex
reentrant circuits, see Figs. 9 and 10, have a noticeable contribution
to the risk of entering AF in the CMP model. However, as the density
of conduction blocking nodes is reduced, the probability that two
conduction blocking nodes are sufficiently close to form a complex
reentrant circuit becomes vanishingly small. As a result, the risk of
entering AF is dominated by simple reentrant circuits that require
only a single cell failure to induce AF. Consequently, the risk of
entering AF in the model coincides with the cCMP risk where all
critical structures are simple reentrant circuits.

converted into real time, can span anywhere from seconds to
months for the same set of model parameters.

A common feature in the complex critical structures we
have identified is that their activation and deactivation relies
on the failure of multiple conduction blocking nodes within a
small critical region. This suggests that the formation of these
structures should be dependent on the local density of conduc-
tion blocking nodes, δ. In Fig. 12 we plot the phase diagrams
for the probability of inducing AF in the cCMP and CMP
models at different values of δ. As δ increases (decreases) the
spatial density of conduction blocking nodes in the cCMP and
CMP models increases (decreases). Figure 12 demonstrates
that at large δ, the CMP model is significantly more likely
to enter AF than the cCMP model. However, this difference
disappears as the spatial density of conduction blocking nodes
is lowered. This indicates that the dominant contribution to
the difference in the probabilities of inducing AF comes from
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these special reentrant circuits with asymmetric activation and
termination rates as opposed to the simple case shown in Fig. 2
where only one failure is required to initiate and terminate a
reentrant circuit.

V. THE CMP MODEL IN CONTEXT

The CMP model is a discrete, cellular automaton model
of AF where the myocardium is treated as a discrete struc-
ture. Discrete models of AF have a long history in cardiac
electrophysiology modeling, including the first quantitative
computational study on AF by Moe et al. [54]. Despite
their popularity in the early days of computational cardiac
electrophysiology, in recent years, reaction-diffusion models,
where the myocardium is treated as a continuum, have super-
seded discrete models in popularity [30,31]. However, discrete
models have remained popular specifically for studying how
the accumulation of fibrosis in the atria effects the initiation
and maintenance of AF. In our opinion, such studies are partic-
ularly important because, although existing reaction-diffusion
models on a continuous myocardium are highly effective at
simulating functional reentry and testing the effect of prospec-
tive pharmacological treatments, without discontinuities in
the microstructure of the myocardium, these models cannot
effectively study the emergence of microanatomical reentry
where reentry is not functional, nor anchored to macroscopic
lesions in the tissue.

Dynamics in discrete models of AF are either modelled
as a discrete rule-based process, corresponding to a cellular
automaton, or using the reaction-diffusion equations typically
used in continuous models of cardiac electrophysiology. In the
original Moe model [54], dynamics were simulated using a
cellular automaton on a hexagonal lattice. Moe et al. focus on
studying the role of spatial inhomogeneity in the action po-
tential duration (the refractory period), and how the degree of
inhomogeneity effects the emergence of turbulent propagation
in AF, supporting the multiple wavelet hypothesis previously
proposed by Moe in Ref. [55]. However, the paper predomi-
nantly focuses on the maintenance of AF with initiation being
induced from a burst pacing protocol. Additonally, although
the myocardium is treated as discrete, neighboring nodes in
the model are not explicitly decoupled (simulating the action
of fibrosis), as is done in the CMP model. As a result, although
the work by Moe et al. was pivotal in giving a theoretical
explanation for AF maintenance from the multiple wavelet
hypothesis, the lack of discontinuities in the microstucture
of the simulated myocardium means that the model does not
consider the initiation of AF from microanatomical reentry as
is done in the CMP model.

The more recent discrete models of AF have, on the
whole, included discontinuities in the microstructure of the
simulated myocardium [35,56–58]. Of particular interest to
the CMP model is the work by Alonso and Bär [56] where
the authors study the emergence of AF from the accumulation
of fibrosis in a local region of the myocardium and across the
myocardium as a whole. In particular, the authors associate
the risk of inducing AF with the approach from above of the
site (or bond) occupation probability towards the percolation
threshold, and more specifically, how the probability of reen-
try is associated with the emergence of insulating clusters of

fibrosis with a linear dimension greater than a critical value
φ. This result is in line with our recent work on the three-
dimensional extension of the CMP model where we discuss
how the formation of insulating clusters effects the dynamics
of transmural reentry and the emergence of simulataneous
focal breakthrough drivers and reentrant drivers [36]. These
results are important for the understanding of microanatom-
ical reentry in AF because they explicitly associate local
decoupling in the myocardium with the emergence of local
drivers in AF, giving a plausible explanation for why, when
the density of fibrosis is too high, local ablation may struggle
to successfully terminate AF. Alonso et al. have also extended
their model to three dimensions to study how the thickness
of tissue effects the probability of AF initiation as fibrosis
accumulates [57]. Additionally, the authors investigate how
reentrant dynamics in fibrotic regions may explain the com-
plex fractionated atrial electrograms observed clinically near
infarct regions. Similar results have been observed in other
simple discrete models studying the reentry dynamics that
emerge from specific fibrosis patterns [59].

The primary difference between the work by Alonso and
Bär and our work on the CMP model is the methodology
for simulating dynamics on the myocardium. The CMP is
a cellular automaton with discrete rule-based propagation
of action potential. Contrastingly, Alonso and Bär keep the
reaction-diffusion model framework common in other models
of cardiac electrophysiology, simulating the propagation of
action potentials using the Fenton-Karma model [60]. The
Fenton-Karma model is a relatively simple phenomenological
model for simulating wavefront propagation on cardiac tissue
focused on qualitatively reproducing the collective behavior
of key ion channels. This neglects much of the detail present
in more complex reaction-diffusion models [30], although
unlike the CMP model, the Fenton-Karma framework does
account for action potential and conduction velocity restitu-
tion. While the importance of action potential and conduction
velocity restitution is well established for functional reentry,
it is not absolutely clear how important these features are to
the emergence of microanatomical reentry. In general, both
features are known to be proarrhythmic, so the exclusion
of these features in the CMP model gives credence to the
idea that AF can emerge due to the accumulation of fibrosis
only, without the need for additional proarrhythmic features.
However, we acknowledge that despite this, the omission of
these features does limit the CMP model to qualitative, rather
than quantitative predictions, although this is a limitation
also acknowledged by Ref. [56] when using simple reaction
diffusion models like the Fenton-Karma model.

One of the benefits of omitting rate dependent effects in the
CMP model is that the simplicity of this framework allows for
an in depth analytical treatment of the risk of AF initiation
as a function of the density of fibrosis in a local region. A
result of such an analytical treatment is that, although we do
not include action potential or conduction velocity restitution,
the theoretical form of risk of inducing AF does allow us to
predict how the CMP model would behave if these features
were included. We can rewrite the risk of inducing AF as a
function of a parameter γ ,

R = 1 − [1 − (1 − ν⊥)τ ]δL2 = 1 − γ δL2
, (12)
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where γ = 1 − (1 − ν⊥)τ , corresponding to the probability
that a reentrant circuit does not exist at specific lattice site
in the CMP model. The exponent δL2, the average number
of conduction blocking nodes, indicates that the risk of AF
is dependent on the tissue dimensions and the susceptibility
of nodes to conduction block. From Eq. (12), it is clear
that maximizing the risk of AF is achieved by minimizing
γ , which in turn is achieved by minimizing ν⊥ and/or τ .
Noting that ν⊥ is a probability bounded by 0 � ν⊥ � 1, and
excluding the cases of a fully coupled or uncoupled lattice, an
increase (decrease) in the coupling value, �ν⊥, can always be
canceled out by a decrease (increase) in the refractory period,
�τ , and vice versa, such that there is no change in the risk
of inducing AF. That means that for any refractory period,
given a sufficiently small (nonzero) value for ν⊥, it is always
possible to induce AF in the CMP model.

Recall that in the CMP model, a reentrant circuit is induced
from sinus rhythm in a local region from a single sinus
wavefront. However, as noted previously, a change in the
coupling value �ν⊥, and likewise the local coupling value,
can be counteracted by a suitable change in the refractory
period τ . That means that reducing the coupling value in a
local region is equivalent to fixing the coupling value and
reducing the refractory period, corresponding to action po-
tential restitution. Likewise, rather than explicitly simulating
action potential restitution, the equivalent effect is observed
by reducing the coupling value ν⊥.

Although the CMP model in its current form does not ex-
plicitly introduce spatial heterogeneity in ν⊥, individual bonds
in the model are filled probabilistically meaning that in a local
region, the actual coupling value ν̃⊥ will be fluctuate around
ν⊥ with standard deviation σ (ν⊥). Consequently, regions with
a local coupling value below the average are more likely
to harbour a reentrant circuit than other local regions, and
these regions will dominate the fibrillatory dynamics in the
CMP model as previously shown in Refs. [38,43]. Explicitly
introducing spatial heterogeneity in the coupling values would
not change these results, but rather, would only change the
value of σ (ν⊥) and the resulting local coupling value ν̃⊥.
Note, that this implies that if the spatial heterogeneity is
increased, the probability of regions with particularly low
coupling relative to the mean increases, and hence, since these
low coupling regions dominate the risk of fibrillation, higher
spatial heterogeneity in the accumulation of fibrosis will result
in a greater risk of inducing fibrillation. This argument is
consistent with the results of another discrete model of AF by
Kazbanov et al. [58] where the authors study the initiation of
AF in fibrotic conditions following similar methods to those
applied in Ref. [56]. The authors demonstrate that AF risk
increases with spatial heterogeneity and they also note that
the regions which dominate the risk of AF induction are those
with the minimal local coupling value.

A similar argument regarding the role of spatial hetero-
geneity in the fibrosis distribution can be applied to con-
duction velocity restitution. In the model, γ is written as a
function of the refractory period τ rather than the refractory
wavelength λ(τ, v) = τv, where v is the conduction velocity,
since in the cellular automata framework the conduction ve-
locity is 1 node per time step. However, if variable conduction
velocity were included in the CMP model, then we can

rewrite the probability of a reentrant circuit not existing as
γ = 1 − (1 − ν⊥)λ = 1 − (1 − ν⊥)τv . Written in this form, it
is clear that reducing the conduction velocity has an equivalent
effect on the risk of forming a reentrant circuit as reducing the
refractory period.

In summary, although the CMP model does not include
several important details of cardiac electrophysiology, such
as action potential restitution, conduction velocity restitution,
and spatial heterogeneity in fibrosis, the simplicity of the CMP
framework allows an analytical treatment that suggests how
these more complex features would effect the probability of
forming reentrant circuits. We find that both action potential
and conduction velocity restitution increase the probability of
forming a reentrant circuit.

Apart from aiding in the derivation of analytical results,
simulating dynamics in the CMP model using a rule-based
cellular automata framework has significant computational
efficiency benefits that enable the study of rare events in
cardiac electrophysiology that may only take place clinically
on the timescale of hours to days as highlighted in another
recent cellular automata model [35]. This includes studying
the transitions between paroxysmal and persistent AF which
we focus on here. While there is interest in studying these
dynamics in detailed, biophysical reaction diffusion mod-
els using realistic topologies, these models cannot feasibly
study fibrillation dynamics over long enough timescales to
investigate these questions. More precisely, the simulations
described in this manuscript last for up to 109 time steps,
corresponding to approximately a month in real time. Such
timescales are out of reach for current biophysically detailed
reaction-diffusion models, struggling to exceed 60 s in real
time [35].

Despite these benefits, it is critically important to stress
that the efficiencies of the CMP model come with significant
limitations and as such, the results of the CMP model are prin-
cipally valuable for generating new hypotheses to be tested in
more complex models of fibrillation, or to be tested clinically.
The results presented should be understood qualitatively; the
event durations presented do not necessarily reflect the events
that would be observed in a clinical case of AF.

The key limitations of the CMP model include the follow-
ing: (1) The use of a square 2D lattice restricting the degrees
of freedom in which excitations can move. In the case of fluid
flow, it is known that a square lattice is not able to conserve
vorticity in lattice-boltzmann simulations and that a hexagonal
lattice is preferable [61]. This is partially responsible for
the inability of the CMP model to maintain fibrillation with
spiral-wave reentry. Adapting the CMP model to a hexagonal
lattice to enable spiral-wave reentry is currently underway. (2)
A number of electrotonic effects are excluded including APD
and CV restitution, and the formation of alternans, beat to beat
fluctuations in the length of the action potential. It is not clear
whether alternans may effect the initiation and maintenance of
reentrant circuits. (3) The fibers in the CMP model lie along
the same axis, with cells perfectly coupled within a given fiber.
In real atrial tissue, fibers meander with complex orientations.
This may effect how neighboring reentrant circuits interact.
Note, the use of a real atrial fiber structure has been applied
to the CMP model in Ref. [36]. (4) The extended simulations
in the CMP model do not consider the role of electrical or
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structural remodelling. Given that some of the simulations in
the CMP model represent approximately 1 month in real time,
clinically we may expect to observe extensive remodelling in
the myocardium, although that is neglected in the CMP model.
The role of structural remodelling is, to an extent, considered
in Ref. [38]. Despite these limitations, investigations into the
persistence of AF arising from the initiation and termination
of microanatomical reentrant circuits are, to the best of our
knowledge, wholly novel to the CMP model.

VI. DISCUSSION, CONCLUSION, AND OUTLOOK

The persistence of AF is one of the key factors determining
the likelihood of a successful ablation [8]. However, at a
microstructural level, it is not clear what determines whether
a patient will exhibit paroxysmal or persistent AF [22,23].
Better understanding the causes of persistent AF may, in the
future, improve the success rate of ablation or inspire new
potential treatment methods.

The CMP model is a simple, percolation-based model of
AF where reentrant circuits form when adjacent muscle fibers
decouple [29]. The model is not a fully realistic representa-
tion of atrial electrophysiology. However, the model, and its
extensions, have offered explanations for a number of key
observations from clinical AF research. This includes the
diversity of AF persistence at comparable levels of fibrosis
[38], the distribution of reentrant circuits in the left and
right atria [36], and the observation that reentrant circuits
preferentially form near the endocardium (inner heart wall)
rather than the epicardium (outer heart wall) in paroxysmal
AF [14,18]. Additionally, the 3D extension of the CMP model
suggests a natural explanation for the lowering success rate of
ablation as AF becomes more persistent [36]. Despite these
findings, the precise dynamics at the microscopic level of the
CMP model were not fully elucidated—until now it was not
clear how the model is capable of showing the full diversity
of AF persistence.

In this paper, we have focused on better understanding the
microscopic dynamics of the CMP model, specifically with
the aim to understanding which microscopic interactions are
responsible for the emergence of persistent AF. By disecting
the model into its constituent parts, we have shown how the
formation of complex reentrant circuits, which have a large
probability of activating, but a significantly smaller prob-
ability of terminating, accounts for the difference between
the CMP model and the MF/cCMP models. Once activated,
these drivers exhibit a wide spectrum of AF event lifetimes
from, in real time, a few seconds to months. This spectrum
reflects the broad range of AF subtypes exhibited by the model
at the same model parameter values, from paroxysmal to
persistent AF.

To identify the emergence of persistent reentrant circuits,
we first derived a mean-field model of AF, neglecting the
spatial components of the model and interactions between
coexisting drivers. Mean-field approaches are well established
in physics for simplifying the study of high dimensional ran-
dom processes [62]. These models have been used extensively
across numerous interdisciplinary field including in the study
of epilepsy in neuroscience [63–65]. Given the qualitative
similarities between epilepsy and cardiac fibrillation, it is

surprising that mean-field models are not widely used in
computational cardiac electrophysiology.

Our mean-field model demonstrates that the essential fea-
tures of AF remain if spatial structure and driver interactions
are neglected. However, the mean-field model significantly
underestimates the time spent in fibrillation relative to the
CMP model, and it does not explain the emergence of per-
sistent AF. Only by reintroducing spatial structure can these
observations be explained.

Reintroducing spatial structure in the controlled CMP
model where we carefully control the initiation of simple reen-
trant circuits, we have shown that the density of conduction
blocking nodes plays a key role in the time the CMP model
spends in AF. At high densities, the CMP model spends sig-
nificantly more time in AF than the cCMP model. However,
as the density of conduction blocking nodes is reduced only
simple structures, like those found in the cCMP model, can
form in the CMP model. As a result, the time in AF converges
for the cCMP and CMP models.

It is important to stress that the results presented here are
for a highly simplified physics model of AF. The scope of the
CMP model is highly specific, focusing on the emergence of
reentrant circuits from the accumulation of fibrosis in the atria.
We use cellular automata in our modeling approach which
limits the realism of the dynamics in our model, but which
recent research has suggested may be preferable to detailed
continuous models when studying the effects of local hetero-
genity in the cardiac microstructure [32], e.g., due to fibrosis.
The model is both structurally and topologically simplified—
we do not account for variation in fiber orientation (as in
Ref. [18]), nor do we consider the real topology of the atria
(as in Ref. [36]). Additionally, we do not consider variations in
the action potential which are present in models which study
the ionic currents across gap junctions [30].

However, the value of such a simple model should not be
underestimated. Cellular automata are very computationally
efficient, allowing for a statistical analysis not easily achieved
in more complex models. Likewise, the model has very few
key parameters, with reentrant circuits emerging, and the
diversity of AF persistence being explained, by the variation
in a single coupling parameter, ν⊥. This gives clarity to
any results, avoiding ambiguity as to which model features
are responsible for the emergence and maintenance of AF.
Finally, although the CMP model itself may not represent
fully realistic atrial electrophysiology, the extensions of the
CMP model to 3D and to a real topology are bringing the
model closer to clinical relevance. However, naturally, these
adaptations complicate model analysis. Hence, understanding
the dynamics of simple models is essential to fully under-
standing the behavior of the more complicated adaptations for
which the CMP model is a precursor. Models such as the CMP
model have significant potential in hypothesis generation and
will play an increasingly important role in bridging the gap
between clinical and computational electrophysiology—such
work is already going on in the ElectroCardioMaths center at
Imperial College London, as well as in other groups.

Given that “AF begets AF,” finding ways to treat and
prevent persistent AF is a key priority in AF research. In
this paper, we have studied the microstructural basis for the
emergence of persistent AF in the Christensen-Manani-Peters

023311-16



UNDERSTANDING THE TRANSITION FROM PAROXYSMAL … PHYSICAL REVIEW RESEARCH 2, 023311 (2020)

model. We have shown that persistent AF can arise from
the formation of reentrant circuits with an asymmetry in
their probability of activation relative to the probability of
termination. These circuits, once active, may drive AF for
anywhere from a few seconds to months.

Future work should focus on validating the results obtained
here in structurally realistic models of AF, derived from
experimentally acquired fiber maps. If successful, then this
approach may suggest the regions of the atria most susceptible
to the formation of persistent reentrant circuits, and hence,
may suggest suitable targets for ablation in persistent AF.
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APPENDIX A: MEAN-FIELD MODEL OF AF IN
CONTINUOUS TIME

The MF model can be extended to the continuous time
case (cMF), providing us with a framework in which the time
in fibrillation can be computed analytically. Let p̃(k, t ) be
the probability of observing k active simple reentrant circuits
at time t . When the interval between two consecutive time
steps �t is sufficiently small (i.e., �t → 0), we have at
most one event (activation or de-activation) per interval. In
these settings, the dynamics of p̃(k, t ) are described by the
following master equation:

d p̃(k, t )

dt
= p(N − k + 1) p̃(k − 1, t ) − p(N − k) p̃(k, t )

+ q(k + 1) p̃(k + 1, t ) − qk p̃(k, t ) for k > 1,

(A1a)

where the first two terms are associated with an activation
process k − 1 �→ k and k �→ k + 1 transitions, respectively,
while the last two are associated with k + 1 �→ k and k �→
k − 1 transitions, respectively. Because the activation rate is
different when the system has no active particles, see Eq. (6a),
we need to take special care of the k = 1 and k = 0 cases. If
the term p0 represents the activation rate when the system has
no active particles, then

d p̃(1, t )

dt
= p0N p̃(0, t ) − p(N − 1) p̃(1, t )

+ 2qp̃(2, t ) − qp̃(1, t ), for k = 1, (A1b)

d p̃(0, t )

dt
= −p0N p̃(0, t ) + qp̃(1, t ), for k = 0. (A1c)

TABLE I. Time in AF in the cMF model for different combina-
tions of p/p0 and N . We observe that for small N the time in AF is
significantly higher when the ratio p/p0 is small. These differences
vanish as N increases.

N 0 1 2 3 4 5 10 ∞
p/p0 = 4.4 0 0.185 0.405 0.614 0.773 0.876 0.996 1
p/p0 = 1 0 0.5 0.75 0.875 0.938 0.969 0.999 1

We enforce the boundary conditions that p̃(k, t ) = 0 for k < 0
and k > N . We will find the steady state solution p̃(k) =
lim

t→∞ p̃(k, t ) where the derivatives on the left-hand side of

Eq. (A1) are zero by the ansatz

p̃(k)=
{

A
(N

k

)( q
p

)N−k
+ Bδk,0 for k = 0, 1, . . . , N,

0 for k <0 or k > N,
(A2)

where δi, j is the Kronecker δ function. By inserting the ansatz
into Eq. (A1a), we confirm that it solves the steady state
equation for k > 1. However, in our case it simplifies further
as p = q = ε/〈�〉, see Eq. (6a), so q/p = 1.

We can determine the two constants A and B by requiring
that Eq. (A2) solves Eqs. (A1b)–(A1c) together with the
normalization constraint: inserting the ansatz into Eq. (A1c),
recalling p = q, we find

0 = −p0AN − p0NB + qAN, (A3)

implying that

B = A

(
p

p0
− 1

)
. (A4a)

Note that p = p0 ⇒ B = 0, that is, p̃(0) does not have a
special status but when p �= p0 ⇒ B �= 0, and B is an extra
contribution to p̃(0); see Eq. (A2). We now require normal-
ization, that is,

1 =
N∑

k=0

p̃(k) = A2N + B. (A4b)

Solving Eqs. (A4) for A and B we find

A = 1

2N + p/p0 − 1
, (A5a)

B = p/p0 − 1

2N + p/p0 − 1
, (A5b)

yielding

p̃(0) = p/p0

2N + p/p0 − 1
. (A6)

Having obtained the analytical solutions, the fraction of time
the system spends in AF for the cMF model is given by

1 − p̃(0) = 2N − 1

2N + p/p0 − 1
. (A7)

The time in AF for the cMF model is shown in Fig. 13. It
is interesting to contrast this result with a simple birth-death
process where p = p0. The time in AF is shown for the simple
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FIG. 13. Phase diagram of the time in AF as a function of the
fraction of transversal connections ν⊥ for the CMP (black), the MF
(blue) and the cMF (green) models. We use the parameters of the
CMP model (i.e., N, ε, and 〈�〉) to calibrate the cMF model and
calculate the time in AF according to Eq. (A7). The phase diagrams
for the MF and the cMF models are perfectly compatible. Both
models significantly underestimate the time in AF with respect to
the CMP model. Sharp transitions in the time in AF occur around
the threshold values ν∗

⊥ ≈ 0.11 (CMP, black dashed line), ν∗
⊥ ≈ 0.10

(MF, blue dashed line), and ν∗
⊥ ≈ 0.10 (cMF, green dashed line).

birth-death process and for the cMF calibrated to the CMP
model, p/p0 = T/τ = 4.4, in Table I. The results indicate that
for N = 0, neither model enters AF. As N is increased, the
time in AF is initially much higher in the birth-death process
than the cMF, but this difference vanishes as N becomes large.
Only when N → ∞ does the model spend 100% of the time
in AF. Since N must be finite in the CMP model, this indicates
that the cMF cannot explain persistent AF.

APPENDIX B: ENHANCED MEAN-FIELD MODEL OF AF

The phase diagrams discussed in Fig. 7 reveal significant
differences between the CMP and MF models as the latter
underestimates the time in AF. One may assert that this
discrepancy stems from a poor replication of the interac-
tions between reentrant circuits, and in particular from the
exclusion of the nonspatial features of critical structures (e.g.,
particles are assumed to have the same length) from the MF
model. In this section, we provide further evidence against
this hypothesis by showing that modeling various nonspatial
features of critical structures does not mitigate the differences
between the CMP and MF models. To do so, we introduce
an enhanced version of the MF model (eMF) in which each
particle retains the length of the associated critical structure
and changes its state at specific time steps, depending on the
overall configuration of the system. The purpose of the eMF
is to indicate that the nonspatial simplifications in the MF
model are not responsible for the discrepancy in the time in
AF between the MF model and the CMP model.

In the eMF model, the system is represented by the state
vector P(t ) = (p1(t ), . . . , pN (t )), where p j (t ) ∈ {0, 1}, j =
1, . . . , N is the state of the jth particle at time t and N is
the number of particles corresponding to the simple critical
structures found across the CMP lattice. When pj (t ) = 1
(p j (t ) = 0), the jth particle is active (inactive) at time t . The
number of active particles at time t is

Na(t ) =
N∑

j=1

p j (t ). (B1)

In line with the original MF model, the system is in sinus
rhythm when Na(t ) = 0 and in AF when Na(t ) > 0. The jth
particle pj (t ) can change its state at a specific time t∗

j . We
set the first switching time for each particle as t∗

j → Uj ,
where Uj, j = 1, . . . , N is a uniformly distributed integer
random variable in [1, L]. This mimics the first planar wave
front released from the pacemaker reaching critical regions at
different time steps due to their different locations. As soon
as the simulation time t matches t∗

j , the jth particle changes
its state with probability ε. Independently of whether the jth
particle has changed its state or not, its next switching time t∗

j
is updated,

t∗
j →

⎧⎪⎨
⎪⎩

t∗
j + min

p:p(t+1)=1
�p, if Na(t + 1) > 0 and p j (t + 1) = 0,

t∗
j + � j, if Na(t + 1) > 0 and p j (t + 1) = 1,

t∗
j + T, if Na(t + 1) = 0,

(B2)

where t + 1 indicates that the update is based on the charac-
teristics of the system observed immediately after the even-
tual state change of the jth particle. When Na(t + 1) = 0,
the jth particle will attempt to switch its state in T time
steps. This mimics sinus rhythm in the CMP model where
the planar wave front released from the sinus nodes reaches
a critical structure every T time steps. When Na(t + 1) >

0, particles try to switch their states more frequently. This
reflects the intense activity (e.g., number of active nodes per

time step) observed in AF episodes occurring in the CMP
lattice.

In the eMF model, the length of the shortest particle dic-
tates the period between two consecutive attempts to activate
a dormant region. For instance, the jth particle that turns (or
remains) off at time t∗

j = t will attempt to activate again at
time

t∗
j = t∗

j + min
p:p(t+1)=1

�p, (B3)
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FIG. 14. Phase diagram of the time in AF as a function of the
fraction of transversal connections ν⊥ for the CMP (black), MF
(blue), and eMF (orange) models. We use the parameters of the
CMP model (i.e., N , ε, and 〈�〉) and the lengths of the tracked
simple critical structures (i.e., �p1 , . . . , �pN ) to calibrate the MF and
eMF models. The phase diagrams of the MF and eMF models are
perfectly compatible. Both models significantly underestimate the
time in AF with respect to the CMP model. These results suggest that
the spatial structure of the CMP model is responsible for the excess
time the CMP model spends in AF compared to the MF model, and
not the nonspatial simplifications of the MF model. Sharp transitions
in the time in AF occur around the threshold values ν∗

⊥ ≈ 0.11 (CMP,
black dashed line), ν∗

⊥ ≈ 0.10 (MF, blue dashed line; eMF, orange
dashed line).

where the final term is the length of the shortest active particle
at time t + 1. This mimics the fact that in the CMP model the
length of a reentrant circuit determines the frequency at which
nodes forming the hosting critical structure emit waves.

The eMF model enhances the replication of the interactions
between simple critical structures by capturing potentially
important spatial features that have been excluded from the
original simplified MF model. The goal of this framework is
to assess the contribution of the nonspatial features of critical
structures to the significant discrepancies between the CMP
and the MF models, see Fig. 7. We find that the phase diagram
of the time in AF in the eMF model is perfectly compatible
with the one derived from the MF model; see Fig. 14. This
suggests that adding further layers of complexity to capture
every feature of the interactions between simple critical struc-
tures is unlikely to reconcile the statistics obtained from the
CMP and the MF models.

APPENDIX C: CMP MODEL DEFINITION OF AF

The CMP model with T = 220, L = 200, τ = 50 is de-
fined to be in AF when the number of active nodes in the
model exceeds 1.1L (220 nodes). This is a working definition
of AF in the CMP model and is not a unique choice. We have

FIG. 15. The classification of AF in the CMP model. (a) The
number of active nodes over time. The dashed line indicates the AF
threshold of 220 active nodes. (b) Simulated electrograms derived
from the CMP simulations. (c) The classification of whether the
model is in sinus rhythm (SR) or AF over time. Blue lines indicate
the model is in sinus rhythm, black lines indicate the model is in AF.
This figure has been used with permission from Ref. [38].

previously tested that this definition of AF correlates well with
what would be expected from a clinical definition of AF [38].
This is shown in Fig. 15, where we plot (a) the number of
active nodes in the model over time, (b) the corresponding
simulated electrograms, and (c) the classification of whether
the model is in AF or not according to our working definition
of AF in the CMP model. The figure shows that the number
of active nodes during sinus rhythm follows a regular pattern
with only small scale noise around the average number of
active nodes. This average falls below the practical definition
of AF where we require more than 220 active nodes. The
corresponding electrograms are regular and consistent with
sinus rhythm pacing. When a reentrant circuit forms, the
number of active nodes rapidly exceeds the threshold, and
rapid, irregular activity is observed in the electrograms. The
activation frequency observed is significantly higher than
expected in sinus rhythm. This state is classified as being in
AF according to our working definition. For more details see
Ref. [38].

Note, we do not explicitly distinguish between atrial tachy-
cardia (AT) and AF. The dynamics in the CMP model are
solely based on the formation of reentrant circuits. These
circuits are generally transient and are short lived. In practice,
we observe regular rapid pacing in the CMP model when
only a single reentrant circuit has formed. Conversely, rapid
irregular pacing is observed when more than one reentrant
circuit forms.

APPENDIX D: ACTIVATION PATTERNS IN
THE CMP MODEL

The CMP model is a highly simplified, physics style
model of AF, focusing on the initiation and maintenance of
microanatomical reentrant circuits. The CMP model does not
consider the maintenance of AF from rotors (spiral waves). As
a result, the macroscopic activation patterns in the CMP model
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FIG. 16. The number of active cells per time step, a(t ); top row, and the corresponding activation patterns observed in a 100 × 100 snapshot
of the CMP model, bottom row, in (a) sinus rhythm, (b) paroxysmal AF, and (c) persistent AF. Active nodes are shown in white, refractory in
grayscale, and resting in black.

do not directly reflect what might be observed clinically or in
other reaction-diffusion models of fibrillation.

Figure 16 shows typical activation patterns observed in
the CMP model and the corresponding trace of the number
of active cells. As expected, in sinus rhythm, the number of
active cells is constant and falls below the threshold for AF.
When the number of active cells exceeds the AF threshold,
we can observe a number of different AF phenotypes in the
CMP model from paroxysmal to persistent AF. Qualitatively,
the activation patterns in paroxysmal and persistent AF do not
show major differences, although persistent AF is typically
associated with a higher dominant frequency of activation.
Interestingly, there is some clinical evidence to suggest that
increased dominant frequency predicts an increase in the
persistence of AF [66].

In Fig. 5(h), an episode of persistent AF is shown where
the number of active cells is stable over time. The simula-
tion was generated at ν⊥ = 0.11, where the average num-
ber of simple structures in the CMP model is N < 2; see
Appendix E. This suggests that the example shown in Fig. 5(h)
could plausibly be the result of one single stable reentrant
circuit (although not a simple one). As a result, this example
may be better thought of as a persistent episode of AT rather
than AF. However, many examples of persistent AF are also
observed in the CMP model where the number of active cells
shows frequent fluctuations, but where the activation remains
above the AF threshold; see Fig. 17.

FIG. 17. An example of persistent AF in the CMP model at
ν⊥ = 0.05 where the number of active nodes per time step shows
significant fluctuations over time. The black line indicates the raw
data, with the red line indicating the moving average over a time
window of T = 220 time steps. The blue dashed line indicates the
threshold above which the CMP model is said to be in AF.
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FIG. 18. The average time in AF for the cCMP (red) and MF
(blue) models as a function of (1) the number of tracked simple
critical structures N in the cCMP model or (2) the MF model with
the corresponding number of particles.

APPENDIX E: CORRESPONDENCE BETWEEN THE
NUMBER OF SIMPLE REENTRANT CIRCUITS AND

OVERALL COUPLING

As discussed in Sec. IV, it is possible to identify the
number of simple critical structures, N , defined as regions
capable of forming a simple reentrant circuit, in a given
instance of the CMP model. Previously, we have presented
the time in AF in the CMP model as a function of the overall
coupling ν⊥.

In Fig. 18 we show the time in AF as a function of
the number of critical structures, N , identified in the cCMP
model where we control the placement of conduction blocking
nodes. For each instance of the cCMP model, the correspond-
ing value of N is used to generate a simulation of the MF
model. Figure 18 demonstrates that at low N (N < 2), the time
in AF in the cCMP model slightly exceeds the corresponding
value of the MF model. In contrast, the converse is observed
at large N (N > 2) where the time in AF in the MF model
exceeds the corresponding value in the cCMP model. This
is a consequence of the spatial elements of the cCMP model
which are absent in the MF model. At low N , AF episodes
last a little longer in the cCMP model than in the MF model
(due to slight differences in the activation and deactivation
rates of the models). Conversely, at high N , the activation (or
deactivation) of a particle in the MF model is independent of
any other particle in the model, whereas in the cCMP model,
an active reentrant circuit can suppress the activation of other

FIG. 19. The average number of tracked simple critical struc-
tures N as a function of the overall coupling value ν⊥ in the
cCMP model. The errors bars indicate the 95% confidence interval
calculated over 50 simulations.

critical structures which are longer than the currently active
reentrant circuit. As a result, the time in AF in the cCMP
model is above (below) the MF value for low (high) N .

Figure 19 shows the average number of simple critical
structures detected in an instance of the cCMP model as a
function of the overall coupling, ν⊥. For Fig. 19, the error
bars have been chosen to show the 95% confidence interval
of possible N values at a given coupling value. Fig. 18 shows
that N ≈ 2 is the crossover value above (below) which the
time in AF is larger (smaller) in the MF model than in the
cCMP model. Figure 19 indicates that N = 2 corresponds to
a coupling value of ν⊥ ≈ 0.1. Hence, the small difference in
the time in AF shown in Fig. 8 can be understood as being
a consequence of the slightly different time in AF values at
fixed N indicated in Fig. 18.

Note, if N = 1, then a single dominant reentrant circuit
drives fibrillation in the CMP model. Hence, at a simplified
level, this can be thought of as a form of atrial tachycardia
(AT), however, this is very rare at low coupling. When mul-
tiple drivers are competing (N > 1), the activity in the CMP
model is better associated with AF.

APPENDIX F: VIDEOS

Videos of the different structure types discussed through-
out this paper are provided in the Supplemental Material with
appropriate captions [44].
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