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The existence or not of Landau poles is one of the oldest open questions in nonasymptotic quantum field
theories. We investigate the Landau pole issue in two condensed matter systems whose long-wavelength physics
is described by appropriate quantum field theories: the critical quantum magnet and Dirac fermions in graphene
with long-range Coulomb interactions. The critical quantum magnet provides a classic example of a quantum
phase transition, and it is well described by the ¢* theory. We find that the irrelevant but symmetry-allowed
couplings, such as the ¢° potential, can significantly change the fate of the Landau pole in the emergent ¢*
theory. We obtain the coupled 8 functions of a ¢* + ¢° potential at both small and large orders. Already from
the one-loop calculation, the Landau pole is replaced by an ultraviolet fixed point. A Lipatov analysis at large
orders reveals that the inclusion of a ¢°® term also has important repercussions for the high-order expansion of
the B functions. We also investigate the role of the Landau pole in a very different system: Dirac fermions in
2 4 1 dimensions with long-range Coulomb interactions, e.g., graphene. Both the weak-coupling perturbation
theory up to two loops and a low-order large-N calculation show the absence of a Landau pole. Furthermore,
we calculate the asymptotic expansion coefficients of the 8 function. We find that the asymptotic coefficient is
bounded by that of a pure bosonic ¢* theory, and consequently graphene is free from Landau poles if the pure ¢*
theory does not manifest a Landau pole. We briefly discuss possible experiments that could potentially probe the
existence of a Landau pole in these systems. Studying Landau poles in suitable condensed matter systems is of
considerable fundamental importance since the relevant Landau pole energy scales in particle physics, whether

it is quantum electrodynamics or Higgs physics, are completely unattainable.
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I. BACKGROUND

Quantum electrodynamics (QED) is the most successful
theory in physics. The most recent QED calculation up to
tenth order in the fine structure coupling constant (i.e., the
fifth order in the QED perturbation theory) involves the ac-
curate determination of 389 different high-dimensional in-
tegrals contributed by 6354 Feynman vertex diagrams, with
a resultant electron anomalous magnetic moment agreeing
quantitatively with experiments up to ten significant digits [1].
Obviously, we have come a long way (although it took
70 years for this progress) from Schwinger’s ground-breaking
analytical work of 1948 calculating just the first-order QED
correction, which obtained the electron anomalous magnetic
moment correct to two significant digits [2]. This amazing
agreement between theory and experiment is the most im-
pressive success of quantum mechanics, and the common
belief is that this astounding success will continue up to
many orders in the QED perturbation theory, with theory and
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experiment agreeing certainly up to well over 100 significant
digits, although neither experiment nor theory is likely to get
to such a high precision in the foreseeable future. Because
the QED perturbation theory is asymptotic, it will eventually
break down, with the perturbation series eventually diverging
at some very high order (>>137), but this is not a serious
concern at this stage. The infinite-order perturbative QED
result is thus bound to be incorrect since it gives a divergent
answer.

In addition to the asymptotic nature of the QED pertur-
bation theory, there is a second fundamental “problem” with
QED, first emphasized by Landau [3], and often referred to
as the Landau pole (it also is sometimes called the “Landau
ghost” or “Moscow zero”) [4]. The term Landau pole refers
to the divergence of a running (or renormalized) coupling
constant at a finite energy in a field theory. Landau poles
happen only in field theories that are not asymptotically free,
where the running coupling increases with increasing energy,
in contrast to asymptotically free field theories where the
coupling constant decreases with increasing energy. If the
Landau pole is a true feature of QED, then the only way to
obtain a reasonable theory would be to set the bare charge to
zero, resulting in a theory that is completely trivial (or non-
interacting). Landau poles have been discussed extensively
in the context of both QED and scalar field theories, such
as the ¢* theory, which is relevant for Higgs bosons in the
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standard model. The problem is, however, that the existence
of a Landau pole is theoretically established only within the
leading-order perturbative approximation (extended to very
high energies) and, therefore, whether the Landau pole is real
or an artifact of the perturbation theory is unknown. In the
context of QED, direct numerical simulations have been used
to explore the existence of Landau poles, but whether the
poles have any physical relevance in the sense of imposing
triviality remains unclear [5-7]. Unfortunately, approaches
based on lattice simulations are hindered by chiral symmetry
breaking, making the parameter regime where a Landau pole
occurs inaccessible [5]. Numerical methods have also been
applied to ¢* theory, with the conclusion that the continuum
theory is most likely trivial. This finding has in turn been
used to impose bounds on the Higgs mass [8,9]. However,
the triviality question has not been fully resolved here either,
and a stronger bound on the mass comes from unitarity [10],
obscuring the role of the Landau pole. It is also unclear
to what extent these findings carry over to effective scalar
theories, where higher-order couplings allowed by symmetry
can affect renormalization group (RG) flows at high energies.
It is possible that a fully nonperturbative, strong-coupling
theory would be necessary to eventually settle the question
since weak-coupling perturbation theories simply may not
be applicable in predicting the physics of a divergent renor-
malized coupling. The Landau pole problem is intrinsically
tied to the asymptotic behavior of the QED perturbation
expansion and to the nonperturbative effects of instantons.
Although there has been recent progress in developing a more
rigorous treatment of nonperturbative effects like instantons
using resurgent trans-series [11], the question of the existence
or not of the Landau pole in QED remains as open today as it
was in the early 1950s when Landau first proposed it.

One thing is, however, clear. Even if the Landau pole exists
in QED and/or quartic scalar field theories, there is no hope
for its experimental manifestation in particle physics because
the energy scale for the Landau pole is unphysically huge
(e.g., way above the Planck scale in QED and the Higgs mass
in the ¢* theory). Quite apart from the fact that such large
energy scales are experimentally unattainable (not only now,
perhaps ever), new physics, outside the scope of QED, comes
in at high energy scales, and the predictions of QED for the
Landau pole become academic since QED itself (quite apart
from a perturbation theoretic analysis of QED leading to the
Landau pole) is no longer a correct description of nature at
such high energies.

This is the context of the current theoretical work, where
we investigate the condensed matter analogs of the Landau
pole in the theories of critical quantum magnets and the
physics of graphene. It is well known that the ¢* scalar
field theory describes the long-wavelength critical behavior
of quantum magnets, and the two-dimensional massless Dirac
theory describes the long-wavelength behavior of graphene.
Thus, graphene is an example (with suitable modifications) of
QED, whereas quantum magnets are examples (with suitable
modifications) of the ¢* scalar field theories. Our goal is to
study the presence or absence of Landau poles in these two
concrete condensed matter physics examples to motivate fur-
ther theoretical work that could shed light on the fundamental
issue of triviality in the quantum field theories which are not

asymptotically free. Another equally important objective of
our work is to motivate experimental work in condensed mat-
ter systems to directly probe the existence or not of Landau
poles in these two systems, which are described by continuum
field theories containing Landau poles in the leading-order
perturbative analysis. The question of the existence or not
of Landau poles is of sufficient fundamental significance that
anything we can learn from condensed matter systems about
the possible presence or absence of Landau poles would be
valuable for future progress in the subject.

II. INTRODUCTION

The concept of Landau poles is a long-standing issue in
quantum field theory that raises questions about fundamental
aspects of the RG, in particular the asymptotic behavior of
renormalized couplings [3,12,13]. In a quantum field theory
that is not asymptotically free, consider the 8 function that
governs the running of a dimensionless coupling constant A,

dx
dlogu

=B, ey

where p is the energy scale of interest. One can integrate over
both sides to get
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Moo 18 the energy scale at which the running coupling becomes
infinite. Suppose the 8 function has the asymptotic behavior
B(A) o A%, A > 1, where a is a constant independent of A;
then
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In the first case, a < 1, there is no Landau pole. The running
coupling reaches infinity only at infinite energy scales. In the
second case, a > 1, however, the coupling diverges at a finite
energy scale (.. This is a Landau pole. Clearly, the existence
of a Landau pole depends on the asymptotic form of the B
function at A > 1.

Because Landau poles were first discovered theoretically
in quantum field theories relevant for high-energy physics,
such as QED, research into this issue has remained largely
within the high-energy physics community [5-7,14—17]. The
simplest solution to the Landau pole problem is the idea of
quantum triviality [6,14—16], in which the pole is avoided by
setting the coupling to zero at all scales, yielding a trivial,
noninteracting theory. This is of course unsatisfactory if one
is interested in the effect of interactions (which are clearly
present in QED experiments), so a more phenomenological
resolution that is often adopted is to argue that the theory
is incomplete and gets replaced by another theory at high
energies before the Landau pole is reached. For instance, QED
is usually believed to be just one part of a more fundamental
electroweak theory. Moreover, the Landau pole in QED can be
estimated to occur at an energy scale on the order of 10?% eV,
which is far beyond the Planck scale 10% eV, suggesting
that it is a purely academic issue. However, the reliability of

a<l1
a>1.
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such estimates is questionable given that the Landau pole is
intrinsically tied to the large-coupling regime, whereas most
analyses rely on weak-coupling perturbation theory carried
out to first or second order. Many attempts have been made
to go beyond small-order perturbation theory starting from
Lipatov’s method [18,19] for calculating large orders in an
asymptotic series. In fact, a resummation procedure based on
such large-order expansions suggests that the Landau pole
does not exist at all in the ¢* theory [20,21]. But the Landau
pole question is by no means settled since the resummation
technique is essentially a Borel interpolation, and the exact
strong-coupling theory remains elusive, so one cannot be sure
that the Landau pole does not exist. In particular, numerical
simulations seem to indicate its existence [6].

In addition to having wide application in particle physics,
continuum field theories and the renormalization group are
also important for condensed matter systems, especially in
the context of phase transitions, where the universal physics
is controlled by long-wavelength fluctuations at a critical
point [22,23]. (In fact, Wilson developed his RG theory moti-
vated by condensed matter considerations in critical phenom-
ena, and the first problem he solved using his momentum-shell
RG theory is the Kondo problem, a celebrated condensed
matter problem involving singular spin-flip scattering of elec-
trons in metals from quenched magnetic impurities [24].)
Thus, it is natural to consider the Landau pole problem in
condensed matter systems. Unlike most cases in high-energy
physics, here the ultraviolet completion is well understood
as it comes from the lattice, which brings a natural energy
scale cutoff set by the inverse lattice constant. The question
then becomes whether a Landau pole arises above or below
this scale. This question is particularly important in systems
where the coupling constant can be large, as is the case in
graphene, where the fine structure constant away from the
Dirac point is o ~ 1 [25], and even more so in synthetic
twisted bilayer graphene, where o ~ 10 [26-29]. The inter-
actions in these systems are substantially stronger than in
QED, where o &~ 1/137, suggesting that if there is a Landau
pole, then its energy scale could occur below the cutoff,
potentially leading to consequences that are experimentally
accessible. We emphasize that in condensed matter physics,
all continuum field theories are, by definition, effective field
theories since the lattice explicitly breaks the continuum by
providing a short-distance cutoff length scale (or, equivalently,
an effective ultraviolet energy or momentum cutoff for the
system which does not have to be put in by hand in the theory).
The field theory is valid up to this ultraviolet energy or
momentum scale (approximately the inverse lattice constant),
which is a physical constraint defining the domain of validity
of the effective field theory. Our current understanding of all
field theories as effective field theories up to some scale is
explicitly obeyed in condensed matter physics and does not
have to be artificially introduced as, for example, in lattice
gauge theories. Of course, one does not know the precise
cutoff scale except that it should be set dimensionally by
the lattice spacing. It is possible that the cutoff is in fact
somewhat shorter (longer) than the lattice spacing, in which
case the effective field theory would apply to energies above
(below) the inverse lattice spacing. In the context of Landau
poles, the hope is that the pole energy here would not be

much higher than the inverse lattice spacing energy (within
an order of magnitude) so that there is some reason to believe
that the effective field theory does not completely break down
at the Landau pole energy. In such a situation, it is sensible
to consider condensed matter experiments to investigate the
presence or absence of Landau poles. If the pole happens to be
at an energy much larger than the natural ultraviolet cutoff for
the lattice in the system, there is no hope for experimentally
studying the Landau pole in the corresponding condensed
matter system since the effective field theory is unlikely to
apply at that high-energy scale.

Here, we consider two condensed matter systems: the
critical quantum magnet and Dirac fermions in 2+ 1 di-
mensions with long-range Coulomb interactions (graphene).
Both systems are believed to be well described by effective
continuum field theories. The critical quantum magnet is
described by a bosonic ¢* theory as dictated by symmetry.
In four dimensions, the ¢* theory has a coupling that grows
logarithmically with energy scale, eventually leading to a
Landau pole as determined from perturbation theory [30].
However, this theory is an effective field theory, meaning
that all terms allowed by symmetry, e.g., all even-order terms
¢", where n € 27, are in principle present in the action.
Although the ¢* term is the most relevant one deep in the
infrared, the n > 4 terms can become important at the higher
energy scales where the Landau pole potentially arises. This
motivates us to investigate to what extent Landau poles are
affected by infrared-irrelevant terms in the ¢* effective field
theory. To answer this question, we study the 8 function of
a ¢* + ¢° potential and find that the Landau pole can be
strongly affected by the presence of the ¢°® potential at both
small and large orders of the asymptotic expansion.

Dirac fermions in graphene constitute a second important
case study because the Fermi velocity approaches zero in
the ultraviolet, enhancing the role of Coulomb interactions at
high energies and potentially inducing a Landau pole [25].
The theory is infrared stable because the Fermi velocity
increases as the energy scale approaches zero, leading to
a decreasing running coupling (which is cut off at some
exponentially low energy scale when retardation effects due
to the finite speed of light come into consideration). The
marginal Fermi liquid behavior that results from the logarith-
mic growth of the Fermi velocity near the Dirac point is well
studied [31-33]. We review the result for the small-order S
function in graphene [34,35] and show that the Landau pole
problem is not resolved by either weak-coupling or large-
N perturbation theories at one loop. On the other hand, a
two-loop analysis using either ordinary perturbation theory
or a large-N expansion indicates the absence of a Landau
pole. We also compute the large-order expansion coefficients
nonperturbatively, showing that the asymptotic coefficients
are smaller than those of the pure ¢* theory. This indicates
that if the pure ¢* theory does not manifest a Landau pole,
then neither does the Coulomb-interacting graphene field
theory. Our main, but tentative, conclusion in this work is
that in all likelihood, Landau poles do not exist in condensed
matter systems at any energy scale, although the leading-order
perturbative RG theory may imply their existence, often at
energy scales beyond which the corresponding effective field
theory is applicable.
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The paper is organized as follows. We discuss Landau
poles in the critical quantum magnet and in graphene in
Secs. III and IV, respectively. In each section, we compute
both the small- and large-order terms of the 8 function for
the running coupling. While the small-order 8 function is
obtained through the standard perturbation theory, the large
orders are evaluated through the saddle-point approximation
following the Lipatov method [18,19]. In Sec. V, we briefly
discuss possible experiments and conclude the paper. The
Appendixes contain technical details and an instructive zero-
dimensional toy model to illustrate the steps of the Lipatov
method for the ¢* + ¢° potential.

III. CRITICAL QUANTUM MAGNETS

In this section, we compute the small- and large-order
terms of the asymptotic expansion of the 8 function for the
effective theory consisting of both ¢* and ¢° terms. We use
the Wilsonian renormalization group to obtain the one-loop
B function. We show that while the pure ¢* theory exhibits a
Landau pole, the inclusion of the ¢° term removes the pole
and replaces it with an ultraviolet fixed point. In addition,
we compute the large-order expansion of the § function by
using a saddle-point approximation in the regime of negative
couplings. We find that the expansion coefficients of the ¢*
coupling A4 grow as k! while those of A¢ grow as (k!)>. From
both small-order and large-order expansion coefficients, we
see that including the ¢° term strongly affects the fate of the
Landau pole compared to a pure ¢* theory.

A. Small orders

We consider the effective theory,
1 g 8
Slgs. 86101 = / ddx[5<a¢>>2 + 500+ gﬂ, “)
where ¢;, i=1,...,N, is an O(N) field, and the sum-

mation over i is 1mp1101t ¢ = Z (¢)?, and (3¢)* =

>y S (O ¢;)*. Using the standard Wilsonian RG technique
(see Appendix A), the perturbative 8 equations at the critical
surface 7 = 0, where 7 is the dimensionless mass, are

dry

= —(3N + 12)As + (4N + 32)A3, (5)
dlogu
dx 32N + 832
8 — 22+ (12N + 168)hghg — ;Ai, (6)
dlogu 3

where Ay = (2"73)4%“ and Ag = ((2ﬂ)4) 8 A2 are dimensionless

couplings, and we have set d = 4. A, is the area of a d sphere
with unit radius.

From Egs. (5) and (6), besides the Gaussian fixed point,
there is also an ultraviolet fixed point at

(A4, Ag)

3 N+38 (N +8)°
~ 2N+ 6N + 128)" 3(N + 4)(N? + 6N + 128)2

1
~ [ —=— + O0(1/N?
( oy TOUND 3

+ O(1/N- )) (N

As

@\\\

/
/ =
,;.,5//7//}/’%\\\\

FIG. 1. The flow diagram of A4-Xs. The blue arrow indicates the
RG flow to higher energies. The black and red dots are the Gaussian
and the new fixed point in Eq. (7), respectively. The dashed line
which separates different flow regimes is given by Eq. (8). We take
N =1 for simplicity.

The fixed point has two relevant directions at the critical
surface. One should distinguish it from the tricritical point.
For d > 3 space-time dimensions, the tricritical point is the
same as the Gaussian fixed point, because the upper critical
dimension is three for the ¢° theory. Moreover, a tricritical
point has only one relevant direction at the critical surface.

The flow diagram of A4-A¢ is shown in Fig. 1, where
the black and red dots are the Gaussian fixed point and the
ultraviolet fixed point in Eq. (7), respectively. The dashed
curve is given by

16(N + 26)A3
3(6NAs + 8424 + 1)’

fha) = Aq > 0. ®)

If one fixes ¢ = O to reduce to the pure ¢* theory, as indicated
by the black line in Fig. 1, A4 will become infinite at the
Landau pole. This is consistent with the one-loop 8 function
for A4. However, in the global flow diagram of both A4 and
Mg, the points at Ag = 0 are not stable at higher energies.
Depending on the initial values, the RG flow regimes are
separated by the dashed line given by Eq. (8). Denote the
initial values by A4 and Agp. On the one hand, at A49 < QU
[Aa0 > 0N Ago > f(Ahgo)], it will flow to the new fixed point
(if one can fine-tune A; = 0 for i = 8§, 10, ...). On the other
hand, at A4 > 0N Ago < f(Ag0), Ae Will flow to negative
values, indicating that the theory is not stable because the
energy is not bounded from below. Therefore, if one includes
the symmetry-allowed ¢° term, the Landau pole is replaced
by a fixed point of the one-loop g function. Note that even if
the ¢ term is not included initially, it will be generated by the
¢* potential.

B. Large orders

We have shown that the inclusion of the ¢° term in the
effective theory will replace the Landau pole by an ultravi-
olet fixed point even in the one-loop calculation. We now
extend the analysis to large orders. Namely, we calculate the
asymptotic expansion coefficients S, k 3> 1 of § functions,
By =>, Bi )k, We first calculate the asymptotic expansion
of the correlation function, and then relate it to the 8 function.
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In Appendix B, we present a toy model that provides a simple
illustration of the basic steps we employ.

1. Asymptotic expansions of the correlation function

Consider the n-point correlation function of the massless
¢* + ¢ theory defined by Eq. (4),

G, 86:X,) = / D [[ewxpe, ©)

j=1

where X, = (x1, ..., x,) denotes all n space-time arguments,
and in this section we consider N = 1 for simplicity. We
are interested in computing the asymptotic expansion of the
n-point correlation function G,(g4, g¢) (in the following, we
suppress the argument X,, for notational simplicity). In gen-
eral, the expansion has the following form:

Gn(gs86) =) _AP"dh+ > B (ga)gs.  (10)

k=0 k'>1

In four dimensions, the asymptotic expansion of G,(g4, 0)
as a function of g, is known for the pure ¢* theory with
86 =0 [18,19]. We first review this calculation and then
generalize it to g¢ > 0. When g6 = 0, G,(g4,0) = >, A;C")g’f1
has a branch cut at g4 € (—o0, 0). As shown for the toy model
in Eq. (B8), the expansion coefficient is related to the branch
cut by

0
dz ImG,(z, 0)
(n) __
= TR a

Since the unstable saddle-point solution at g4 < 0 will
contribute to the imaginary part, we use the saddle-point
approximation. When g¢ = 0, the saddle-point equation is

~0%¢. + g4 = 0. (12)

Let ¢ (x) = % where £ is the solution of 92& + &3 =0

and is independent of g4. In d = 4 dimensions, there are

two solutions: £ (x) = :I:xzz‘_/g1 (see Appendix C). Note that the
saddle-point equation is scale invariant in the sense that if & (x)
is a solution, then b~'£(x/b) is also a solution for any rescal-
ing parameter b. We will remove this scaling redundancy later

on. Because [ d“x[(3¢.)* + gap?] = 0, the on-shell action is

S
Slg4, 0; 0] = —%/ddwz‘ = —4—0, (13)
84

where S) = [ d“xg* is a positive constant independent of g4.
In d = 4 dimensions, Sy = 32712/3.

The fluctuations around the saddle-point solution can be
expanded in terms of an orthonormal basis {¢;(x)},

P() = @c(x —x0) + Y cj; (). (14)

j=1

Here, xq is an arbitrary point in space-time. Using this basis,
one can change the functional integration into a c-number
integration. Note that to make the integration variable linearly
independent, one requires

fddxtpj(x)aﬂtpc(x) =0, u=1,....d. (15)

Moreover, the Jacobian that results from the change of inte-
gration variables from the functional measure to xo and ¢, is
given by

1/2

d So d/2
J = /ddx(at(pc)z = [——] . (16)
;EII ! dgs

where we have used the spherical symmetry of the saddle-
point solution. The quadratic kernel around the saddle point
is

_ 8°Slga, ;0]

Mo x) = 5 sty

[0 —3&° ™) ]s(x — &),
(17)

which is independent of g4. Note that d,¢(x) is the eigen-
function of the kernel with zero eigenvalue. The above or-
thonormal basis {¢;} can be chosen to be the eigenfunctions
of M(x, x').

Putting everything together, the imaginary part of the
correlation function under the saddle-point approximation is
given by

1 .
ImGn(g4,O) = 2_l Z/Jddxoe—s[g4,0,(pc] /D(pJ_
Pe

n
x H @(x;)e [ AN pL MG gL )

j=1

S
(S en R(Xab)
“\d (—ga)3/2+n/2 j(det M)1/2’
where F,(X,;€) = [d?xo [];£(xj — x0), n € 27, and ¢ de-
notes the functions orthogonal to 9,,¢. Z% denotes the sum-

mation over the two saddle points. The expansion coefficient
is

dr2 .
AP = (=1) % /—ZF”(X”)
k d (det M)1/2

5

/‘0 dz ex
X —_——
o T (—g)ktd/2n/2H

__kii‘z’wi"”( d z)
= 1)n<d> (detM)1/2<So> r k+2+2 ’
(19)

Because M(x,x’) has a unique negative eigenvalue [19],
is a positive number.

(18)

We now generalize this procedure to the case of ¢* + ¢¢
theory. We first treat the pure ¢° theory nonperturbatively and
then include perturbative corrections from the ¢* term. The
saddle-point equation of a pure ¢ theory is

—9*¢. + gop = 0. (20)
The solution is ¢.(x) = (_);(TX)IM’ where —3%x — x> = 0. Be-
cause [ d?x[(3¢.)* + ge#®] = 0, the on-shell action is
86 d 6 Sﬁ
510, g6: 01 = 5 [ atxgt = e
o 3 3/—g
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where Sg = f d’xx®(x) is a positive constant independent
of 86-

As before, fluctuations around the saddle-point solution
can be expanded in an orthonormal basis {¢;(x)},

P(xX) = Pelx —x0) + Y _ cjp;(x), (22)

j=1

and [ d%x¢;(x)d,¢.(x) =0, for p =1,...,d. In this case,
the Jacobian is

|:1_[ 1/2 Se \?
J = / d‘x(d mz} = (—) . (23)
o . d/—gs

The quadratic kernel around the saddle point is
M(x, x') =[-8} = Sx*(0)]s(x — ), (24)

which is independent of gg. We evaluate the imaginary part of
the correlation function using the saddle-point approximation,
which yields

1
ImGn(Ov g6) = 2_1 Z/Jddx()eis[qﬁs] fD¢L
be

n
x 1_[ P(xj)e” [ d¥xdx' ¢y ()M (x,x)y (x)
j=1

S\ e WE L F(X)
“\d ) (—ge)Hni(det M)/2

where F,(X,; x) = [ dxo [1; x(xj — x0) and n € 27. The ex-
pansion coefficients are

(25)

B{(0)
S
(SR [0 dz e
=CUNT ) Gaz | 7 o

g et
2 (3\?iF,(Xasx) (3 2 d n
k(2 Hn A X) [ a.n
= n(d) (detMﬂﬂ(Sﬁ) F(2k+2+2>‘
(26)

The fact that the kernel M has a negative eigenvalue can be
seen by noting that

/ déxd?x x OMx, X x(x') = —4 / dxx%(x) < 0.
27

It remains to be shown that there is an odd number of negative
eigenvalues. We assume this is true, in which case
a real number.

Now we can consider the correction from a finite
i d“xgs¢* term. The first-order perturbation is given by the
correction to the on-shell action,

Se

S[g4, 863 Pl ¥ ——= + 84
3486

i .
(det M)!/2 18

Se 84
dix¢? = — =34,
P 3J/—8 & !

(28)

where S; = [ d“xx* is a positive constant independent of g4
and gg. Then the asymptotic coefficient is

B (g4)

=(_1)k<s6)§ iF, (X3 x) [ dz

d) (et M)12 | 7 (—z)ktd/atn/at]

d n
2 (3\?iF,(X:x) (3 \*: d n
= (-2 (2) A (= r(2k+=+ -
( )n<d) (detM)1/2<Sﬁ> +2+2

d n1 $21
Ulk+ =+, =, 2 —), 29
. <+4+4236S4g4> 29)

Se . 84
67 3E+?SA

where we have defined
U(a,b,c) =cUla,b,c), 30)

and U is Tricomi’s (confluent hypergeometric) function. One
can further expand Tricomi’s function to get the expansion
coefficients of gf‘g]g, as we will do in the next section.

2. B functions at large orders

In the previous section, we computed the asymptotic ex-
pansion of the n-point correlation function of the ¢* + ¢°
theory. In this section, we use this result to compute the
high-order expansion of the g function.

We define the renormalized couplings as the full n-point
vertex functions, A, = —I",,(84, &s; Z—z), where n = 4, 6, and
24 = g4 and g = ge . are the dimensionless couplings. Here,
p is the momentum at the renormalization point, and © de-
notes the energy scale. From the equations defining the saddle
points, Eqs. (12) and (20), we have

E(x) = / dhyNo(x — )E (), @31

x(x) = f dlyAo(x — y)x° (), (32)

where Ag(p) = # is the free propagator. We then have

Fu(X,:5) = / dyFE) [ ] -y,  (33)

Jj=1

where s = £, x, e.g., Fz(y) = fddx0§3(y —xp) and F, (y) =
[d?xx°(y — xo). Equation (33) converts the correlation
function to the vertex function [18]. There is a subtlety for
d = 4 dimensions because the ¢* potential is scale invariant
in this case. If £(x) is a solution to the saddle-point equation,
9%& 4+ £3 = 0, then it follows that 5~ '£ (x/b) is also a solution
for any rescaling factor b. We can remove this trivial scaling
redundancy by using the following identity:

2
1=5, f dlogb28< / d*x*(x) log %) (34)

in conjunction with the rescaling transformation &(x) —
b~'&(x/b). The 8§ function above fixes the scaling of the so-

lution, namely, §(x) = + x%ﬁ

These modifications are taken
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into account by working with the function

[ d log b? / ddx0b3§3(y_Txo).

Putting everything together, we get

2
P _
Fn(g4,g6;ﬁ> = > A"Z + Bz,
k

Fo(y) =S (35)

(36)

and the asymptotic forms of the coefficients are given by

(—1)"(i)? i (p)
7 \d) (detM))2

4\ d n
— rNk+—=+-=1,
() et

21 <g )3' il Fy ()
T d) (det M)1/2

3 2"+%F opy 4 m\U
X - by - 9
Se 2" 2) m

(n) __
AN =

(37

(n) _
Bm,k -

(38)
|

where fs(p), E(p) (s = &, x) are the Fourier transforms of
Fy(x), Fy(x).
The function in Eq. (30) has the expansion

Ua,b.c)= W(—cr", (39)

n=0
(@p=aa+1)---

where (a)o =1, (a+n—1). The two

limits of Y are given by
2m m
oru ()T k> me> “
| mm (—34)", m>k>»1 (40)
: (kD)2 s/ ’

from which we see that the asymptotic behaviors, .A,((") and
B,({”r)n for fixed m, increase factorially as k!, while Bin”)k for fixed
m increases faster as (k!)?, i.e.,

4N a
AP o (- 1)"( ) [ SRERY T S| (41)
So
i) ()" e,k 1
B(n)k ( ) Se S2 (k1) >m > (42)
m, k+m 3 2k 365, d+n 3 k. 2k
(—1) (S_e) (5?,4) k2 4*m*m!, m> k> 1.
[
We are interested in the ¢* + ¢° theory in four dimensions; o
the coupling constants A4 and A are dls 6)~ (6)j ~
~ d 10g " ; k g/fl ]Zk ],kgig/g
r=g—y AV - Bz, 43) . \
k=2 Jik N Z 8A( ! )‘4 B(() })‘6) ]
oo
(6) =k (6) 5 sk .
)“6 ZAk 84 +g Zqukgigﬁv (44) _ 8./4(6) (J+k)'}Lj 8(4))\. )k
k=2 jik Z k k! 4( 0,16
m k!
from which we can reexpand g, as a function of A,. The
. . (6)4 J
leading orders are given by — Z BBj, kkikk, (48)
k
84 = ha+ Bi ke + O(A], A2, dae), (45)
where .4 = alog#A
86 = Ao + 0()‘4217 Aé, )»4)»6)- (46) Equations (41), (42), (47), and (48) are the main results of
. . . this section. We see from these results that the inclusion of the
The B functions have the asymptotic expansion ¢ term, which is allowed by symmetry in condensed matter
da 00 systems (and, in any case, is automatically generated in the
AR Z 0 ,4]({4 )Gk Z 9 3(4) theory from the ¢* term), dramatically changes the asymptotic
dlog - behavior of the B function for A4. On the one hand, if Ag ~ A4,
the asymptotic coefficient of the S function for A4 changes
Z B.A(4) e Bg?)\ﬁ) ] qualitatively from k! to (k!)*:
G+ ! Bos ( 6 >2k TR k> (49)
@ U i (B® 5 \¥ 0k X\ o :
- > AN, i 24 (BShre) Se
Thus, we see that the inclusion of A¢ completely changes
(47)  the asymptotic behavior of the g function for A4. In light of

4)y Jyk
- ZaBj,Mif\ ,
k

Eq. (3), this will in turn change the fate of the Landau pole.
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On the other hand, even if A¢ < A4, as long as the (])6 term is
nonzero, A¢ > 0, the asymptotic form of the second term in
Eq. (47) is comparable to the first term of the pure A4, i.e.,

4N\F
IAY, <S—) KR ko>, (50)
0

which can also qualitatively change the behavior of the B
function compared to the pure ¢* theory. In particular, includ-
ing the ¢¢ term will result in a new asymptotic series, so even
if the pure A4 series does not end up with a Landau pole, it is
possible that including the ¢° term will lead to a Landau pole.

We are not aware of a technique to resum an asymptotic
series with multiple variables, but it is still useful to illustrate
how the Borel sum of A, is affected by the ¢° potential. Notice
that a Borel transform [36] will take the function B(g) with a
branch cut at —«,

—B—1
_ 8 _
B(g) = <1+a> —ijBkg", (51)

k !
B, = (—a)k% — (—a)kP, (52)

to a series W(g) = Y, Wig" whose asymptotic coefficient is
given by

Wi = (—a)kPk!. (53)

Comparing Eq. (53) to Egs. (41) and (42), a naive Borel
sum without considering the ¢® potential is given by

(3]
BOOw) ~ (14 Fha) (54)

The presence of A¢ leads to a different (naive) Borel sum that
at kth order has the form

2 —2k—1
B® () ~ x’g(l + ﬁk“) ) (55)

It is apparent that these Borel sums lead to different asymp-
totic behaviors. Nevertheless, we need to emphasize that
instead of having multiple Borel sums, like Egs. (54) and (55),
for each power in Ag, it is more appropriate to treat the
asymptotic expansions of A4 and A on equal footing, because
A has a vanishing radius of convergence.

IV. DIRAC FERMIONS WITH COULOMB INTERACTIONS

In this section, we consider d-dimensional Dirac fermions
with Coulomb interactions. Ultimately, we are interested in
Dirac fermions in graphene, where d = 2 + 1, with Coulomb
interactions. This is the condensed matter analog of QED in
the context of Landau poles. To have a local quantum field
theory, one can implement a Hubbard-Stratonovich transfor-
mation to decouple the Coulomb interaction by introducing
a scalar field. The theory under consideration is then given

by [34]

d—1
S = /d"x<1ﬁy°80w +uv Yy + igmﬂ)/ow)
i=1

1 3
+5 / d*x ;(3@)2, (56)

where ¥ (¢) refers to the four-component Dirac fermion
(Hubbard-Stratonovich scalar field), and v (e) refers to the
Fermi velocity (coupling strength). y*, u =0, ...,d — 1, de-
notes the 4 x 4 y matrices. The effective interaction strength

is given by o = % (also known as the fine structure con-

stant), where N = 2 is the spin degeneracy, and g* = (lf)eo,

where ¢ is the background dielectric constant (which in
general can be >1 in solid-state systems), and ¢p is the
vacuum permittivity. (Note that the definition of o used here
contains an additional factor of 7 N/4 compared to that used
in Ref. [35].)

As in the previous analysis of critical quantum magnets, we
calculate the behavior of the 8 function of the fine structure
constant at both small and large orders of perturbation theory.
Small-order terms can be calculated using either the standard
perturbation theory in « or a large-N analysis in which 1/N is
the expansion parameter. Here, we review the results obtained
previously for both methods [34,35,37], and we discuss their
implications for the Landau pole problem. To our knowledge,
the large-order terms of the asymptotic series in « had not
been computed prior to the present work. Here, we obtain
these by first integrating out the Dirac fermion and then using
a saddle-point approximation similar to the one employed in
the previous section on quantum magnets.

A. Small orders

The two-loop B equation was calculated in Ref. [35] for
the case of graphene (where d =2 + 1 and we have N =2
flavors of four-component Dirac fermions),

da

dlogu

= fid’ + fro, (57)

1 2log2-8/3
where o = g—v fi=5-.and f, = Ogﬂ—z/
see that f, < 0, so when o becomes large, the negative «
term dominates and prohibits o from becoming larger. There-

fore, the Landau pole is replaced by a fixed point at o™ = — %

. Importantly, we
3

This is similar to the ¢* + ¢ theory in the previous section.
(A similar strong-coupling fixed point is found in the direct
nonperturbative numerical simulation of the usual (3 4 1)-
dimensional QED on the lattice in Ref. [5], where the Landau
pole was found to lie in a region of the parameter space made
inaccessible by a strong-coupling chiral symmetry-breaking
transition.) However, evidence for the two-loop critical point
in Eq. (57) has not been observed in graphene experiments,
suggesting that the second-order perturbation theory in & may
not be reliable, as was argued in Ref. [35]. In particular,
the existence of such a possible strong-coupling fixed point
preempting the Landau pole may necessitate a stability anal-
ysis going to higher orders. For example, if the two terms in
Eq. (57) were the leading terms of a geometric series, then the
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(b) (c) (d)

FIG. 2. (a) The polarization of the scalar field. The solid line
(single dashed line) represents the Dirac fermion propagator (bare
scalar propagator). (b)—(d) The 1/N-order Feynman diagrams. The
double-dashed line represents the screened scalar propagator.

result to all orders would be [35]
da ) o?
= fl .
dlog fi— fa

which gives rise to f(o K< 1) « o? at small «, and B(a >
1) o< o at large «. This time there is no ultraviolet fixed point
in the theory defined by Eq. (58), and the coupling grows
indefinitely with energy scale. There is still no Landau pole,
but the mechanism by which it is avoided is quite different. A
one-loop theory with just the first term in Eq. (57) clearly has a
Landau pole whereas neither the full Eq. (57) with both terms
or the resummed theory of Eq. (58) has a Landau pole (albeit
for very different reasons). This illustrates how leading-order
one-loop perturbative calculations can be misleading when it
comes to determining the existence of a Landau pole in a given
theory. Similar trends can occur in large-N calculations, as we
now discuss in the case of graphene.

Besides expanding in the coupling strength, it is often
useful to consider a large-N expansion (in the number of
fermion flavors rather than a perturbative expansion in the
coupling constant) instead, especially when the bare coupling
parameter is not small. This is the situation for free-standing
graphene, where apye =~ 3.4, suggesting that an expansion in
powers of 1/N with N = 2 would be more reliable than an
expansion in powers of apare (simply by virtue of the fact that
o > 1 and 1/N < 1). This was confirmed in Ref. [37]. In the
following, we review the large-N calculation for graphene and
show that a Ward identity guarantees that only one parameter,
the Fermi velocity, renormalizes. Moreover, we show that the
B function obtained from the leading-order large-N calcula-
tion does not exhibit a Landau pole. We believe that the same
remains true for the next-to-leading-order theory in 1/N also,
which is likely to produce only small quantitative corrections
to the leading-order 1/N theory.

The leading large-N diagram shown in Fig. 2(a) gives rise
to the dressed boson propagator,

L &N g\

D(q) = <2qu +3 \/‘?> ;

where ¢°> = q(z, + |G|*>. The Feynman diagrams at the next
order are shown in Figs. 2(b)-2(d). Before calculating these
diagrams, it is worth noting that there is a residual gauge

(58)

(39)

invariance in Eq. (56) corresponding to the transformation
V=Y = ¢~ 3:00), (60)

where 0 is an arbitrary function of 7. This residual gauge
symmetry leads to the Ward identity,

poT3(po, B3 qos §) = iglG(qo + po, )" — G(qo, )1,
(61)

where I'; is the vertex function, and G~! is the inverse
fermion propagator. This Ward identity is similar to the Ward
identity in standard QED where the photon is dynamical,
except that here it only involves the temporal component. The
Ward identity relates the charge renormalization factor to the
anomalous dimension of the scalar field.

While the Dirac fermion is confined to a two-dimensional
plane, the scalar field in Eq. (56) can propagate in the full
three-dimensional space. Thus, the back-reaction from the
Dirac fermion is restricted within the two-dimensional plane,
and so it does not lead to an anomalous dimension for the
scalar field. Technically, this is because the scalar propaga-
tor is nonlocal in the plane Dy '(q) ~ 13|, and thus it does
not receive corrections. As a result, according to the Ward
identity, the charge does not renormalize. The only parameter
in Eq. (56) that does renormalize is the Fermi velocity v, or
equivalently, the dynamical exponent z = 1 + y,, where y,
is the anomalous dimension of Fermi velocity. Note that this
is not true for the theory in 3 4+ 1 dimensions, because the
scalar field can have a finite anomalous dimension in that case,
leading to two independent parameters in 3 + 1 dimensions.

In light of the above discussion, the only Feynman diagram
we need to evaluate is Fig. 2(b), because the vertex correction
can be inferred from the self-energy correction by the Ward
identity. Using the results from Ref. [34], we get the fermion
self-energy,

4
2(p) = W[fo(oe)poyo + fil@)p- pllogp,  (62)

where
—‘/Farccosa—l—{—%, o<1
fl(a):{@log(wm/m)—w%, a1,
(63)
B —af/_li%arccoscx—2+%, a <1
fO(a)_Lf‘/%log(ot+«/m)—2+%, a1,
(64)

from which we can extract the dynamical exponent, 1 — z =
= [fi(@) — fo(e)], and the B equation,

d
S (65)
dlogu
We can expand the § function at small and large o:
1(1.2_ 8 3 4
~(-o— =a’ + 0(")), a1l
Bla)=1" (’; o l( ) (66)
ﬁ(?a—;—l—O(a_ )), Ol>> l

It is apparent that there is no Landau pole because S(a >
1) o a. Instead, the coupling diverges as the energy scale goes
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to infinity. However, if we expanded perturbatively in o (and
also in 1/N), and retained terms up to order o, we would
erroneously conclude that there is a fixed point at « = 37 /8.
This is similar to the fixed point [cf. Eq. (57)] we found from
our original perturbation theory in o above. Of course, if we

instead stopped at order a2, we would obtain Blak1)= 7‘:—;\,,
and we would conclude that there is a Landau pole as in
the leading-order perturbative one-loop theory [i.e., Eq. (57)
with just the first term on the right-hand side]. Thus, we see
that truncating the series at a low order in « can produce
misleading results about the Landau pole issue. This is again
an indication that the Landau pole in graphene, which is
apparent in the one-loop perturbative RG theory as in the
original QED context [3], may be an artifact of perturbation
theory.

B. Large orders

Now we turn to the large-order expansion of the 8 function.
Because of the fermionic nature of Dirac fields, the saddle-
point analysis is not directly applicable. We can circumvent
this problem by integrating over the Grassmanian field, which
results in a functional determinant. In the strong-coupling
limit, the determinant can be evaluated using the quasilocal
approximation (see Appendix D), which then yields an ef-
fective action involving just the scalar field [19,38]. In the
following, we start from this effective action and apply a
saddle-point analysis to obtain the large-order expansion of
the B8 function.

The effective action is given by [19,39,40]

S / d4x%(v¢)2+ / x|, 67)

where oy = Z(F Af;)‘f,{f) vt,l\f -(g2)?/?. Notice that it involves a dif-
ferent combination of g and v because of the different approx-
imation we implement in the large-order series. However, in
2 4 1 dimensions, since from the previous section we know
that the RG correction to the charge g vanishes and all RG
effects come from the renormalization of the Fermi velocity v,
o3 = # '1)\1_2 |g|? is directly connected to « in the weak-coupling
expansion approach. The large-order perturbation series for
Dirac fermions with Coulomb interactions is equivalent to
that of the effective scalar field theory given by Eq. (67).
The potential term in Eq. (67) leads to a branch cut in the
n-point correlation function for oy € (—00, 0). This allows us
to use similar techniques as before to evaluate the asymptotic
expansion of the correlation function.
The equation of motion that follows from Eq. (67) is

—V2¢. + dagsign(@)|pe |84 P (1) =0,  (68)

where z, denotes the coordinates perpendicular to the space-
time where the Dirac fermions live. For instance, z; =z
is the direction perpendicular to the plane where the Dirac
fermions are confined in the case of d =2+ 1 dimen-
sions (graphene). The equation of motion is solved by ¢, =
|dad|_c1]7n, where 7 is a solution to the differential equation
—V2p — sign(n)|n|?*~18@9(z,) = 0. Note that here oy <
0 since we want to apply the saddle-point technique. The

on-shell action is

2d

|77 Sy, (69)

Son—shell =

where Sy = [ d¥xd~ = [n|¢ is a positive constant independent
of Og.

At each time 7, the field configuration can be expressed by
an orthogonal basis ¢;(X):

P(T. %) = pe(¥ — %) + Y _ f;()p;(®). (70)
j

We can change the functional integration measure to X and f;.
The Jacobian associated with the change of variables is given

by
172 3/2
4 2 Sd
J=|:l_[/dx(8,¢c):| =[ } . an
i 3|ad|dj

and the quadratic kernel around the saddle-point solutions is
8°S[¢]
8c(x)8.(x)
[=VZ = (d = Dnl* 28D (@18 D (x = ).
(72)

Mx,x') =

It is straightforward to show that this kernel has a negative
eigenvalue by projecting it onto 1 in a manner analogous to
Eq. (27). We again assume that there is an odd number of
negative eigenvalues.

We are interested in the n-point correlation function,

Gal@a; X,) = / Do [ [p(xpe™. (73)
j=1
In the saddle-point approximation, the imaginary part of this
correlation function is

1
ImG,(ag) = % Z/Jd3xoe_s[¢"] /th
be

d . gd .t ’
x l_[(p(xj)e*fd xdx' 1 ()M (x,x" )1 (x)
Jj=1
2—d)S4
1 (g) R Pl o]
d7z\ 3 ) i(det MOV2 (g iz
(74)

where Fn(X,,;n):fd3x0]_[;=1 n(X; —Xo). Because the
effective action is scale invariant, i.e., invariant under
n(x) = b~ 'n(x/b), the scaling freedom needs to be
fixed in the path integral. Using a similar method to
what is shown in Eq. (35), we arrive at F,(X,;n) =
Sy [ dlogh® [ dxy M- b~'n(*5=).  The
coefficient is then

expansion

1 (Sa\? iF(Xu:n)
diz \ 3 (det M)1/2
[ el )

AP @) = (-1)

o TT (_Z)k+l+g
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= (-1

d—2 (Si\? iF(Xu:n)
2rdi=2 \ 3 ) (det M)!/2

2d \THT r4-2  n43
—_— 'y ——=% .
X((d—md) ( 2 T )

(75)

Comparing Eq. (75) to Eq. (19), we obtain the large-order
expansion of the 8 equation:

d
L _S e, (76)
k

dlogu

2d 1\TF o fd—2
N VY et S22 h
Cp o (=1) (d—ZSd> k ( . k>.. (77)

The kth-order expansion coefficient of the 8 function is pro-
portional to (%k)!. It is less than the asymptotic expansion
coefficient ~k! in the pure ¢* theory in d < 4 dimensions. In
the (2 + 1)-dimensional Dirac fermion theory with Coulomb
interactions, the asymptotic coefficient is proportional to (’5‘)!.
Since every term in the asymptotic expansion is bounded by
that of a pure ¢4 model, we can conclude that if there is no
Landau pole in pure ¢* theory, then there is no Landau pole in
the Dirac fermion theory with Coulomb interactions. This is a
direct consequence of the fact that the existence of a Landau
pole is fully determined by the asymptotic behavior of the g
function, as shown in Eq. (3).

V. DISCUSSION AND CONCLUSION

Since the seminal works of Wilson [23,24], it has been
understood that quantum field theories are essentially effective
descriptions of the low-energy and long-wavelength behav-
ior of an underlying physical system, and the quest for an
axiomatic foundation of quantum field theories, fashionable
during the 1960s, is futile and unnecessary. Such an effective
field theory description is of course particularly germane in
condensed matter systems where the existence of a physical
lattice imposes a real high-energy short-distance cutoff on any
continuum description. It is remarkable that such theories can
give quantitatively accurate predictions over a wide variety
of systems and phenomena, ranging from Kosterlitz-Thouless
transitions in Josephson-junction arrays to the tricritical point
where water and gas can no longer be distinguished. In the
context of particle physics, the Landau pole issue is often
viewed as purely academic, because when a pole appears, it is
typically at an incredibly high energy scale, and one normally
assumes that even if the pole is a real feature of the field
theory, the theory itself will likely become invalid by the time
this energy is reached. It is difficult to make these statements
precise because, in the particle physics context, effective field
theories capture the low-energy limit of a system whose high-
energy, microscopic degrees of freedom are often unknown.
In addition, the continuum is presumably real in particle
physics since there is no underlying physical lattice providing
a short-distance cutoff. Appealing to the possibility of a
theory with the Landau pole becoming inapplicable at high
energies (where the pole presumably lies) because some other
theories may control the physics at the higher energy scale
is not aesthetically pleasing because the disturbing question

still remains about the existence of the original theory with
the Landau pole (e.g., QED): Is it a well-defined interacting
theory or is it trivial?

The Landau pole problem becomes a bit more concrete
in condensed matter systems, because the limitations of such
theories are typically known and determined by lattice-scale
cutoffs. This raises interesting questions: Is it possible for a
Landau pole to occur below the lattice-scale cutoff? What
would be the experimental implications of this? The ef-
fective field theory point of view makes the Landau pole
existence question rather subtle though. The fact that all
symmetry-allowed terms can become important in the high-
energy regime of an effective field theory makes it particularly
challenging to determine if a Landau pole arises. Because the
Landau pole is by definition a high-energy phenomenon, it
does not matter whether these terms influence the low-energy
properties of the theory or not. In the critical quantum magnet
described by the ¢* theory, > (n > 2) potentials are present
without question. Although irrelevant to the long-wavelength
critical phenomena, the appearance of a ¢°® potential on top of
the ¢* theory can significantly change the fate of the Landau
pole at high energies (which is a short-distance rather than
a long-wavelength phenomenon), as we have shown. On the
one hand, at small orders of the 8 function, we find that the
Landau pole is removed and replaced by a new ultraviolet
fixed point because of the coupled RG flow of A4 and Ag. On
the other hand, at large orders, the asymptotic expansion of
the B function gets a large contribution from Ag, which can
also alter the fate of the Landau pole. What happens if other
¢*" terms are also included in the analysis? Ultimately, it may
have to be decided by experiments that probe strong-coupling,
high-energy regimes to finally settle the Landau pole issue in
condensed matter systems.

We note that there is nothing in principle ruling out the
possible existence of a Landau pole in condensed matter
systems at energy scales well below the ultraviolet lattice
cutoff scale, making the issue relevant both theoretically and
experimentally. In fact, rough estimates suggest that this may
indeed be the case for systems currently under investigation.
The well-studied three-dimensional antiferromagnet TICuClj
features an O(3) quantum phase transition realized by tuning
the pressure. From Ref. [30], the quartic interaction strength
at the quantum critical point of TICuCls is estimated to be
around A4 =~ 0.23 /47 at 1 meV, and accordingly the one-loop
calculation predicts that the Landau pole occurs at 3.5 meV,
which is far below the lattice scale. For comparison, the mea-
sured magnon dispersion at zero pressure (in the disordered
phase) reaches as high as 7 meV [41], well above the predicted
Landau pole energy. In the ordered phase, the reported gap of
the longitudinal excitation reaches about 1.2 meV [42]. These
facts imply that the predicted Landau pole is within the reach
of experiments. A possible signature of a Landau pole could
come from the fact that a diverging quartic interaction should
cause a strong decay of the longitudinal mode to transversal
modes in the ordered phase. This in turn suggests that the
decay width should exhibit a significant enhancement if there
is a Landau pole. However, existing data show no evidence of
such an increase in the linewidth (cf. Ref. [43]). On the other
hand, there has by no means been an exhaustive search, and
a systematic experimental survey at energies approaching the
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lattice scale is required to settle this issue. We believe that
experiments in quantum magnets looking for signatures of
Landau poles are needed given that the existence of an infinite
number of symmetry-allowed field operators (i.e., all the ¢"
terms) in the theory make a decisive theoretical conclusion
impossible.

We also examined a second type of condensed matter
system (namely, graphene) searching for Landau poles: Dirac
fermions in 2 4 1 dimensions with Coulomb interactions.
This is the QED analog of the Landau pole (albeit in two
spatial dimensions). We argued with the help of a Ward
identity that the renormalization group flow is controlled by
a single parameter [35], the fine structure constant o ~ %7 (or
equivalently the Fermi velocity). Both perturbation theory in
« and the large-N expansion to leading order suggest that the
Landau pole is absent in graphene. However, keeping only
the first few orders in perturbation theory is insufficient to
address the issue. Therefore, we also evaluated the coeffi-
cients of high-order terms in the asymptotic series using a
nonperturbative approach adapted from the Lipatov method.
Similarly to the case of relativistic fermions with Yukawa-
type interactions [19,38], the asymptotic coefficient is, for
d < 4 dimensions, bounded by that of the four-dimensional
pure ¢* theory, and consequently graphene is free of Landau
poles if the pure ¢* theory does not manifest a Landau pole.
Moreover, the knowledge of the asymptotic series combined
with a few small-order coefficients can be used as the input
into a resummation technique that could potentially lead to a
resolution of the Landau pole problem that is independent of
pure ¢* theory in this particular context [20,21]. We leave this
technically demanding calculation to future work.

Finally, we point to another direction for possible future in-
vestigations. As is apparent from the form of the fine structure
constant, small velocities can yield large coupling strengths. It
is worth noting that the Fermi velocity at the charge neutrality
point in twisted bilayer graphene near the magic angle is
extremely small [26-29]. This suggests that this system could
be a particularly interesting place to explore the Landau pole
problem, assuming the continuum Dirac description is still
valid here. We can estimate the Landau pole energy scale
using the result for the one-loop B function, which yields
E; ~ hvp/ne*™®, where n is the carrier density and « is
the effective coupling (fine structure constant). Typical values
for these quantities are vy &~ 10® cm/s and n ~ 10'? cm™2.
For graphene grown on a BN substrate where o ~ 0.4 /2,
E; ~ 10° eV, which is several orders of magnitude larger than
the lattice cutoff. On the other hand, for suspended graphene
where a ~ 2.2m /2, the Landau pole energy is around Ej ~
0.4 eV, which is comparable to the lattice scale. Interestingly,
for twisted bilayer graphene on hBN where o ~ 107 /2, the
Landau pole energy is further suppressed to E; ~ 98 meV.
This suggests that the Landau pole could be very likely within
the reach of experiments. A possible signature could come
from the fact that the Fermi velocity should be strongly sup-
pressed as the Landau pole energy scale is approached due to
the fact that the velocity gets renormalized and scales as 1/c.
This in turn could lead to interaction-enhanced dispersion
flattening and strong effective couplings that could persist as
the system is tuned slightly away from a magic angle. In fact,
it was reported in Ref. [29] that the running coupling constant

extracted from experiments is not consistent with a one-loop
calculation, indicating that intriguing strong-coupling effects
may be taking place in twisted bilayer graphene. Such strong
interaction effects, in light of our discussion, may provide
important insights on the Landau pole problem as it pertains
to Dirac fermions. On the other hand, if a small gap is opening
up at the Dirac point in the twisted bilayer graphene, then the
Dirac description fails at low energies, and the Landau pole
issue becomes moot.

It may be useful to emphasize that the detailed analysis
of Ref. [29] focusing on the twisted bilayer graphene ex-
periments of Refs. [27,28] and Ref. [44] came to the con-
clusion that the measured effective mass and Fermi velocity
near the Dirac cone of low-angle twisted bilayer graphene
agrees with strong-coupling nonperturbative theories such as
the resummed Borel-Padé perturbation series and the 1/N
expansion, while disagreeing very strongly with the one-loop
perturbative RG theory. In particular, the one-loop theory
predicts a very large renormalization of the effective mass
and the Fermi velocity for the large (« ~ 107 /2) effective
fine structure constant in the system, which is simply not
observed experimentally. If these preliminary experimental
results hold in future measurements in flat-band twisted bi-
layer graphene, where the effective interaction strength is
very large, one inevitable conclusion is that the Landau pole
as inferred from the running of the coupling implied by the
one-loop perturbative RG theory does not exist (and is purely
an artifact of the one-loop theory) since the one-loop theory
seems unable to quantitatively describe the running of the
coupling at large coupling. These preliminary measurements
should be repeated in future experiments for a definitive
resolution of the question of Landau poles in graphene since
its implications extend far beyond graphene all the way to
QED, where o ~ 1/137, and the RG running of the coupling
all the way to the Landau pole in laboratory experiments is
manifestly impossible. Careful experimental investigation of
twisted bilayer graphene near the Dirac point may finally shed
light on the 80-year-old question of the existence or not of
Landau poles in quantum electrodynamics.
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APPENDIX A: PERTURBATIVE RENORMALIZATION
GROUP ANALYSIS OF ¢* + ¢* THEORY

Since there are two vertices, the structure of Feynman
diagrams is

L=1-V,—Vg+1, (A1)

E =4V, + 6V, — 21, (A2)

where L, I, and E denote the number of loops, internal
propagators, and eternal propagators, and V, and Vi denote
the number of four-vertices and six-vertices, respectively. For
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(a) (b)

FIG. 3. Feynman diagrams contribute to the B equation of the
polarization. The solid line represents the boson propagator of the
same index, and the wavy line represent short-range interactions (¢*
and ¢° vertices).

the RG equation at the one-loop level, the Feynman diagrams
contributing to the RG of polarization (V4, V) = (1, 0), four-
point vertex (2,0), (0, 1), and six-point vertex (1, 1), (3,0)
are shown in Figs. 3-5.

The renormalized action coming from the Feynman dia-
grams is

5S = / ddx|:g4(2N +4) / G(k)¢*
k
+g6(3N + 12) / G(k)¢*
k
_ %gi(gjv + 64) f G(ky’¢*
k

— 8486(12N + 168) / G(k)*¢°
k

1
+ ggi(64N+ 1664) f G(k)3¢6]. (A3)
k

Using the momentum shell, the loop integrals are
/ Glk) = / P _ A A (A4)

¢ e BR4r o Qo l+F

A 1 Ag_ l
G(k)* = / = . (AS
-/k “ ko (kR4 Qo (1+7)? (A

f Gky = / P A l (A6)
f T 24?3 @) A2 +7)3

Ay A _ .
where fk = /A (Zﬂ)d = (ZdT)]dee—l kd ldk, [ > 0 is the run-

ning parameter, and 7 =rA~2. A, is the area of the d-
dimensional unit sphere. Using these integrals, we arrive at

T

(a) (b) (c)
i
B

(d) (e)

FIG. 4. Feynman diagrams contribute to the B equation of the
four-point vertex.

(a) (b) (c)

TR & 5
%“i?

FIG. 5. Feynman diagrams contribute to the B equation of the
six-point vertex.

the effective action

> /dd Lag> 4 (L4 guon 4 420t A 0
= x| = —r
2 " T Q) 1+ 7
Aaor A%
3N + 12
+<4+86( + )(2 ¥MIt7

1 Agy 1 A
a 2g§(8N O o T+ f)2>¢

l
+ <g6 — g486(12N + 168)

(2 )d (1+7)7

l 6
(2 >d A2(1 +r)3)¢ } A7

which leads to the 8 equations in Egs. (5) and (6) by setting
7 = 0 to restrict to the critical surface.

+— g4(64N +1664) d-1

APPENDIX B: ZERO-DIMENSIONAL ¢* + ¢°* THEORY:
A TOY MODEL

Here, we study a toy model [19] to better illustrate the field
theory calculation. The following integral is a zero-dimension
“toy” version of the ¢* theory:

Z(gy) = dxe~ (37, (B1)

1
21 /
The integral can be done analytically,

8g4 K (%)
Z(g4) = —(———, (B2)
2./mgs
where K is a modified Bessel function of the second kind. It
is apparent that Z(g4) has a branch cut at g4 € (—00, 0) if one
analytically continues g4 to the complex plane. As a result, the
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integral is controlled by the branch cut, namely,

2 )_/0 dz Z(z +ie) — Z(z — i€)
=] oxi Z— g

0
/ ﬂ ImZ(z) (B3)

—o0 T 2= 84

We are interested in getting the asymptotic expansion at the
strong-coupling limit,

Z(g4) = k — oo. (B4)

oo
k
Z Argy,
k=0
To get the answer, it is straightforward to expand the integral

( 1) A k 4kg12’ (BS)

Z(g4) = / e
V2 k k!
from which
—1)¢T(2k+ 1 1)
Ak=( I 2)—>( )4k(k—1)!, (B6)
T k! 27
where we have used the Stirling formula and the identity
1 2n)!
r = B7
(n+ 2) o ,f (B7)

We see that the asymptotic expansion is not convergent.

There is another way to get the asymptotic expansion,
which relates the expansion coefficient to the branch cut of
ga. To get the expansion coefficient, we use

4 _[1 o /0 dzImZ(z):| B /0 dzImZ(z)
Tk o g w0 oo P

(B8)

from which we know the expansion coefficient through the
imaginary part of Z(g4) at the branch cut.

When g4 is negative, one needs to continue the variable
x to make the integral converged. For g41 = g4 & €, making
x = pe?, the ¢* potential in Eq. (B1) is given by

84+ |gal i
x4 — 4eim+z40
4 4

|g4| p*lcos(£m + 40) + isin(+m +40)].  (BY)

Thus, we can use a different contour at |x| > 1 for g4:

3r b4
84 = 84+, Y <0< g (B10)
b4 3
84 = 84— 3 <6< Yl (B1D)

Instead of evaluating the integral directly, we can use the
saddle-point approximation, which can be extended to the
field theory. The saddle-point equation is

x+gx® =0, (B12)

where the saddle points are x =0 and x = :I:\/%g“. Appar-
ently, x = 0 does not contribute to the imaginary part. And

the other two saddle points lead to the contribution

1 1.2, z.4 —ico 2
ImZ(z) = — - (§X;+;Xx)/ dxe*
x?l A/ 27T 100
S=ET=
L4 (B13)
= ——c¢
V2
Thus, we get the coefficient
0 k
dz 1 .1 (="
Ay = — ———e% = 4T (k)
¢ oo /27 2 NG
(=DF
= 4%k — 1)!. (B14)
«/Zn

It is precisely the asymptotic expansion shown in Eq. (B6).
From this lesson, we know that it is the unstable saddle point
giving rise to the imaginary contribution, and consequently to
the asymptotic expansion.

Now let us consider another integral that is the zero-
dimensional version of the ¢* + ¢ theory,

1
Ziai.g0) = = [ dxe B15)
S(x) = —x +‘T 4+%6 6 (B16)

Unlike the zero-dimensional ¢* integral, Z(g4, g6) is analytic
for all g4 as long as g > 0. The branch cut comes from
86 € (—00,0). So we can use the same strategy to get the
asymptotic expansion coefficient of gs. The asymptotic ex-
pansion of Z(gy, g¢) is given by

Z (g4, g6) — ZAkgﬁ + Y Be(gade»
k'>0

where Ay is given by Eq. (B14). Similar to Eq. (BS), the
asymptotic expansion of g¢ is given by

0
dzImZ (g4, 7)
Bk(g4)=/ P T

(B17)

(B18)

We can use the saddle-point approximation to get the imagi-
nary part of the integral. In the following, we consider g4 as a
small perturbation. The saddle-point equation is (g4 = 0, g¢ <
0)

x+gex° =0, (319)

and the saddle points are (for g < 0) x =0, x, = £ ——7 - ), 7.
The quadratic fluctuation near the saddle-point solution is
given by

1 2
S(Bx) & ==+ ——— — 2627,

4 g 3V —8&s

where we include 4x4 as a perturbation. As expected from

the unstable solution, the fluctuation has a negative mass.
This contributes to the imaginary part of integral; namely, the
imaginary part of the integral is given by

(B20)

1 1 —ioo
ImZ(gs, g6) = — Y —— déxe 500
mZ(g4, &) 21.;; e /ioo xe
| A
:_564% W (B21)
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from which we can get the asymptotic expansion

(=D _

11
B = frenu(k, =, — |, B22
(84) g, T'(2k) ( 3 9g4> (B22)

where U is the confluent hypergeometric function.
Thus, the theory has at least two fates. On the one hand, if
g4 > g6, the asymptotic expansion coefficient of gs vanishes:

lim Bi(g4) =0. (B23)
84—> 0
The expansion is controlled by A; in Eq. (B14) as expected.
On the other hand, if g4 < g¢, We recover the asymptotic
expansion of the pure ¢ integral,
. (=DF (—1)e*
lim B, = —9T2k) > ———
oy Bi(ga) = — =Tk =
To check this, it is straightforward to calculate the coefficient
directly:

(k") (B24)

(—8)

1 i
Bi(0) = a E/wdxx6ke 3
(=9 TEk+1)  (—1re
- ﬁ F(k+12) 2(7tk)3/2(k!)2' (B25)

We can see that the results from the saddle-point approx-
imation exactly reproduce the asymptotic expansion. More
importantly, different from the ¢* integral, the asymptotic
coefficient of the ¢° integral increases as (k!)?, which is
qualitatively different from that of the ¢* theory.

APPENDIX C: SADDLE-POINT SOLUTIONS
OF ¢* AND ¢* THEORIES

The saddle-point equation for pure, massless ¢* theory is
°E4+ £ =0. (C1)

We assume that £(x) is spherically symmetric; i.e., it only
depends on x* = Zflzl xiz, where d is the dimension of the
(Euclidean) space-time. Writing f(y) = £(x) where y = x,
Eq. (C1) becomes

Af" () + 2df'3) + () = 0. (€2)
In d = 4 dimensions, the solution to this equation is
c+2 Je c+ 2)
= sn{ ——=1lo , C3
fo =/ . <2ﬁ g0/y0)|— (C3)

where sn(w, m) is the Jacobi elliptic function, and yy and ¢ are
integration constants. For ¢ ~ 0, this reduces to

16./cyo
fO)=———. (C4)
cy + 32y
If we then set ¢ = £2 and yy = £1/16, this becomes
232
=+—. Cs
VG Tty (€5

The fact that we can set ¢ = %2 in the last step and still obtain
a valid solution is a consequence of the scale invariance of
Eq. (C1). Does Eq. (C3) contain other valid solutions beyond
Eq. (C5)? To answer this question, we return to Eq. (C2)

and analyze the large-y behavior. As y — 0o, we require
f(y) — 0 because we need the action at the saddle point,
So = f d?x£%(x), to be finite so that it makes a non-negligible
contribution to the correlation function. In this limit, the £3(y)
term either decays more quickly than the other two terms in
Eq. (C2) or it is comparable to them. If it is comparable, then
the solution behaves as

Vd -3
VY

This implies that &(x) ~ 1/|x| as |x| — oo, which in turn
leads to a divergent action, Sy — oo, for dimension d > 4.
Therefore, we discard such solutions and instead consider the
case where the f3(y) decays faster than the other terms in
Eq. (C2). In this case, the asymptotic behavior of f(y) is

1-d/2

fOo)— =

as y— 0o.

(Co)

fO)—cy (CT

where c is a constant. This yields &(x) ~ |x as |x| — oo,
and the action is finite for d > 3. When d = 4, this asymptotic
behavior is of course the same as that of Eq. (C5). The
constant ¢ in Eq. (C7) is again a reflection of the scale
invariance of the solutions, and so we conclude that the only
two solutions with finite action are those given in Eq. (C5).
The saddle-point equation for pure, massless ¢° theory is

Fx+x>=0. (&)

as y— 00,
|2—d

We again assume that x (x) is spherically symmetric, in which
case Eq. (C8) reduces to

4y¢"(v) +2dg () + £(v) = 0, (C9)

where g(y) = x(x). We require that the solutions vanish as
y — oo sothat Sg = [ d?xx®(x) < oo.1If g°(y) is comparable
to the other two terms in Eq. (C9) as y — oo, then the
asymptotic behavior is

(2d —5)1/4
V2yl/4 )

This implies that x (x) ~ 1/4/[x] as |x| — oo, which in turn
leads to a divergent S¢ for d > 3. We therefore conclude
that the g°(y) term decays faster than the other two terms
in Eq. (C9), which then yields the following asymptotic
behavior:

gy) — % (C10)

gy) — cy' /2 (C11)

Because Eq. (C8) has a scale invariance such that if y (x) is
a solution then so is 67!y (x/b?), we understand that ¢ is a
redundant scale factor. Therefore, there are only two distinct
solutions of Eq. (C8) that contribute to correlation functions,
and these two solutions are related by an overall minus sign.

as y — o0.

APPENDIX D: QUASILOCAL APPROXIMATION
OF A DETERMINANT

First consider a determinant [19]

det(—A 4+ m? + gV (X)) (—A +m?) 7!, (D1)
where A = Zi 83. A useful formula is
-1 Fdt 4 g
TrlogAB™" = —Tr T(e —e ). (D2)
0
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Since we are interested in the large-g behavior, the integral
is dominated by the small-# regime. We can use the quasilo-
cal [19,38] approximation:

e_(_ A gV () ~ e_t(_A+m2)e_th(X)' (D3)

Now we have

Trlog(—A +m* + gV (x))(—A + m?*) ™!

*® dt
= —Tr/ —e
0

= — /oo ﬂ p —t(p2+m2) / ddx(e—ng(x) -1
@ny¢

dtl

—t(— A+m2)(efth(x) -1

- <4n>d/2/ f Ll e ]
I'(—d/2
T (Elﬂ )d//z) dx{(m? + gV (x)** —m?). (D4

One can also evaluate the correction to the above approx-
imation orderby order using the Baker-Campbell-Hausdorff
formula. But we do not consider these corrections here.

Now we include spin, and consider the determinant of the
Dirac operator,

D(e) = det(§ + iegpy” + m)(d +m)~", (D5)

where § = y*9,, and y* is the 4 x 4 Dirac matrix. Here to
regularize the determinant, we introduce a mass m. We set it to
zero in the final step to retain the gapless Dirac dispersion. To
evaluate the determinant, note that, under the parity symmetry,

D(e) — det(—F — iegpy’ + m)(—F +m)~".  (D6)
As a result, we can evaluate the square of determinant, i.e.,
log D(e)* = Trlog(—A + &2¢* + m*)(—A +m*) ™!, (D7)

where we have assumed the field ¢ is large and smooth to
neglect the correction from derivatives and used the fact the y
matrix is traceless. From Eq. (D4), we note

2I'(—d/2) 42y - mdi|'

e | 4or
(D8)

D(e) = exp |:—

Now we can safely send m to zero to get the effective field
theory in Eq. (67). Including the Fermi velocity and the
fermion species N, the final answer is modified as
2I'(—d/2)
'D(e) = exXp |: — W
N d 2 1 ,2424d/2 d
XF dx[(m” 4+ e“¢p”)* —m®]|.

(D9)
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