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Repeated sequential learning increases memory capacity via effective decorrelation
in a recurrent neural network
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Memories in neural systems are shaped through the interplay of neural and learning dynamics under external
inputs. This interplay can result in either overwriting or strengthening of memories as the system is repeatedly
exposed to multiple input-output mappings, but it is unclear which effect dominates. By introducing a simple
local learning rule to a neural network, we found that the memory capacity is drastically increased by sequentially
repeating the learning steps of input-output mappings. We show that the resulting connectivity decorrelates
the target patterns. This process is associated with the emergence of spontaneous activity that intermittently
exhibits neural patterns corresponding to embedded memories. Stabilization of memories is achieved by a
distinct bifurcation from the spontaneous activity under the application of each input.
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I. INTRODUCTION

Time always moves forward. Accordingly, the brain learns
to appropriately respond to various inputs by sequential ex-
posure. In neural systems, synaptic connections are modified
to shape neural dynamics such that the applied stimulus and
desired response are adequately represented therein. After
learning, the stimulus is represented according to the shaped
neural dynamics [1–5]. How memories are successively em-
bedded into neural dynamics through the interplay between
the neural dynamics and learning process is a crucial question
in neuroscience.

To understand the representation of memories in neural
systems, associative memory models are often studied. In
conventional models [6–8], multiple memories are embedded
into corresponding attractors and are generated by a sim-
ple learning rule. In spite of their success, however, neural
dynamics in these models are often decoupled from those
of synapses—synapses are slowly modified according to the
desired targets, and the faster neural dynamics of relaxation
to memory attractors are studied independently [1,9] (but see
also [10]).
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In contrast, we previously proposed a novel associative
memory model [11] in which input-output associations are
learned on the background of chaotic spontaneous dynamics,
while synaptic and neural dynamics coevolve. In that study,
however, each pattern was only presented once during learn-
ing, and existing memories were gradually eroded as new
patterns were learned.

In the present study, we first introduce a theoretical for-
mulation for a sequential and repeated learning process. By
studying this learning process, we investigated if all memories
are able to be successfully stored by repeated learning. If so,
we then address what kind of neural network emerges during
this process and how memories are represented in neural
dynamics upon input. We also study spontaneous dynamics
without input, which were suggested to be involved in com-
putations in neural systems [12–17].

II. RESULTS

A. Memory capacity

We consider a model that consists of N continuous rate-
coding neurons to memorize M input-output (I/O) mappings
(indexed by μ). The activity x = {xi} (i = 1, 2, . . . , N ) is set
between −1 and 1 and evolves according to

ẋi = tanh

⎡
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(a) (b) (c)

FIG. 1. Recall performance in trained networks. (a) Overlaps mμ = �ixiξ
μ
i /N are shown for μ = 1, 2, 3. Inputs 1 and then 2 are applied

for 50 � t < 100 and 100 � t < 150, respectively. (b) Overlaps [mμ] averaged over time; networks and trials are plotted for three values of
M, after learning every map once (T = M steps, dashed) or many times (T = 30M, solid). Patterns are sorted according to decreasing overlaps
(indicated by “sorted μ” in this and following figures). Network size is N = 200. (c) Scaling of memory capacity for T = 30M. Average
overlap [〈mμ〉] averaged over all patterns μ as a function of α = M/N for different network sizes. Inset: Overlap 〈mμ〉 at α = 0.35. Results for
(b) and (c) are averages from five network realizations, and five trials in each realization.

where Ji j denotes a connection from the jth to the ith neuron,
an N-dimensional vector ημ is an input pattern, and γ and β

are input strength and activation function gain, respectively.
For each input ημ, we set an N-dimensional vector ξμ

as a target. These input and target patterns are generated
as random N-bit binary patterns, with probabilities P(ξi =
±1) = P(ηi = ±1) = 1/2. In the presence of each input ημ,
the corresponding target ξμ is required to be recalled, i.e., an
attractor matching ξμ is generated. The learning process is
required to modify the connectivity J such that the network
recalls the targets.

Previously [11], we showed such a memory structure is
formed through a simple learning rule: J̇i j = (ε/N )(ξμ

i −
xi )x j . To enable repeated sequential learning, we added a
decay term to the previous rule that maintains the norm of
the connectivity constant despite the ongoing exposure to new
stimuli:

J̇i j = (ε/N )
(
ξ

μ
i − xi

)
(x j − hiJi j ), (2)

where hi = ∑
j �=i Ji jx j , and ε is the learning rate. Indeed, the

norm changes according to d (
∑

j �=i J2
i j )/dt ∝ (1 − ∑

j �=i J2
i j ).

We thus initialize
∑

j �=i J2
i j = 1 by choosing Ji j with the binary

values P[Ji j = ±(N − 1)−1/2] = 1/2, and the diagonal entries
of J are kept at zero during the entire process. Learning stops
automatically when the neural activity matches the target,
because J̇i j = 0; otherwise, the learning process continues.
Here we imposed M I/O maps successively in the following
manner: An input ημ is applied until learning is completed
(this is called a single learning step) and then the following
input is applied to learn the following corresponding target.
This is done for a total of T (>M ) steps, where the first M
steps correspond to the ordered maps (μ = 1, 2, . . . , M), and
the following T − M steps are in random order.

Figure 1(a) shows the recall processes in response to
two input patterns after learning. Without input, spontaneous
activity has occasional similarities to the learned patterns.
Once input η1 is applied, the neural dynamics are modified
and rapidly converge to ξ1. Similarly, the later introduction
of η2 leads to convergence to ξ2. In this and the following
analysis we set γ = 1.0, β = 4.0, N = 200, and ε = 0.03,
unless otherwise stated.

We first analyzed how repeated learning enhances the
memory capacity. For this purpose, we computed the temporal
average of all overlaps [mμ] = [�ixiξ

μ
i /N] in the presence of

inputs ημ (μ = 1, . . . , M ), where the symbols ... and [· · · ]
represent averages over time or over networks and trials,
respectively. Figure 1(b) shows that after learning each map
only once (T = M learning steps, dashed lines), networks
can recall only one or two targets perfectly and overlaps
with other targets decrease rapidly, independent of M. After
learning these targets more and more times (T = 30M, solid
lines), however, recall performance increases and all of the
targets are recalled perfectly for small M, with a decrease in
performance as M increases. For the value of N = 200, we
found the limit of memory between M = 60 and 80, namely,
α = M/N = 0.3–0.4.

To evaluate this memory capacity more accurately, we
calculated the averaged overlap [〈[mμ]〉

μ
] and plotted it for

different N in Fig 1(c), where 〈· · · 〉μ represents average
over maps. After T = M learning steps, the average overlap
decreases rapidly, while, after T = 30M learning steps, the
overlap is maintained at around unity up to α = 0.35 (see
Fig. 6 in the Appendix for more details). Therefore, the
capacity of the present model is estimated to be αc = 0.35
[18]. To explore dependence of the memory on T , we ex-
amined [〈mμ〉

μ
] for different T . We found that the memory

capacity increases monotonically as T increases and saturates
around T = 20M (see Fig. 6). Thus, we studied the behavior
for T = M and 30M as typical samples in the earlier and
later stages of learning and that for α = 0.3 unless otherwise
stated.

Enhancement in the memory capacity after iterative learn-
ing is not trivial, but depends on the learning rate ε, the
activation function gain β, and input strength γ . As shown
in Fig. 6, the memory capacity is decreased as ε increases
and β decreases, as well as for much larger and much smaller
γ . In particular, the memory capacity for ε � 1 and β � 1
decreases to almost a single map, and cannot be increased
by repeated learning. This result indicates that the nature
of neural dynamics and a relation between the timescales
of neural and learning dynamics, as well as input strength,
are important to enhance memory capacity through repeated
learning.

023307-2



REPEATED SEQUENTIAL LEARNING INCREASES MEMORY … PHYSICAL REVIEW RESEARCH 2, 023307 (2020)

(a) (b) (c)

(d) (e)

FIG. 2. Comparison of memory performance with other models. (a) Overlaps with targets are illustrated for M = 40, 60, 80, 100, 120 for
the Perceptron model, same as that in Fig. 1(b). (b) Recall performance as a function of memory load for different models. Magenta, blue, and
green circles indicate performance in the modified pseudoinverse model, Hopfield-type network, and Perceptron model, respectively. Filled
and empty circles represent initial conditions near and far from the target, respectively. These two conditions are overlapping for Hopfield
(blue) and Perceptron (green). Gray line is the performance in our model for reference. (c) The number of learning steps required for the
modified pseudoinverse model to learn αN maps is plotted. (d) Stability of modified pseudoinverse attractors. Five trajectories were initialized
either from the vicinity of the target (gray, |x − ξ| < 0.001) or from randomly chosen states (black). α = 0.3. (e) Similar to (d), for our model.
Distance from targets was 0, 0.1, or 0.5. α = 0.3 and N = 200.

B. Comparison with other models

To put our learning rule’s performance into perspective,
we analyzed memory capacity in three different models: a
Perceptron online learning rule, a pseudoinverse model with-
out neural dynamics [19–21], and Hopfield-type connectivity
[11,22], which is a function of the desired maps without online
learning.

1. Perceptron model

As in our model, connectivity is modified online in paral-
lel to the evolution of neural dynamics. Each learning step
consists of presenting ημ and modifying connectivity until
convergence according to

J̇i j = (ε/N )ξμ
i x j . (3)

After learning each map, J is normalized to � jJ2
i j = 1. Then, a

new map is applied and a new learning step begins. Note that if
the target pattern is stable in the presence of the corresponding
input, neural dynamics rapidly converge to the target and
the learning process is terminated, thus, modification of the
connection is quite small.

We explored the performance of this model for various
values of M after 10M learning steps. We found that networks
could only recall the last presented map, forgetting all earlier
ones [Fig. 2(a)]. This behavior was not improved for smaller
ε. Thus, the performance of this model is much lower than
ours [green circles in Fig. 2(b)].

We speculate that the postsynaptic factor in the Perceptron
rule leads to larger changes to the weights, that destabilize
previous memories.

2. Pseudoinverse model

In the pseudoinverse model, connectivity is modified ac-
cording to

	Ji j = (1/N )
(
ξ

μ
i − uμ

i

)
ξ

μ
j , (4)

where the local field uμ
i = � j �=iJi jξ

μ
j + η

μ
i . Diagonal ele-

ments are kept at zero. We use the symbol 	J and not J̇ to
stress that connectivity is modified without neural dynamics.
This is an adaptation of the original pseudoinverse model
[19–21], to account for the heteroassociative nature of our
task. During learning, neural dynamics do not run and x is
quenched at ξ. The learning process is maintained until the
network can memorize all of the desired maps.

After learning with the modified rule, neural dynamics
run according to Eq. (1). The original autoassociative rule
was proved to achieve a capacity of α = 1.0 [21]. We thus
hypothesized that ξμ is an attractor in the presence of ημ for
all μ (α < 1.0).

To verify this hypothesis, We tested the memory capacity
of the modified pseudoinverse model. We plotted learning
steps for a network required to learn all of αN maps for
N = 200 in Fig. 2(c). As α increases, the number of required
steps rapidly increases and diverges for α = 1.0. Thus, the
capacity of the modified pseudoinverse model is just below
α = 1.0.

We investigated the stability of target attractors after learn-
ing in the modified pseudoinverse model. Figure 2(d) shows
two types of neural trajectories: one beginning from randomly
chosen initial states (black) and the other beginning from the
vicinity of the target (gray). We see that even neural states
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(a) (b) (c)

FIG. 3. (a) Evolution of singular values of the connectivity matrix through learning. Averages over five learned networks with N = 200 and
M = 60. Note the discontinuity at the Mth singular value as learning progresses. (b) Evolution of connectivity components 〈�μ(sκ,μ)2〉1�κ�M
for s = a, b, c, d during the learning process with chance level M/N = 0.3. (c) Interference to signal ratio as a function of memory load α for
early (blue, T = M) and late (magenta, T = 30M) learning stages.

beginning from the vicinity escape from the target, meaning
that the basin of attraction of the target attractor is quite
small. Thus, the learned attractors have a very small basin of
attraction.

In contrast, the attractors corresponding to the targets
formed through our learning process are very stable. Indeed,
neural trajectories from randomly chosen initial states con-
verge to the target even with noise as shown in Fig. 2(e).

To statistically confirm these observations, we analyzed
and plotted recall performance in the modified pseudoinverse
model with the random initial states condition (open circles in
magenta) and the vicinity of the target condition (filled circles
in magenta) in Fig. 2(b).

3. Hopfield-type model

The Hopfield-type model [22] is a variant of the Hopfield
network [7] in which the connectivity J = �μ(ξμ − ημ)(ξμ +
ημ)t/N is given without a learning process. For this con-
nectivity, we calculated recall performance with the neural
dynamics in Eq. (1). Figure 2(b) (blue circles) shows that
[〈mμ〉

μ
] decreases rapidly as α increases. This is similar to

the behavior of our model in the early phase (T = M).
To sum up, our learning rule was more efficient than the

Perceptron, pseudoinverse, and Hopfield-type rules.

C. Decorrelation of inputs and targets through
the learning process

What are the changes to the connectivity in our model, J,
that improve the model’s performance with repeated learning?
Motivated by the structure of connections in the Hopfield
model [7] and our Hopfield-type models [11,22], we hy-
pothesized that the connectivity matrix in our model consists
mainly of linear combinations of ξ and η. We thus followed
the connectivity over the process of learning using a singular
value decomposition: J = UPV t , where U ,V are unitary
matrices, and P is a diagonal matrix whose elements are the
singular values. The singular values are plotted in the order
of their magnitude in Fig. 3(a). They decrease continuously
for earlier learning steps, while, after long learning, there
appears a large discontinuity at M (60 maps in this example).
This discontinuous drop at M at the late learning stage is
also observed for different values of N . We conclude that M
left and right singular vectors dominate the connectivity as
learning progresses.

If our hypothesis is correct, these M vectors consist
mainly of linear combinations of ξ and η and the other
N − M left and right singular vectors are in the normal space
to these combinations. To examine this point, we defined
estimates for the contributions of ξμ and ημ to uκ (vκ )
as aκ,μ and bκ,μ (cκ,μ and dκ,μ), respectively [23]. These
estimates are aκ,μ = �iuκ

i ξ
μ
i /N, bκ,μ = �iuκ

i η
μ
i /N, cκ,μ =

�iv
κ
i ξ

μ
i /N , and dκ,μ = �iv

κ
i η

μ
i /N . Here, uκ

i and vκ
i are ith

elements of κth left and right singular vectors, respectively.
Figure 3(b) shows 〈�μ(aκ,μ)2〉1�κ�M , the average contri-

bution of targets to all M dominant left singular vectors, as
well as the corresponding quantities for b, c, and d . All of
the values are much higher than chance level M/N = 0.3
meaning that the dominant M vectors mainly consist of targets
and inputs. Furthermore, the contribution of targets (a, c)
increases with learning.

We also found correlations between these contributions
(Fig. 7 in Appendix), allowing us to estimate bκ,μ ∼ kμaκ,μ

and dκ,μ ∼ lμcκ,μ. Thus, the dominant M left and right singu-
lar vectors are decomposed as

uκ ∼ �μaκ,μ(ξμ + kμημ), vκ ∼ �μcκ,μ(ξμ + lμημ), (5)

Furthermore, we found that aκ,μ is highly correlated with
cκ,μ across κ for a given μ, but not with cκ,ν (for ν �= μ,
Fig. 7). Altogether, we can decompose J as

J ∼ �μνSμν (ξμ + kμημ)(ξν + lνην )t , (6)

where Sμν = �κρ
κaκ,μcκ,ν and ρκ is the κth singular value.

To validate this approximation, we generated a new matrix
consisting only of the M dominant singular vectors and eval-
uated its recall performance [Fig. 7(b)]. We found that this
truncated matrix still allows good recall of a large number of
patterns, while the overlaps are slightly reduced, probably due
to the target and input components in the remaining singular
vectors.

Equation (6) suggests that S controls which input is
mapped to which target. We thus expected the off-diagonal
terms to be small. Indeed, the lack of correlation between
aκ,μ and cκ,ν shows that they are small. Additionally, these
nondiagonal terms are reduced as learning progresses, as
shown in Fig. 7(c).

It is important, however, that these nondiagonal terms are
not zero. This is due to the correlations among the inputs and
targets and between them. In the Hopfield-type model, Sμν =
δμν , and these correlations cause interference that limits ca-
pacity. Previously, this interference motivated the introduction
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of an inverse correlation matrix into the connectivity, leading
to increased capacity [19–21]. We thus wondered whether the
remaining nondiagonal terms also confer some decorrelation
in our case. To measure this, We define an interference
term Oλ = Jξλ − Sλλ(ξλ + kληλ). For a pure pseudoinverse
matrix, the interference term is zero independent of α, while
for the Hopfield-type case (Sμν = δμν), this term is propor-
tional to α. Figure 3(c) shows the interference-to-signal ratio,
1/〈Sλλ/|Oλ|〉λ for the connectivity shaped through learning in
our model [24]. We found that the ratio increases with α in the
earlier stage of learning (at T = M), but at the later stage of
learning (at T = 30M), it stays below 1 up to α = 0.35, which
equals to the capacity, and then increases. These results (and
further evidence in Fig. 7) show that indeed our learning rule
reduces interference caused by correlation between targets
and inputs.

This analysis raises a new question: What difference
between our model and the modified pseudoinverse model
causes the difference in the stability of memories? To answer
this question, we analyzed the connectivity formed by the
modified pseudoinverse model and calculated a, b, c, d in
the same manner as done for our model. We found that the
representation of inputs in the right singular vectors (dκ,μ)
is around chance level [Fig. 6(f)], while in our model, it is
much higher [Fig. 3(b)]. The higher dκ,μ, namely, the higher
lμ leads to Jημ + ημ ∼ ξμ by omitting O(N−1/2) according
to Eq. (6), resulting in a flow in phase space from x = ημ to
x = ξμ. Thus, the higher dkμ likely contributes to the stability
of the targets in our model compared to the pseudoinverse one.

D. Representation of memories

Next, we analyzed how memories are represented after
learning. Because the network operates with constant, and
not transient, inputs, we explored how the phase space varies
as the input is modified. We study both a transition from
spontaneous activity (γ = 0) to one input, and from one input
to another one.

Figure 4(a) shows a bifurcation diagram against γ for
T = 30M. Neural activity for γ = 0, i.e., spontaneous neural
activity, oscillates around the origin. As γ increases, it moves
towards a target while maintaining the oscillation amplitude.
At a certain strength, an attractor of the neural dynamics
bifurcates from the oscillation to form a fixed point corre-
sponding to the target. Neural dynamics projected onto a
two-dimensional plane is plotted around the bifurcation point
in Fig. 4(b). Neural activity with a large-amplitude oscillation
reduces into a fixed point corresponding to the target between
γ = 0.65 and 0.7. Beyond the bifurcation point, the fixed
point stays around the target as γ is increased. Thus, neural
activity corresponding to target recall is clearly distinguished
from other activities through a bifurcation and is stable against
a change in γ beyond the bifurcation point.

We next considered the transition between inputs, by using
a mixture of two learned inputs. As an example, the phase
diagram of m48 against the amplitude of two learned inputs
(η48, η49) is shown in Fig. 4(c). There is a region around the
pure input of η48 where the overlap with ξ48 remains high
despite the change in input. Once this boundary is crossed,
a bifurcation leads to oscillating dynamics (Fig. 8 in the

(a) (b)

(c) (d)

FIG. 4. (a) Bifurcation diagram showing the transition from
a fixed point to chaotic oscillations as input strength decreases.
Overlap with ξ84 shown for N = 300, T = 30M, and α = 0.3. Red
symbols show the average over both time and ten trials, while
black symbols show snapshots over time. Colored symbols refer
to panel (b). (b) Change in qualitative behavior in phase space as
input strength changes [different colors, indicated on panel (a)].
Neural activity is projected onto a two-dimensional plane defined
by overlaps. (c) Bifurcation diagram for a mixture of two inputs
(η48, η49). Color indicates overlap with m48. See also Fig. 8 in the
Appendix. (d) Bifurcation diagram for three quenched perturbations
of η84 (each in a different color). Overlap with the original pattern
shown as a function of the scaled quenched perturbation pattern ζ .

Appendix; note the vertical spread in the middle region). As
the input approaches η49, a symmetric image emerges with
respect to ξ48 (Fig. 8). These results show that each target is
represented as a globally attracting fixed point, separated by
bifurcations from the other target attractors.

We also evaluated the sensitivity of the attractor state to
modifications in the exact pattern of the inputs. To this end,
we added a quenched perturbation ζ of size s to the patterns:

η′μ = ημ + sζ (7)

(ζ ∈ RN , with independent and identically distributed ele-
ments from a uniform distribution over [−1, 1]). Figure 4(d)
shows a bifurcation diagram for increasing s and three real-
izations of ζ . There is a range of s values for which the global
attracting state persists and the network continues to generate
the correct target. Beyond a bifurcation point, depending on ζ

(roughly s = 0.2 for magenta and green, s = 0.35 for black),
neural activity becomes oscillatory, and the target is no longer
recalled. Thus, the target attractor is stable with respect to
perturbed input patterns.

E. Spontaneous activity

To close the analysis of neural dynamics, we explored
how spontaneous activity without input is related to recall
performance through learning. In early learning stages, spon-
taneous activity shows chaotic dynamics that intermittently
approach and depart from the targets [Fig. 9(a) in the Ap-
pendix]. Here, a few targets are approached much more
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(a) (b)

FIG. 5. Modification of spontaneous activity through learning
for M = 90 and N = 300. (a) The maximal overlap of spontaneous
activity with each target pattern during t ∈ [0, 1000]. Colors indicate
different stages of learning. Black solid and dashed lines indicate
overlaps with input and random patterns, respectively, for reference.
(b) Recall performance and dimensionality of spontaneous activity
as a function of learning steps T . Performance measured by average
overlaps with targets in response to inputs (gray, left axis). Dimen-
sionality measured by Lyapunov and PCA dimensions (magenta and
blue, respectively, right axis). Lyapunov dimension (DLyp) is defined
as n + �i�nλi/λn+1; here, λi is the ith largest Lyapunov exponent and
n is the largest index such that �i�nλi > 0. PCA dimension (DPCA)
is the number of PCs required to explain 0.8 of the variance. Four
network realizations are shown for each measure.

than the rest [Fig. 5(a)], and these patterns (as well as their
opposite patterns due to parity symmetry in our model) are
also recalled better [Fig. 9(b)]. In later stages of learning,
spontaneous activity approaches the targets in a more bal-
anced manner [Fig. 5(a)], and performance is high for all
targets [Fig. 9(b)]. We further analyzed neural dynamics by
using principal components (PCs) analysis and measuring the
Lyapunov dimension in Fig. 5(b). We found that the variation
of the spontaneous activity is larger and more chaotic as
learning progresses and recall performance is improved.

To confirm these relations between spontaneous activity
and recall performance generally, we examined the sponta-
neous activity for different ε in Figs. 9(c)–9(g). For smaller
ε, recall performance is higher and the spontaneous activity
shows a high-dimensional activity which is close to all of the
targets. As ε increases, recall performance decreases and the
spontaneous activity turns to be low-dimensional, approach-
ing only a few targets which are perfectly recalled. Finally,
for a large value (ε = 5), the input-less state converges to one
of a few of fixed points which are target patterns and only
these targets are successfully retrieved. These results support
the relation between a rich spontaneous activity approaching
the targets and heightened recall performance.

III. DISCUSSION

To sum, by studying neural networks that memorize I/O
maps, we have shown how repeated learning stabilizes each
memorized state and enhances memory capacity via the in-
terplay between neural dynamics and learning. In usual se-
quential learning, e.g., gradient descent method [25,26] and
palimpsest memory [27–29], connections are slowly shaped.
The network’s output moves in the direction of the desired
target, but does not match it after a single step. In contrast,

in the present study, connections are modified such that the
network generates the correct target after each consolidation
step. Thus, we can analyze how targets are embedded in
neural dynamics and how the representation of these targets
changes through learning. Interactions between neural dy-
namics and learning were investigated to reveal how neural
representation is shaped in several studies [1,2,9,10,30–32].
These studies, however, did not focus on parametric effects
of neural dynamics (e.g., the gain parameter, correspond-
ing to β) and learning (e.g., the learning rate, correspond-
ing to ε) on learning performance and representation of
memories.

Spontaneous activity which intermittently reproduces
stimulus-evoked patterns is commonly reported in visual
[13,33] and auditory [34] cortices. Theoretical studies [9,35–
38] demonstrated how the spontaneous activity is shaped
through learning. Our study provides another simple learn-
ing rule to form such a spontaneous activity. A functional
role for this phenomenon was suggested within a Bayesian
inference framework [12–15]. In this view, spontaneous ac-
tivity represents a prior distribution over stimuli, and neural
dynamics utilize this prior to compute a posterior distri-
bution from external stimuli. Our demonstration of a rela-
tion between the statistics of spontaneous activity and the
functionality of recall performance is consistent with this
approach.

More generally, properties of neural dynamics relevant for
information processing were investigated [39–42], and the
edge of chaos was suggested as an appropriate regime. Our
model suggests that high-dimensional chaos with intermittent
visits to learned patterns is suitable to produce appropriate tar-
gets in response to inputs. The role of such itinerant dynamics
[43] has been discussed over decades [44–46], and the present
study clearly demonstrates it.

Storing multiple patterns in the same circuit can cause
interference, which can be alleviated by decorrelating the
patterns via a pseudoinverse connectivity matrix [20]. Al-
though calculating the inverse of a matrix requires global
information, Diederich and Opper [21] showed that a local
learning rule [Eq. (4)] can shape the inverse correlation matrix
in the connectivity after repeated learning. In the Appendix,
“Equivalence of our learning and pseudoinverse rules,” we
show that our rule approaches the Diederich rule in some
limits, providing a partial explanation why our local, repeated
learning shapes the connection matrix to decorrelate target
patterns and enhances the memory capacity. Interestingly,
our model provides more stable target attractors than the
pseudoinverse model, while the capacity is decreased relative
to that model. In our model, neural state evolves through
phase space during learning and modifies the dynamics so
that the current target is stable. Thus, learning a new memory
has a larger effect on other areas of phase space, resulting
in a smaller capacity compared to pseudoinverse learning.
Note, however, that this evolution through phase space during
learning enables global and robust attraction of the neural state
to each target. Thus, there is a trade-off between capacity and
stability.

In the present study, in contrast to the standard associa-
tive memory [7,8,27–29], each memory is recalled through
an input-induced bifurcation from the spontaneous neural
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activity. After the completion of repeated learning, gradually
introducing the external input leads to a transition from a
state of chaotic spontaneous activity to one with a globally
attractive memory fixed point. This bifurcation has wide
margins, implying that the recalled memory is stable under
some perturbations to its input pattern. While several studies
considered how spontaneous chaotic dynamics bifurcate to
oscillatory dynamics as external input strengthens [47,48], we
demonstrated generation of the stable memory through bifur-
cation from the spontaneous neural dynamics. The stability
of memory against input strength was observed in auditory
[49] and olfactory [50] cortices and in Hippocampus [51]. In
these cortices, neural activity patterns are discretely switched
between two memory states depending on the intensity of
sensory inputs and/or ratio of mixture of two different inputs.
Our model provides a simple learning rule to form such
memory representations and gives a prediction in terms of
spontaneous activity properties and memory performance.

Finally, we discuss the biological plausibility of our model.
Our network receives two inputs: one from a lower cortical
area (or sensory input) and the other from a higher cortical
area (or top down signal). The trained network can predict
the sensory input from a top down signal. Specifically, the
desired neural activities (ξ) could be interpreted as a sensory
signal which is injected into each neuron in our network. The
top down signal serves as the input to our network (η). Thus,
our network is trained to map between sensory and top down
signals by using a Hebbian rule (correlation between ξ j and
xi) and an anti-Hebbian rule (correlation between xi and x j).
After training, the network infers the sensory signal when the
trained top down signal is applied.
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APPENDIX

1. Recall performance as N increases

To evaluate memory capacity adequately, we investigated
recall performance [〈mμ〉

μ
] as N increases in Fig. 1(c). We

found that recall performance for α = 0.35 increases to unity
as N increases, but that for α = 0.4 it does not. Here, we
analyzed detailed behaviors for α = 0.3, 0.35. In Fig. 6(a), we
plotted [mμ] sorted by its value. For smaller N and α = 0.3,
some maps are not recalled perfectly, but, as N increases,
almost all patterns are recalled perfectly [Fig. 6(a)]. For α =
0.35, in contrast, although recall performance is saturated
for N = 300, 400, a few of the maps are still not recalled
[Fig. 6(b)]. These results indicate that our network can recall
a little less than 0.35N maps.

2. Change in recall performance during learning process

We studied how memory performance is changed through
learning. We plotted [mμ] against μ with the increase of T . It

is sorted in the order of magnitude of the overlap in Fig. 6(c).
For the early learning stage, only a few targets are stored,
while, for the later stage, the number of targets perfectly re-
called increases rapidly. Here, we measured [〈mμ〉

μ
] as recall

performance in Fig. 6(d). For N = 200 and M = 60, we plot
the recall performance against learning step T . The capacity
increases rapidly up to T = 10M and almost saturates at T =
20M.

3. Dependence of recall performance on ε, β, and γ

For ε = 0.03 and β = 4, the memory capacity is enhanced
through repeated learning. We explored its dependence on
different parameters, especially ε and β. ε is the timescale of
the learning process relative to that of the neural dynamics. We
plotted the capacity curve for various values of ε in Fig. 6(e).
As ε increases, the number of patterns which are successfully
recalled decreases and for ε > 1, only one pattern is recalled.
We also explored dependence of the recall performance on
β. Generally, in randomly coupled neural network models,
attractors change from fixed points to chaos with the increase
in β. We plotted the recall performance for different β in
Fig. 6(f). As β increases, the recall performance is increased.
For β < 1, only one or two memories are recalled success-
fully.

We also examined the dependence of performance on the
input strength γ . This value represents the balance between
external and internal inputs. We trained networks for several
γ and for N = 100, α = 0.3 and then, we computed the
averaged overlaps with all targets over time as shown in
Fig. 6(g). We found that there is an optimal strength of the
input around 0.2 � γ � 1.0. γ = 1.0 is the value used for the
main results in the paper. For too strong inputs, as well as too
weak inputs, a network can memorize and recall only a few
patterns.

4. Confining neural states around targets during learning

In the main text, we argued that one of the reasons our
model has a decreased capacity relative to the pseudoin-
verse model is its increased stability. Specifically, our model
converges to the target state from any random initial state.
We checked whether capacity can be increased by relaxing
this demand. To this end, we evaluated a modified learning
model. In the original model, we set a random pattern as
an initial state at the beginning of each learning step. Here,
we set the desired target instead as an initial state. This is
done throughout the learning process. By this modification,
memory capacity is improved up to α = 0.45 when initial
states are confined in the vicinity of the targets [filled circles
in Fig. 6(h)]. If we set randomly chosen patterns as initial
states, memory capacity of this confined learning is worse
than that in the original model [open circles in Fig. 6(h)].
Thus, there is a trade-off between stability and memory per-
formance. Beyond the capacity, there appears no difference
between memory performances in the original and modified
learning rules. It is because the target is not stable even locally
during the learning process and neural states escape from the
target in the case of the target initial states. Thus, there is
no difference between neural behaviors in both rules during
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6. (a),(b) [mμ] as a function of μ normalized by N is plotted for different N and for α = 0.3, 0.35 in (a) and (b), respectively. (c) [mμ]
as a function of μ is plotted for different T . [mμ] averaged over time, networks, and trials are plotted. (d) [〈mμ〉

μ
] by averaging over μ as a

function of learning steps T is plotted. (e) [mμ] is plotted for T = 30M and for different ε. Neural dynamics for N = 200, α = 0.3 in (c)–(e).
(f) [mμ] is plotted for T = 30M, α = 0.3 and for different β. (g) [〈mμ〉

μ
] as a function of γ is plotted for α = 0.3. (h) [〈mμ〉

μ
] is plotted for

the confining model for β = 4. Filled circles indicate capacity with beginning from the vicinity of the target. Open circles indicate capacity
from randomly chosen patterns. Gray line indicates the capacity of the original learning model for reference. Neural dynamics for N = 100 in
(f)–(h).
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(a)

(b)

(d) (e) (f)

(c)

FIG. 7. (a) In (i), a scatter plot between aκ,μ and bκ,μ for 1 � κ, μ � M and M = 60, T = 30M. In (ii), a scatter plot between aκ,μ and cκ,μ

for the same parameters as (iii). In (iii), a scatter plot between aκ,μ and cκ,ν (μ �= ν) for the same parameters as left. We plot points for randomly
selected 60 pairs of (μ, ν ). (b) Recall performance for the matrix consisting of only M dominant singular vectors. Green line indicates the
performance for this matrix, while the red one indicates the performance for the matrix which is rescaled so that

∑
j �=i J2

i j = 1. Black line
represents the performance for the original matrix for reference. (c) Standard deviation (SD) of nondiagonal elements of S during the learning
process. Different points indicate different networks. (d),(e) SD of ξμJξν

/N is plotted for T = M in blue and for T = 30M in magenta. These
values as a function of α are shown in (d), while those as a function of N are shown in (e). (f) 〈�μ(sκ,μ)2〉1�κ�M for s = a, b, c, d are plotted
during the learning process in the modified pseudoinverse model corresponding to Fig. 3(b).

learning, resulting in the same memory performance beyond
the capacity.

5. SVD analysis

We explored relationships between aκ,μ, bκ,μ, cκ,μ, and
dκ,μ. A scatter plot of (aκ,μ, bκ,μ) is displayed in Fig. 7(a)(i).
aκ,μ is negatively correlated with bκ,μ. We also show a scatter
plot of (aκ,μ, cκ,μ) in Fig. 7(a)(ii). aκ,μ is positively correlated
with cκ,μ. In Fig. 7(a)(iii), we plot (aκ,μ, cκ,ν) (μ �= ν). There
is no correlation between them.

We showed that the learned connectivity J is approxi-
mately decomposed to the dominant M singular vectors as
in Eq. (6). Here, we tried to confirm that a matrix consisting
of only these dominant M vectors can recall memories, J′ =
�μμSμν (ξμ + kμημ)(ξν + lνην )t . We plotted recall perfor-
mance of J′ in Fig. 7(b). We found that almost all patterns are
recalled by the reconstructed matrix J′, although performance

for some patterns is decreased. We also verified that this is not
due to the norm of J′.

To understand the improvement of capacity during learning
from the viewpoint of the singular vectors, we calculated
nondiagonal elements of S in Eq. (6). We plotted the standard
deviation (SD) of these non-diagonal elements in Fig. 7(c).
We found that the SD rapidly decreases during learning, but
still is far away from zero, consistent with the decorrelating
effect described in the main text.

6. Dependence of ξJξt on N and α

Here, we provided another support for the hypothesis that
the connectivity obtained by our learning rule decorrelates
target patterns by evaluating ξμJξν/N , in addition to the
interference-to-signal ratio. We note that in the standard Hop-
field network, corresponding to the case that S is a diagonal
matrix, the standard deviation of ξμJξν/N (μ �= ν) follows
O[(α/N )1/2], whereas it follows O(N−1/2) for the pseudoin-
verse correlation matrix. If the shaped connectivity perfectly
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(a) (b) (c)

FIG. 8. (a) Bifurcation of the overlap with the target 48. In the upper panel, the bifurcation against γ ′η48 + (1 − γ ′)η49 is plotted. In the
lower panel, the bifurcation against γ η48 is plotted. (b) The same figures are shown as in panel (a) except the overlap with the target 49.
(c) Phase diagram of the overlap with the target 49.

decorrelates targets as well as the pseudoinverse matrix, the
standard deviation should follow O(N−1/2). We thus measured
ξμJξν/N (μ �= ν) and estimated its dependence on α and N
in Figs. 7(d) and 7(e), respectively, for the connection matrix
shaped by learning. We found that the standard deviation at the
earlier stage of learning (T = M) follows O[(α/N )1/2], but at
the later stage of learning it turns to follow O(N−1/2) (for T =
30M). This result supports our hypothesis that the connectiv-
ity shaped through our learning rule effectively decorrelates
targets to optimally reduce interference.

7. Calculation of contributions of the inputs and targets
in singular vectors of the pseudoinverse model

We calculated components aκ,μ, bκ,μ, cκ,μ, and dκ,μ, in
singular vectors of the pseudoinverse model in the same man-
ner as that in the paper. In Fig. 7(f), component d (coefficient
of input in right singular vectors) is around chance level
(0.3 = M/N) and component c (coefficient of targets in right
singular vectors) is beyond 0.9. Values of these components
are quite different from those in our model [Fig. 3(b)].

8. Response to input mixtures

Figure 8 shows more details of the response to input
mixtures. Panel (c) repeats the same analysis of the main text,
but showing the overlap with pattern 49. Panels (a) and (b)
show the behavior for horizontal [(a), bottom], vertical [(b),
bottom], and diagonal [(a),(b), top] lines in this space. All the
results support that recall of the target pattern is represented as
a distinctive phase of the corresponding fixed-point attractor
and as separated from oscillating neural activity.

9. Spontaneous activity

We analyzed how the nature of spontaneous activity is
changed through learning. Spontaneous activity shows chaotic
behavior intermittently approaching some targets in Fig. 9(a).
For earlier learning, we found a clear correlation between
recall performance 〈m〉 and maximum overlap mμ,max =
〈max0<t<1000mμ(t )〉

μ
as shown in Fig. 9(b). A few targets

which show nearly perfect recall performance are closely
approached by the spontaneous activity. For later learning, in
contrast, there appears no clear correlation. Almost all targets

show perfect recall performance and their maximum overlap
is more evenly distributed.

Next, we explored spontaneous activity for different ε.
As ε decreases and recall performance increases [Figs. 6(e)
and 9(e)], the spontaneous activity is distributed broader
[Fig. 9(d)] and more chaotic [Fig. 9(f)]. In Fig. 9(c) [sim-
ilar to Fig. 9(b)], a few targets which show nearly perfect
recall performance are closely approached for ε = 1.0, while
there appears no clear correlation for ε = 0.03. This relation
between the spontaneous activity and recall performance is
consistent with that for different learning steps. For quite
larger ε, some fixed points, instead of chaotic dynamics, are
shaped, one of which corresponds to the latest trained network
in Fig. 9(g).

10. Equivalence of our learning and pseudoinverse rules

We show that the our learning rule is reduced to the
pseudoinverse rule [21] in the presence of input η [same as
in Eq. (4)]:

	Ji j = (1/N )
(
ξ

μ
i − uμ

i

)
ξ

μ
j (A1)

under limited conditions. Here, uμ = Jξμ + ημ. According to
[21], we consider map dynamics of binary neurons,

si(t + 1) = �
[
� jJi js j (t ) + η

μ
i

]
, (A2)

where �(x) = 1 for 0 � x,−1 for otherwise, and discretized
temporarily our learning rule without decay term as

	Ji j = (1/N )(ξμ
i − si )s j . (A3)

Now, we consider the following situations: First, ξμ is
almost a fixed point after some learning, i.e., for a small
residual q,

�(uμ) = ξμ + q (A4)

and we define ξ′μ ≡ ξμ + q. Next, s approaches ξ′μ:

s = ξ′μ + q′ = ξμ + q + q′ (A5)

for small residuals q′. Here, qi, q′
i ∈ {−2, 0, 2}. We denote

uμ − ξ′ by r (|ri| < 1). The numbers of nonzero elements of
q and q′ are denoted as n and m, respectively. We assumed
the residuals q, q′, and r are sufficiently small compared to
N with keeping that q is larger than q′, i.e., 1 
 n/N 
 m/N
and 1 
 �i|ri|/N .
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(a) (d)

(c) (f)

(b) (e)

(g)(i) (g)(ii)

FIG. 9. (a) Overlaps of spontaneous activities without input m45 are plotted from t = 500 to 700 for T = 2M, 5M and T = 20M in blue,
orange, and green, respectively, in the left panel. Here, N = 300 and M = 90 as well as in the following panels. In the right panel, probability
density functions (p.d.f.) of these overlaps in longer intervals (0 < t < 1000) and their standard deviations are also plotted as bars. (b) Scatter
plot of maximum overlap of the spontaneous activity with a target against its recall performance. Dots in blue and orange are for T = M and
T = 30M, respectively. (c) Scatter plot same as in (b). Dots in blue and pink are for ε = 0.03 and ε = 1.0, respectively. (d) Maximum overlaps
of the spontaneous activity with targets are plotted for different ε. Black solid and dashed lines indicate overlap with input and random patterns,
respectively, for reference. (e),(f) Recall performance in (e) and Lyapunov dimension and PC80 in (f) are plotted. (g) Spontaneous activity for
ε = 5.0. (i) Five time series of the overlap with target 9 from five random initial points, which is the latest trained pattern. (ii) The same neural
dynamics with upper panels projected into two-dimensional space.

Based on this setting, we substitute Eqs. (A4) and (A5) into
Eq. (A3) and get

(ξμ
i − si )s j/N = (

ξ
μ
i − uμ

i

)
ξ

μ
j /N + Di j/N, (A6)

where Di j = riξ j − q′
iξ j + (qi + q′

i )(q j + q′
j ) is the

difference between our learning and pseudoinverse

rules. The average amplitude of Di j is evaluated as
�i j |Di j |/N2 < �i|ri|/N + 2m/N + (2m + 2n)2/N2, while
those of (ξμ

i − uμ
i )ξμ

j are evaluated as n/N . Thus, the
averaged difference goes to zero much faster than the average
of (ξμ

i − uμ
i )ξμ

j as N goes to infinity.

023307-11



KURIKAWA, BARAK, AND KANEKO PHYSICAL REVIEW RESEARCH 2, 023307 (2020)

[1] B. Blumenfeld, S. Preminger, D. Sagi, and M. Tsodyks, Neuron
52, 383 (2006).

[2] A. Bernacchia and D. J. Amit, Proc. Natl. Acad. Sci. USA 104,
3544 (2007).

[3] S. McKenzie, N. T. M. Robinson, L. Herrera, J. C. Churchill,
and H. Eichenbaum, J. Neurosci. 33, 10243 (2013).

[4] J. E. Dunsmoor, V. P. Murty, L. Davachi, and E. A. Phelps,
Nature (London) 520, 345 (2015).

[5] L. N. Driscoll, N. L. Pettit, M. Minderer, S. N. Chettih, and
C. D. Harvey, Cell 170, 986 (2017).

[6] S.-I. Amari, Biol. Cybernetics 26, 175 (1977).
[7] J. J. Hopfield, Proc. Natl. Acad. Sci. USA 81, 3088 (1984).
[8] D. J. Amit, H. Gutfreund, and H. Sompolinsky, Ann. Phys. 173,

30 (1987).
[9] A. Bernacchia, Front. Synaptic Neurosci. 6, 1 (2014).

[10] L. Saglietti, F. Gerace, A. Ingrosso, C. Baldassi, and R.
Zecchina, Int. Focus 8, 20180033 (2018).

[11] T. Kurikawa and K. Kaneko, PLoS Comput. Biol. 9, e1002943
(2013).

[12] G. Orbán, P. Berkes, J. Fiser, and M. Lengyel, Neuron 92, 530
(2016).

[13] P. Berkes, G. Orbán, M. Lengyel, and J. Fiser, Science 331, 83
(2011).

[14] L. Buesing, J. Bill, B. Nessler, and W. Maass, PLoS Comput.
Biol. 7, e1002211 (2011).

[15] W. J. Ma, J. M. Beck, P. E. Latham, and A. Pouget, Nat.
Neurosci. 9, 1432 (2006).

[16] A. Litwin-Kumar and B. Doiron, Nat. Neurosci. 15, 1498
(2012).

[17] G. Hennequin, Y. Ahmadian, D. B. Rubin, M. Lengyel, and
K. D. Miller, Neuron 98, 846 (2018).

[18] In our model, we set a random pattern as an initial state at the
beginning of each learning step. If we set the desired target
instead, memory capacity improves up to α = 0.45 as shown
in Fig. 6.

[19] L. Personnaz, I. Guyon, and G. Dreyfus, Phys. Rev. A 34, 4217
(1986).

[20] I. Kanter and H. Sompolinsky, Phys. Rev. A 35, 380 (1987).
[21] S. Diederich and M. Opper, Phys. Rev. Lett. 58, 949 (1987).
[22] T. Kurikawa and K. Kaneko, Europhys. Lett. 98, 48002 (2012).
[23] Our estimate is based on O(1) and we discarded terms of

O(N−1/2), since targets and inputs are not exact normal orthog-
onal basis [�iξ

μ
i ην

i /N = O(N−1/2)] .
[24] For large α and T = M, fluctuations in S sometimes leads to

negative values, while O is relatively confined around 1.0. To
avoid huge fluctuations in the interference-to-signal ratio, we
first evaluated 〈Sλλ/|Oλ|〉λ and then used its inverse.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning
internal representations by error propagation, Technical Report
No. ICS-8506. California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[26] R. J. Williams and D. Zipser, Neural Comput. 1, 270 (1989).
[27] D. J. Amit and S. Fusi, Neural Comput. 6, 957 (1994).
[28] N. Brunel, F. Carusi, and S. Fusi, Network (Bristol, England) 9,

123 (1998).
[29] S. Fusi and L. F. Abbott, Nat. Neurosci. 10, 485 (2007).
[30] B. Siri, H. Berry, B. Cessac, B. Delord, and M. Quoy, Neural

Comput. 20, 2937 (2008).
[31] M. N. Galtier, O. D. Faugeras, and P. C. Bressloff, Neural

Comput. 24, 2346 (2011).
[32] Y. Kim, B. B. Vladimirskiy, and W. Senn, Frontiers Comput.

Neurosci. 2, 1 (2008).
[33] T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, and A.

Arieli, Nature (London) 425, 954 (2003).
[34] A. Luczak, P. Bartho, and K. D. Harris, Neuron 62, 413 (2009).
[35] F. Zenke, E. J. Agnes, and W. Gerstner, Nat. Commun. 6, 6922

(2015).
[36] C. Hartmann, A. Lazar, B. Nessler, and J. Triesch, PLoS

Comput. Biol. 11, e1004640 (2015).
[37] T. Miconi, J. L. McKinstry, and G. M. Edelman, Nat. Commun.

7, 13208 (2016).
[38] A. Litwin-Kumar and B. Doiron, Nat. Commun. 5, 5319

(2014).
[39] T. Toyoizumi and L. F. Abbott, Phys. Rev. E 84, 051908

(2011).
[40] N. Bertschinger and T. Natschläger, Neural Comput. 16, 1413

(2004).
[41] R. Legenstein and W. Maass, Neural Networks 20, 323 (2007).
[42] D. Sussillo and L. F. Abbott, Neuron 63, 544 (2009).
[43] K. Kaneko and I. Tsuda, Chaos 13, 926 (2003).
[44] I. Tsuda, Neural Networks 5, 313 (1992).
[45] C. A. Skarda and W. J. Freeman, Behav. Brain Sci. 10, 161

(1987).
[46] M. I. Rabinovich, R. Huerta, P. Varona, and V. S. Afraimovich,

PLoS Comput. Biol. 4, e1000072 (2008).
[47] A. Minai and T. Anand, Biol. Cybern. 79, 87 (1998).
[48] K. Rajan, L. F. Abbott, and H. Sompolinsky, Phys. Rev. E 82,

011903 (2010).
[49] B. Bathellier, L. Ushakova, and S. Rumpel, Neuron 76, 435

(2012).
[50] J. Niessing and R. W. Friedrich, Nature (London) 465, 47

(2010).
[51] T. J. Wills, C. Lever, F. Cacucci, N. Burgess, and J. O’Keefe,

Science (NY) 308, 873 (2005).

023307-12

https://doi.org/10.1016/j.neuron.2006.08.016
https://doi.org/10.1016/j.neuron.2006.08.016
https://doi.org/10.1016/j.neuron.2006.08.016
https://doi.org/10.1016/j.neuron.2006.08.016
https://doi.org/10.1073/pnas.0611395104
https://doi.org/10.1073/pnas.0611395104
https://doi.org/10.1073/pnas.0611395104
https://doi.org/10.1073/pnas.0611395104
https://doi.org/10.1523/JNEUROSCI.0879-13.2013
https://doi.org/10.1523/JNEUROSCI.0879-13.2013
https://doi.org/10.1523/JNEUROSCI.0879-13.2013
https://doi.org/10.1523/JNEUROSCI.0879-13.2013
https://doi.org/10.1038/nature14106
https://doi.org/10.1038/nature14106
https://doi.org/10.1038/nature14106
https://doi.org/10.1038/nature14106
https://doi.org/10.1016/j.cell.2017.07.021
https://doi.org/10.1016/j.cell.2017.07.021
https://doi.org/10.1016/j.cell.2017.07.021
https://doi.org/10.1016/j.cell.2017.07.021
https://doi.org/10.1007/BF00365229
https://doi.org/10.1007/BF00365229
https://doi.org/10.1007/BF00365229
https://doi.org/10.1007/BF00365229
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1016/0003-4916(87)90092-3
https://doi.org/10.1016/0003-4916(87)90092-3
https://doi.org/10.1016/0003-4916(87)90092-3
https://doi.org/10.1016/0003-4916(87)90092-3
https://doi.org/10.3389/fnsyn.2014.00026
https://doi.org/10.3389/fnsyn.2014.00026
https://doi.org/10.3389/fnsyn.2014.00026
https://doi.org/10.3389/fnsyn.2014.00026
https://doi.org/10.1098/rsfs.2018.0033
https://doi.org/10.1098/rsfs.2018.0033
https://doi.org/10.1098/rsfs.2018.0033
https://doi.org/10.1098/rsfs.2018.0033
https://doi.org/10.1371/journal.pcbi.1002943
https://doi.org/10.1371/journal.pcbi.1002943
https://doi.org/10.1371/journal.pcbi.1002943
https://doi.org/10.1371/journal.pcbi.1002943
https://doi.org/10.1016/j.neuron.2016.09.038
https://doi.org/10.1016/j.neuron.2016.09.038
https://doi.org/10.1016/j.neuron.2016.09.038
https://doi.org/10.1016/j.neuron.2016.09.038
https://doi.org/10.1126/science.1195870
https://doi.org/10.1126/science.1195870
https://doi.org/10.1126/science.1195870
https://doi.org/10.1126/science.1195870
https://doi.org/10.1371/journal.pcbi.1002211
https://doi.org/10.1371/journal.pcbi.1002211
https://doi.org/10.1371/journal.pcbi.1002211
https://doi.org/10.1371/journal.pcbi.1002211
https://doi.org/10.1038/nn1790
https://doi.org/10.1038/nn1790
https://doi.org/10.1038/nn1790
https://doi.org/10.1038/nn1790
https://doi.org/10.1038/nn.3220
https://doi.org/10.1038/nn.3220
https://doi.org/10.1038/nn.3220
https://doi.org/10.1038/nn.3220
https://doi.org/10.1016/j.neuron.2018.04.017
https://doi.org/10.1016/j.neuron.2018.04.017
https://doi.org/10.1016/j.neuron.2018.04.017
https://doi.org/10.1016/j.neuron.2018.04.017
https://doi.org/10.1103/PhysRevA.34.4217
https://doi.org/10.1103/PhysRevA.34.4217
https://doi.org/10.1103/PhysRevA.34.4217
https://doi.org/10.1103/PhysRevA.34.4217
https://doi.org/10.1103/PhysRevA.35.380
https://doi.org/10.1103/PhysRevA.35.380
https://doi.org/10.1103/PhysRevA.35.380
https://doi.org/10.1103/PhysRevA.35.380
https://doi.org/10.1103/PhysRevLett.58.949
https://doi.org/10.1103/PhysRevLett.58.949
https://doi.org/10.1103/PhysRevLett.58.949
https://doi.org/10.1103/PhysRevLett.58.949
https://doi.org/10.1209/0295-5075/98/48002
https://doi.org/10.1209/0295-5075/98/48002
https://doi.org/10.1209/0295-5075/98/48002
https://doi.org/10.1209/0295-5075/98/48002
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1994.6.5.957
https://doi.org/10.1162/neco.1994.6.5.957
https://doi.org/10.1162/neco.1994.6.5.957
https://doi.org/10.1162/neco.1994.6.5.957
https://doi.org/10.1088/0954-898X/9/1/007
https://doi.org/10.1088/0954-898X/9/1/007
https://doi.org/10.1088/0954-898X/9/1/007
https://doi.org/10.1088/0954-898X/9/1/007
https://doi.org/10.1038/nn1859
https://doi.org/10.1038/nn1859
https://doi.org/10.1038/nn1859
https://doi.org/10.1038/nn1859
https://doi.org/10.1162/neco.2008.05-07-530
https://doi.org/10.1162/neco.2008.05-07-530
https://doi.org/10.1162/neco.2008.05-07-530
https://doi.org/10.1162/neco.2008.05-07-530
https://doi.org/10.1162/NECO/a/00322
https://doi.org/10.1162/NECO/a/00322
https://doi.org/10.1162/NECO/a/00322
https://doi.org/10.1162/NECO/a/00322
https://doi.org/10.3389/neuro.10.001.2008
https://doi.org/10.3389/neuro.10.001.2008
https://doi.org/10.3389/neuro.10.001.2008
https://doi.org/10.3389/neuro.10.001.2008
https://doi.org/10.1038/nature02078
https://doi.org/10.1038/nature02078
https://doi.org/10.1038/nature02078
https://doi.org/10.1038/nature02078
https://doi.org/10.1016/j.neuron.2009.03.014
https://doi.org/10.1016/j.neuron.2009.03.014
https://doi.org/10.1016/j.neuron.2009.03.014
https://doi.org/10.1016/j.neuron.2009.03.014
https://doi.org/10.1038/ncomms7922
https://doi.org/10.1038/ncomms7922
https://doi.org/10.1038/ncomms7922
https://doi.org/10.1038/ncomms7922
https://doi.org/10.1371/journal.pcbi.1004640
https://doi.org/10.1371/journal.pcbi.1004640
https://doi.org/10.1371/journal.pcbi.1004640
https://doi.org/10.1371/journal.pcbi.1004640
https://doi.org/10.1038/ncomms13208
https://doi.org/10.1038/ncomms13208
https://doi.org/10.1038/ncomms13208
https://doi.org/10.1038/ncomms13208
https://doi.org/10.1038/ncomms6319
https://doi.org/10.1038/ncomms6319
https://doi.org/10.1038/ncomms6319
https://doi.org/10.1038/ncomms6319
https://doi.org/10.1103/PhysRevE.84.051908
https://doi.org/10.1103/PhysRevE.84.051908
https://doi.org/10.1103/PhysRevE.84.051908
https://doi.org/10.1103/PhysRevE.84.051908
https://doi.org/10.1162/089976604323057443
https://doi.org/10.1162/089976604323057443
https://doi.org/10.1162/089976604323057443
https://doi.org/10.1162/089976604323057443
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1063/1.1607783
https://doi.org/10.1063/1.1607783
https://doi.org/10.1063/1.1607783
https://doi.org/10.1063/1.1607783
https://doi.org/10.1016/S0893-6080(05)80029-2
https://doi.org/10.1016/S0893-6080(05)80029-2
https://doi.org/10.1016/S0893-6080(05)80029-2
https://doi.org/10.1016/S0893-6080(05)80029-2
https://doi.org/10.1017/S0140525X00047336
https://doi.org/10.1017/S0140525X00047336
https://doi.org/10.1017/S0140525X00047336
https://doi.org/10.1017/S0140525X00047336
https://doi.org/10.1371/journal.pcbi.1000072
https://doi.org/10.1371/journal.pcbi.1000072
https://doi.org/10.1371/journal.pcbi.1000072
https://doi.org/10.1371/journal.pcbi.1000072
https://doi.org/10.1007/s004220050461
https://doi.org/10.1007/s004220050461
https://doi.org/10.1007/s004220050461
https://doi.org/10.1007/s004220050461
https://doi.org/10.1103/PhysRevE.82.011903
https://doi.org/10.1103/PhysRevE.82.011903
https://doi.org/10.1103/PhysRevE.82.011903
https://doi.org/10.1103/PhysRevE.82.011903
https://doi.org/10.1016/j.neuron.2012.07.008
https://doi.org/10.1016/j.neuron.2012.07.008
https://doi.org/10.1016/j.neuron.2012.07.008
https://doi.org/10.1016/j.neuron.2012.07.008
https://doi.org/10.1038/nature08961
https://doi.org/10.1038/nature08961
https://doi.org/10.1038/nature08961
https://doi.org/10.1038/nature08961
https://doi.org/10.1126/science.1108905
https://doi.org/10.1126/science.1108905
https://doi.org/10.1126/science.1108905
https://doi.org/10.1126/science.1108905

