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Quantum gate verification and its application in property testing
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To guarantee the normal functioning of quantum devices in different scenarios, appropriate benchmarking
tool kits are quite significant. Inspired by the recent progress on quantum state verification, here we establish
a general framework of verifying a target unitary gate. In both the nonadversarial and adversarial scenarios,
we provide efficient methods to evaluate the performance of verification strategies for any qudit unitary gate.
Furthermore, we figure out the optimal strategy and its realization with the prepare-and-measurement setting.
Specifically, for the commonly used quantum gates like single-qubit and qudit gates, multiqubit Clifford gates,
and multiqubit generalized controlled-Z(X) gates, we provide efficient local verification protocols. Besides, we
discuss the application of gate verification to the detection of entanglement-preserving property of quantum
channels, and further quantify the robustness measure of them. We believe that the gate verification is a promising
way to benchmark a large-scale quantum circuit as well as to test its property.
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To build a large-scale and stable quantum system, efficient
and robust benchmarking tools are essential [1]. The core aim
of quantum benchmarking is to establish the correct function-
ing of a quantum device so that one can gain confidence in the
final information processing results. A benchmarking process
is usually composed of several elements: the unknown target
devices, some trusted (or partially characterized) benchmark-
ing devices, and a benchmarking protocol with classical data
processing.

While quantum mechanics endows us a large Hilbert space
for information processing, whose size increases exponen-
tially with the increase of the qubit number, it also introduces
a challenging problem of characterizing the devices in this
space. In general, without any prior knowledge on the target
device, it at the same time takes exponentially increasing
resources to get the full tomographic image of it [2,3]. For-
tunately, in most of the cases, one holds some prior knowl-
edge on the possible structure of the target device. With the
assistance of this prior knowledge, it is in principle feasible to
reduce the benchmarking resources and even characterize the
system efficiently with a polynomial number of trials. Some
common benchmarking tool kits developed in this spirit and
widely applied in experiments are quantum tomography based
on compressed sensing [4,5], tensor-network-based quantum
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tomography [6–8], permutation-invariant quantum tomogra-
phy [9–11], and direct fidelity estimation [12], ordered by less
information gain or higher efficiency.

On the other hand, the correctness of the benchmarking
results usually relies on some assumptions made on the bench-
marking devices as well as the target devices. In practice, the
quantum gate benchmarking protocols with fewer assump-
tions on the benchmarking devices have been proposed, such
as gate-set tomography [13,14] and randomized benchmark-
ing [15–17], which can in some sense eliminate the effect
of the state preparation and measurement error. Meanwhile,
in some quantum information tasks such as quantum key
distribution [18,19] and blind quantum computation [20],
the quantum objects might be produced by some adversarial
party, which may be correlated among different trials. In
these tasks, one should make possibly less or no assumption
on the target devices. Currently, the protocol with the least
device assumption both on benchmarking and target devices
are the self-testing ones [21,22], which, however, are not
efficient to extend to the multipartite systems in general. As
a result, a robust benchmarking protocol against correlated
noise is significant to explore for practical applications.

Recently, a highly efficient benchmarking protocol called
quantum state verification has been introduced [23,24]. In the
verification, one aims to know whether the prepared state ρ is
close to the ideal pure state |ψ〉 in some precision ε for a given
significance level δ. The verification is accomplished by a few
rounds of two-outcome verification tests, which constitute the
verification operator �. Conditioning on the pass of all the
tests, one can lower bound the fidelity within a high precision.
The efficiency of the verification is determined by the spectral
gap of the operator �. Comparing to the direct fidelity esti-
mation protocols [12], the verification protocol is shown to

2643-1564/2020/2(2)/023306(13) 023306-1 Published by the American Physical Society

https://orcid.org/0000-0003-4016-0706
https://orcid.org/0000-0003-0886-077X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.023306&domain=pdf&date_stamp=2020-06-09
https://doi.org/10.1103/PhysRevResearch.2.023306
https://creativecommons.org/licenses/by/4.0/


PEI ZENG, YOU ZHOU, AND ZHENHUAN LIU PHYSICAL REVIEW RESEARCH 2, 023306 (2020)

achieve the same fidelity precision with a quadratically fewer
number of trials.

Inspired by the quantum state verification studies [23–25],
we propose a general framework of the quantum gate veri-
fication based on the prepare-and-measure strategies, where
the verifier prepares local pure states, acts the target gates on
them, and then performs projective measurements to verify
the gates. The main idea is to reformulate the gate verifica-
tion problem in the Choi representation. We remark that the
gate verification problem cannot be simply regarded as the
verification of the corresponding Choi states due to the extra
locality and sequential limitation of the verification strategy
and the restriction of the Choi states. We first introduce some
background knowledge on the Choi representation and the
gate fidelity in Sec. I. Then, we provide a general framework
of quantum gate verification on both nonadversarial and ad-
versarial scenarios in Sec. II. In the nonadversarial scenario,
we express the efficiency of a given verification scheme with
a semidefinite program and figure out the optimal strategy
and its realizations. In the adversarial scenario, we formulate
the efficiency of verification as an optimization problem and
obtain the optimal strategy within a subset of the strategy. In
Sec. III, we focus on some typical quantum gates and discuss
their verification strategies. Especially, we show that any
single-partite (qubit and qudit) gates and Clifford gates can
be efficiently verified. In Sec. IV, we discuss the application
of the gate verification in testing the properties of quantum
channels, such as the robustness of quantum memory [26,27].
Finally, in Sec. V, we summarize our work, discuss the possi-
ble future direction, and compare it to recent related works.

I. PRELIMINARIES

In this section we first review some essential properties of
quantum channels that are related to our discussion.

A. Choi state representation of quantum channels

For a quantum system A, denote its Hilbert space as HA.
The set of linear operations on A is denoted as L(HA) and the
set of quantum states as D(HA). Suppose the systems A and Ā
own the same dimension and BA = {| j〉A}d−1

j=0 ,BĀ = {| j〉Ā}d−1
j=0

are two orthonormal bases of them. The maximally entangled
state (with respect to BA and BĀ) on systems A, Ā is defined to
be

|�+〉AĀ = 1√
d

d−1∑
j=0

| j j〉AĀ , (1)

and we denote the density matrix �AĀ
+ := |�+〉AĀ 〈�+| for

simplicity.
A linear map EA→B : L(HA) → L(HB) is a quantum chan-

nel if and only if (iff) it is a completely positive and trace-
preserving (CPTP) map. Denote Id the d-dimension identity
map. On account of the state-channel duality, the (normalized)
Choi state representation of a quantum linear map is defined
to be

�AB
E = (IA→A ⊗ E Ā→B)(�AĀ

+ ), (2)

that is, the output state of the map IA→A ⊗ E Ā→B with the
maximally entangled state as the input state.

The linear map EA→B is completely positive iff �AB
E is

positive semidefinite; EA→B is trace preserving iff TrB[�AB
E ] =

IA/dA. In this work, we focus on the case when the output
dimension dB is the same as the input dimension dA. We
denote d := dA = dB. Meanwhile, we omit the superscript of
EA→B standing for the system when no ambiguity occurs. Note
that as the channel E being an unitary U , the Choi state is a
maximally entangled (pure) state, and we denote the unitary
channel as U (·) = U · U †.

The Choi state encodes all the information of the corre-
sponding quantum channel, and one can also obtain the output
of the channel by the following relation:

E (ρ) = d TrA
[(

ρT
A ⊗ IB

)
�AB

E
]
. (3)

The state-channel duality is essential to our work, which
indicates that verifying the quantum channel is equivalent to
verifying the Choi state. We show in Sec. II that many results
in the state verification can be applied to the current study.

B. Average gate fidelity and entanglement fidelity

In this work, we focus on benchmarking the quantum gate,
say a unitary U on the Hilbert space Hd . Due to the unavoid-
able noise, the actual operation realized in an experiment may
be a noisy channel E . Here, we use the average gate fidelity
to characterize the difference between the ideal unitary gate U
and the noisy channel E :

FA(U , E ) :=
∫

dψ Tr[U (ψ ), E (ψ )], (4)

where the integration is over all the pure state under Haar
measure. The average gate fidelity is widely used in the
quantum gate benchmarking experiment.

For the corresponding Choi states, the entanglement fi-
delity is defined as

FE (U , E ) := Tr(�U�E ) = 〈�+| ��|�+〉. (5)

Here, � := U† ◦ E is a composite channel. In fact, there is
a direct relation between the average gate fidelity and the
entanglement fidelity:

FA(U , E ) = dFE (U , E ) + 1

d + 1
. (6)

As a result, one can investigate the practical figure of merit
FA(U , E ) with FE (U , E ), which is related to the following
theoretical derivation. In in the following discussion, we
simply use F (U , E ) := FE (U , E ) to denote the entanglement
fidelity. We also denote rE (U , E ) := 1 − FE (U , E ) as the en-
tanglement infidelity, and call it infidelity without ambiguity.

II. GENERAL FRAMEWORK OF QUANTUM GATE
VERIFICATION

In this section, we introduce a general framework of quan-
tum gate verification. We first analyze the performance of
verification strategies in nonadversarial scenario in Sec. II A.
We then discuss the optimal verification protocol in Sec. II B,
which can be realized in a quite experiment-friendly way.
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After that, in Sec. II C we extend the verification task to
the adversarial scenario, which can be useful in the quantum
communication tasks with untrusted quantum channels.

A. Nonadversarial scenario

We start from the i.i.d. (identical and independent dis-
tribution) scenario, where a device named Eve is going to
produce N rounds of the same quantum channel E , which
should be the unitary gate U in the ideal case. Similar as the
state verification, as a user of the channel Alice would like
to verify whether the underlying channel is close to the ideal
unitary within some ε using N tests under some significance
level δ.

On account of the state-channel duality introduced in
Sec. I A, a natural method is to input maximally entangled
state and verify the output Choi state directly. However, from
a practical point of view, the verification with the maximally
entangled state preparation is consumptive and also not robust
to the state preparation error. Therefore, in the following
discussion, we adopt the strategy that only employs single-
partite input states and measurements without ancillaries, that
is, in a prepare-and-measure manner.

During each round, Alice prepares a state ρl , lets it
get through the channel E , and measures it using two-
outcome positive-operator-valued measurement (POVM) op-
erators {El , 1 − El}, with 0 � El � I. The state ρl and POVM
element El satisfy

Tr[U (ρl )El ] = 1. (7)

We name the combination (ρl , El ) satisfying Eq. (7) as a
verification pair for U .

In different rounds, Alice may adopt different verifica-
tion pairs (ρl , El ) for testing. Suppose she chooses the pairs
with probability pl . The verification pairs (ρl , El ) as well
as the probability pl together compose a strategy W :=
{pl , (ρl , El )}l . The verification protocol is listed as follows:

(1) For each trial, Alice randomly chooses a verification
pair (ρl , El ) with probability pl from the strategy W .

(2) Alice prepares state ρl , inputs it to the quantum chan-
nel E to be verified, measures the output state using POVM
{El , 1 − El}, and records the test outcome.

(3) Alice performs the above tests for N times. If all the
tests pass, Alice estimates the average gate fidelity F (E,U ) �
1 − ε with a significance level δ.

On account of the state-channel duality in Eq. (3), Eq. (7)
can be reformulated as

d Tr
[(

ρT
l ⊗ El

)
�U
] = 1, (8)

and we define the verification operator being

� := d
∑

l

pl
(
ρT

l ⊗ El
)
. (9)

Note that, for the verification pair (ρl , El ), there is an extra
transposition in the corresponding operator term ρT

l ⊗ El .
From this point of view, the verification scheme of a

channel is (mathematically) closely related to the one of a
maximally entangled state �U [25]. The operator � from the
strategy W is denoted as the corresponding verification oper-

ator. However, there are still differences between the maxi-
mally entangled state verification and the gate verification:

(1) In the maximally entangled state verification, the pos-
sible noisy objects are bipartite states; while in the gate verifi-
cation, the possible noisy objects are noisy quantum channels,
which puts extra limitations on the Choi states compared with
the bipartite states.

(2) In the gate verification, the state is prepared determin-
istically, and the measurement is decided according to the
state preparation. Thus, one is restricted to the one-way LOCC
strategy, comparing to the former bipartite state analysis
[28–30].

Now, we study the performance of the verification proto-
col, which is usually characterized by the minimum number
of trials N (ε, δ,�) for a given infidelity upper bound ε,
significance level δ, and verification operator �. That is, if the
verification succeeds in N rounds, one can confirm that the
fidelity between the underlying noisy channel and the target
unitary is larger than 1 − ε with probability 1 − δ.

The minimum number of trials N (ε, δ,�) is directly re-
lated to the maximal passing probability P(ε,�). For the
noisy channel with entanglement infidelity rE (U , E ) not
smaller than ε, the maximal passing probability (correspond-
ing to the type-II error of hypothesis testing) is [23,24]

P(ε,�) = max
rE (U ,E )�ε

Tr[��E ]

� max
Tr[�Uρ]�1−ε

Tr[�ρ] = 1 − ν(�)ε. (10)

Here, the first maximization is on all the possible channel
E , and the Choi state should satisfy an additional constraint
TrB[�AB

E ] = IA/dA compared with the quantum state verifi-
cation. Thus, the followed inequality acts as a useful upper
bound of the passing probability. Here, ν(�) := 1 − β(�) is
the spectral gap of �, with β(�) being the second largest
eigenvalue. Note that P(ε,�) can be written as a semidefinite
program

max Tr
[
��AB

E
]

s.t. Tr
[
�AB

U �AB
E
]
� 1 − ε,

TrB
[
�AB

E
] = Id

d
,

�AB
E � 0. (11)

Given a verification operator �, under the condition of
all the N test trials pass, for the significance level δ, i.e.,
P(ε,�)N � δ, the minimal number of the verification trials
N is

N (ε, δ,�) =
⌈

ln δ−1

ln P(ε,�)−1

⌉

�
⌈

ln δ−1

ln[1 − ν(�)ε]−1

⌉
�
⌈

[ν(�)ε]−1 ln δ−1
⌉
.

(12)

Here, the first inequality is due to the upper bound in Eq. (10),
which is generally not tight.

To reduce the trial number, one should minimize the
passing probability in Eq. (10) for all possible verification
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operator, that is,

Pop(ε) = min
�

P(ε,�)

= min
�

max
rE (U ,E )�ε

Tr(��E ), (13)

where the operator � is from all verification strategies W
given by Eq. (9). The optimal trial number is then Nop(ε, δ) =
� ln δ−1

ln Pop(ε)−1 	. In the following, we show some properties of
P(ε,�), which are helpful for its optimization in the next
section.

Observation 1. The passing probability P(ε,�) defined in
Eq. (10) is a nondecreasing convex function on the verification
operator �. That is, P(ε,�′) � P(ε,�) if �′ − � � 0 is
positive semidefinite, and

P(ε,�′) � p1P(�1, ε) + p2P(�2, ε), (14)

with �′ = p1�1 + p2�2, p1 + p2 = 1, p1, p2 � 0.
In practice, the noisy channels {Ek} during different trials

may be different with each other. In this case, a well-defined
estimation value would be the averaged infidelity over differ-
ent rounds

r̄(U , {Ek}) = 1

N

N∑
k=1

r(U , Ek ). (15)

Similar to the discussion of the quantum state verification
[31], with the same verification schemes W , one can actually
bound the average infidelity r̄(U , {Ek}) using Eq. (12).

B. Optimal verification with pure state inputs and projective
measurements

In this section, we provide the optimal verification of any
unitary channel U under pure state inputs and project measure-
ments (PVM), which is easier for the experiment realization.
Suppose there is a verification strategy W := {pl , (ρl , El )}l

for the identity channel I, then any unitary U can be verified
with W ′ := {pl , (ρl ,U (El ))}l . Consequently, without loss of
generality we focus on the optimal verification of I in the
following discussion.

To find the optimal verification of I, we have the following
two lemmas to convert an arbitrary verification operator �

to the corresponding Bell-diagonal form without reducing its
preformance.

Lemma 1. Under the unitary transformation V , the verifi-
cation strategy W := {pl , (ρl , El )}l of the identity channel I
becomes W ′ := {pl , (V (ρl ),V (El ))}l . The passing probability
is invariant under the transformation

P(ε,�′) = P(ε,�), (16)

where the verification operators � and �′ are from W and W ′,
respectively, and

�′ = d
∑

l

pl (V (ρl )
T ⊗ V (El ))

= d
∑

l

plV∗(ρ∗
l ) ⊗ V (El ) = V∗ ⊗ V (�). (17)

Proof. First, note that Tr[�′�+] = Tr[�[V∗ ⊗
V]†(�+)] = Tr[��+] = 1 with �+ the Choi state of I,

thus can pass the verification also for �′. Suppose a state
�E reaches the maximal value of P(ε,�) according to
Eq. (10), then one can find �′

E = V∗ ⊗ V (�E ) such that
Tr[�′�′

E ] = Tr[��E ]. As a result, P(ε,�′) � P(ε,�).
Since the unitary is reversible, similarly one can also get that
P(ε,�′) � P(ε,�), and thus P(ε,�′) = P(ε,�). �

Lemma 2. For a verification operator � of the identity
channel I, one can find the corresponding Bell-diagonal
verification operator

�′ = 1

d2

d−1∑
u,v=0

W∗(u, v) ⊗ W (u, v)(�)

=
d−1∑

u,v=0

λu,v�u,v, (18)

where W (u, v) labeled by u, v are d2 unitary channels of the
Weyl operator introduced in Appendix A, such that the pass-
ing probability does not increase, i.e., P(ε,�′) � P(ε,�).

The proof of Lemma 2 is in Appendix B.
Theorem 1. For any unitary U on Hd , one can construct

the optimal verification strategy with pure state inputs and
projective measurements. The optimal verification operator is

�op = I + d�U
1 + d

(19)

and the optimal passing probability and trial number are

Pop(ε) = 1 − d

d + 1
ε,

Nop(ε, δ) =
⌈

ln δ−1

ln
(
1 − d

d+1ε
)−1

⌉
�
⌈

d + 1

dε
ln δ−1

⌉
. (20)

Proof. Without loss of generality, we consider the identity
channel I here. Based on Lemma 2, to find the optimal verifi-
cation one only needs to investigate � in the Bell-diagonal
form. In this case, the channel verification and the state
verification become coincident, that is, the first inequality
in Eq. (10) is saturated. To be specific, the maximization
of Tr[�ρ] = Tr[�ρdiag] is equivalent for the Bell-diagonal
states, which are legal Choi states.

At the same time, for the state verification, the optimal
verification operator with separable measurements [25,32] is

�op = I + d�+
1 + d

, (21)

which is clearly Bell diagonal, thus can be reached by quan-
tum channel verification. It is clear that the optimal gap here
is ν(�op) = d

d+1 .
Now, we show that �op can be constructed in a preparation

and measurement manner. The optimal operator �op can be
realized by the so-called conjugate-basis (CB) projector of an
orthogonal basis B = {ψi}d−1

i=0 in Hd [25]:

P(B) =
∑
ψi∈B

ψ∗
i ⊗ ψi. (22)

That is, �op = 1
d+1

∑d+1
l=1 P(Bi ), when Bl are d + 1 mutually

unbiased bases (MUBs). We name the verification strategy
W = { 1

d (d+1) , (ψ i
l , ψ

i
l )} as the conjugate-basis (CB) test for
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FIG. 1. The nonadversarial scenario and adversarial scenario. (a) In the nonadversarial scenario, Alice prepares the state ρl , sends it to
an uncharacterized channel, and performs measurement El on it. The channels of different trials are independent with each other. (b) In the
adversarial scenario with two communication parties, Alice prepares the state ρl , sends it to an untrusted channel, Bob then receives output
states from the channel. After Alice announces the random test rounds, Bob performs measurement El on them and estimates the gate for the
left turn (shown in green). The channels of different trials are correlated with each other.

prime power d , where ψ i
l is chosen from (d + 1) MUB bases

Bl .
If the dimension is not a prime power, the verification oper-

ator can be realized by �op =∑α ωαφ∗
α ⊗ φα and

∑
α ωα =

d , with the weighted complex projective 2-design {ωα, φα}
[25,33,34]. In this case, the CB test is defined to be a weighted
verification strategy W = {ωα/d, (φα, φα )}.

Finally, according to Eq. (3), the corresponding verification
strategy of I shows { 1

d (d+1) , (ψ i
l , ψ

i
l )}, where ψ i

l is from

(d + 1) MUB Bl . That is, we input ψ i
l and measure ψ i

l with
equal probability. For the unitary U , the verification strategy
is { 1

d (d+1) , (ψ i
l ,U (ψ i

l ))}. One can find the strategy of �

constructed from 2-designs in a similar manner. �
Practically, one may prefer to implement the verification

with less MUBs because there are no enough MUBs in the
Hilbert space or to reduce the experiment resources. The
verification can be built with less MUBs, � = 1

g

∑g
l=1 P(Bl ),

and the spectral gap is ν(�) = (g − 1)/g [25]. According to
Eq. (12), the trial number is upper bounded by

N (ε, δ) �

⎡
⎢⎢⎢

ln δ−1

ln
(
1 − g−1

g ε
)−1

⎤
⎥⎥⎥ �
⌈

g

(g − 1)ε
ln δ−1

⌉
. (23)

Note that the bound may be not tight, however, it is economi-
cal. For example, one can finish the verification with only two
bases with the trial number only about two times overhead
than the optimal one.

C. Adversarial scenario

In the discussion above, we suppose the implemented
quantum gates are independent for different rounds. However,
this may not be true in general. In some practical quantum
information tasks, the quantum channels in different rounds
will be correlated. For example, when Alice produces the
uncharacterized gates with memory effect, the gate noise in
the former rounds may affect the latter gate realization. On
the other hand, in some quantum communication tasks, the
quantum channels may be held by some untrusted parties Eve,
e.g., entangled state distribution and quantum key distribution
[19]. In this case, the adversarial Eve may be even more

powerful so that she can take advantage of the correlations
between different rounds [31]. Eve may produce a large
composite quantum channel

E(N+1) : D((HA)⊗(N+1)) → D((HB)⊗(N+1)) (24)

with arbitrarily correlated noise. We will leave out the sub-
script (N + 1) in the later discussion in this section, i.e.,
E := E(N+1).

To verify the quantum channel in this case, we suppose
Alice (and Bob) is able to randomly choose N rounds from
the overall (N + 1) rounds to perform the verification test. She
(they) leaves the remaining round to perform the real quantum
information processing task. In Fig. 1(b), we describe the
adversarial channel verification with two parties.

The possibility that the N rounds of tests pass is

pE = Tr
[
(�⊗N ⊗ I )�E(N+1)

]
, (25)

where without loss of generality, we assume the test is on the
first N qubits, and in the same time �E(N+1) is permutation
invariant. Conditioning on the passing of N rounds tests,
Alice would like to confirm that the reduced (N + 1)th round
quantum channel given by the reduced Choi state

�E ′ = p−1
E Tr1∼N

[
(�⊗N ⊗ I )�E(N+1)

]
(26)

is closed to the target unitary U . The entanglement fidelity
between �E ′ and U is

F (E ′,U ) = Tr(�E ′�U )

= p−1
E Tr
[
(�⊗N ⊗ �U )�E(N+1)

] = p−1
E fE , (27)

where

fE := Tr
[
(�⊗N ⊗ �U )�E(N+1)

]
. (28)

The core task in adversarial scenario is to verify whether
the channel used for the task round is the target unitary
channel U . Similarly to the state verification discussion in
Ref. [31], we define the estimated (entanglement) fidelity
lower bound with respect to the number of test rounds N , a
failure probability of δ, and the verification strategy �:

F (N, δ,�) := min
�E

{
p−1
E fE |pE � δ

}
, 0 < δ < 1 (29)
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where �E take values over all Choi states. The number of
trials lower bound with respect to a precision of ε, a failure
probability of δ, and the verification strategy � is defined
to be

N (ε, δ,�) := min{N |F (N, δ,�) � 1 − ε}. (30)

For convenience of the later discussion, we also define the
bipartite state verification parameters

FS (N, δ,�) := min
ρ

{
p−1

ρ fρ
∣∣pρ � δ

}
,

NS (ε, δ,�) := min{N |FS (N, δ,�) � 1 − ε}. (31)

Here, the optimization is taken over all the 2(N + 1)-
qudit (

⊗N+1
i=1 Hi )⊗2 bipartite state ρ, and pρ, fρ is de-

fined by replacing �E in Eqs. (25) and (28) with ρ. It
is obvious that F (N, δ,�) � FS (N, δ,�) and N (ε, δ,�) �
NS (ε, δ,�). Therefore, the bipartite state verification parame-
ters FS (N, δ,�) and NS (ε, δ,�) are the lower bound and upper
bound of F (N, δ,�) and N (ε, δ,�), respectively. One can
apply the analysis in Refs. [24,31] to estimate NS (ε, δ,�) and
FS (N, δ,�), which provides a useful bound for N (ε, δ,�) and
F (N, δ,�).

For a general strategy �, F (N, δ,�) can be expressed as
the following programming problem:

min Tr[(�⊗N ⊗ �U )�E ]/Tr[(�⊗N ⊗ I )�E ]

s.t. Tr[(�⊗N ⊗ I )�E ] � δ,

TrB[�E ] =
(
Id

d

)⊗(N+1)

,

�E � 0,

(32)

which is not easy to find an analytical solution in general.
In the following paragraphs, we show the method to find

the optimal verification schemes as well as to analyze its
performance. We first consider the verification operator in the
Bell-diagonal form, and show that the figure of merits equal to
the ones of the state. Then, we extend the analysis to a general
type of verification operators which are called Bell supported,
and show that they are always suboptimal to a homogeneous
strategy. Finally, we solve the optimal homogeneous strategy
and the performance of it.

Observation 2. For a verification strategy � of a quantum
gate U which is bell diagonal under a local unitary transfor-
mation, i.e.,

� =
d−1∑

u,v=0

λu,v�̃
AB
u,v, (33)

where {�̃AB
u,v} are the qudit Bell states {�AB

u,v} under local
unitary transformation on systems A and B, and �̃AB

0,0 =
�AB

U , λ0,0 = 1, we have

F (N, δ,�) = FS (N, δ,�),

N (ε, δ,�) = NS (ε, δ,�). (34)

Proof. We first simplify the expression of F (N, δ,�). Due
to the random assignment of test rounds, without loss of
generality, we can restrict our discussion to the permutation-
invariant states �E . Similar to the discussion in Ref. [31], one

can define the permutation-invariant Bell basis

�̃k = P̂S
(
�̃

⊗k0,0

0,0 ⊗ �̃
⊗k0,1

0,1 ⊗ · · · ⊗ �̃
⊗kd−1,d−1

d−1,d−1

)
, (35)

where P̂S is the symmetrization operator, mixing all pos-
sible permutation with respect to different rounds, k :=
[k0,0, k0,1, . . . , kd−1,d−1] is a sequence of non-negative integer
number with

∑
u,v ku,v = N + 1.

Since pE and fE in Eqs. (25) and (28) only depend on the
diagonal elements of �E in the Bell basis, without loss of
generality, we may assume that the Choi state is diagonal in
the product basis of �̃u,v . We only need to consider the Choi
state �E as the mixture of �̃k,

�E =
∑
k∈K

ck�̃k, (36)

where {ck} are the non-negative mixing coefficients with∑
k∈K ck = 1, and K is the set of all possible k. Note that

the �̃u,v basis naturally meets the requirements of Choi states,
i.e., TrB[�AB

u,v] = Id/d . As a result, the optimization is over the
whole convex hull made by {�k}, similar to the state case in
Ref. [31]. Therefore,

F (N, δ,�) = min
�E

{
p−1
E fE |pE � δ

}
= min

{ck}
{

p−1
E fE |pE � δ

}
= FS (N, δ,�). (37)

�
A strategy � for unitary U with the form

� = �U + λ(1 − �U ) (0 � λ < 1), (38)

is called homogeneous. Note that the homogeneous strategy is
a specific case of the Bell-diagonal strategies. The eigenvalues
of such � except the largest one are all degenerated to be λ. It
was shown in Ref. [31] that the following optimization of the
quantum state verification

max
�

FS (N, δ,�) (39)

can always be achieved by the homogeneous strategy for given
N and δ.

Now, we discuss the optimal strategy � for the quantum
gate verification and first introduce some notations. We call a
strategy � useless under given N and δ if no Choi state �E
meets the requirement

pE � δ. (40)

By spectrum decomposition, a strategy � can be written in
the following unique form:

� =
J−1∑
j=0

λ j� j, (41)

where J < d is the number of different eigenvalues, λ0 =
1 > λ1 > · · · > λJ−1 � 0, and � j is the projector onto the
eigenspace with eigenvalue λ j , whose rank may be larger than
1. If there exists a maximally entangled state �e such that
�e ⊆ � j , we call the � j space Bell supported. Denote the
set of Bell-supported {� j} of � as S(�). Obviously, �0 ⊆
S(�). If a strategy has Bell-supported projector set S(�) with
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at least one element other than �0, we call the strategy �

Bell supported. The Bell-diagonal strategies are the extreme
cases of Bell-supported strategies, where S(�) span the whole
operator space of �.

For the Bell-supported strategies, we have the following
lemma.

Lemma 3. For a Bell-supported strategy �, denote a subset
of S(�) as S0(�) ⊆ S(�) which contains �0 and at least
another element � j . Denote the set of eigenvalues corre-
sponding to the projects in S0(�) as λ(S0(�)). If we construct
a new strategy �′ with the form

�′ =
∑

j|� j∈S0(�)

λ j� j +
∑

j|� j /∈S0(�)

λ̃ j� j, (42)

where λ̃ j can take any value in λ(S0(�)) except for λ0 = 1,
then

F (N, δ,�′) � F (N, δ,�) (43)

if �′ is not useless given N and δ.
Lemma 3 implies that, for the Bell-supported strategy �,

one can always find a strategy with degenerated eigenvalue
which is not worse than �. Therefore, for a given N and δ,
and among all the Bell-supported strategies �, by applying
the Lemma 3, one can see that the optimal strategy can always
be achieved by homogeneous strategy. The proof of Lemma 3
is in Appendix C.

For the homogeneous strategy �, according to Observation
2, one can directly calculate FS (N, δ,�) and NS (ε, δ,�). In
the high-precision limit, i.e., ε, δ → 0, the optimal homoge-
neous strategy to verify U is [25]

� = �U + 1

e
(1 − �U ). (44)

To realize this, based on the optimal CB-test strategy
introduced in Eq. (22) in Sec. II, one may add some “trivial
test” into it. In the “trivial test,” Alice and Bob perform no
operation to realize the identity test. To realize the optimal ho-
mogeneous test in the high-precision limit, one may perform
the trivial test with probability p = d+1−e

ed and original optimal
CB test with probability 1 − p. In this case, the required
number of trials is [25]

N (ε, δ, λ) = NS (ε, δ, λ) ≈ eε−1 ln δ−1. (45)

III. VERIFICATION OF SOME TYPICAL QUANTUM
GATES

In the previous section, we introduce the general frame-
work of the quantum gate verification. Especially, we show
that any unitary channel U on Hd can be efficiently verified
with pure state inputs and projective measurements, in both
nonadversarial and adversarial scenarios. In this section, we
apply such verification protocol to several typical quantum
gates involved in quantum computing, such as any single-
qubit gates, multiqubit Clifford gates, and beyond. Hereafter,
we focus on the nonadversarial scenario.

A. Single-qubit gates

We first study the qubit identity channel I, and latter
directly extend it to any single-qubit gate U by some unitary

transformation. The Choi state of I is �+. According to
Theorem 1, we can utilize 3 MUBs from the Pauli bases,

PX = X ⊗ X + I

2
= |++〉 〈++| + |−−〉 〈−−| ,

PY = −Y ⊗ Y + I

2
= |+i − i〉 〈+i − i| + |−i + i〉 〈−i + i| ,

PZ = Z ⊗ Z + I

2
= |00〉 〈00| + |11〉 〈11| , (46)

which account for three subspaces, and |±i〉 denote the eigen-
states of the Y basis. Note that these three projectors can
also be derived from the stabilizer of the Choi state, which
is helpful for the derivation of multiqubit gates. The verifi-
cation operator is � = 1

3 (PX + PY + PZ ) [23]. By Theorem
1, the qubit gate can be verified with optimal trial number
Nop(ε, δ) = � ln δ−1

ln(1− 2
3 ε)−1 	 � � 3

2ε
ln δ−1	.

The corresponding verification strategy W for the identity
qubit channel I is to choose the following verification pairs
(ρl , El ):

(|+〉 , |+〉), (|−〉 , |−〉),

(|+i〉 , |+i〉), (|−i〉 , |−i〉),

(|0〉 , |0〉), (|1〉 , |1〉) (47)

with equal probability 1/6. For example, (|+〉 , |+〉) means
that one inputs the |+〉 and performs measurement using
POVM {|+〉 〈+| , I − |+〉 〈+|}. If the measurement result is
|+〉 〈+|, the test passes. For any single-qubit gate U , verifica-
tion pairs should be updated to (ρl ,U (El )). For example, for
the Z gate the verification strategy is to choose

(|+〉 , |−〉), (|−〉 , |+〉),

(|+i〉 , |−i〉), (|−i〉 , |+i〉),

(|0〉 , |0〉), (|1〉 , |1〉) (48)

with equal probability 1/6. In the same way, the non-Clifford
T gate can also be verified. In addition, general qudit gates
can be verified according to Sec. II B.

B. Clifford gates

In this and the next section, we consider the multiqubit
gates, where the underlying Hilbert space is Hd = H⊗n

2 . In
this case, it is not easy to implement the optimal strategy given
in Sec. II B since the input states and the measurements could
be entangled ones. Thus, in the following we show how to
verify the Clifford and Cn−1Z (X ) gates locally, inspired by
the verification of stabilizer(like) states.

Let us first take the controlled-Z (CZ) gate as an example.
The overall Choi state, shown in Fig. 2, is

|�CZ〉 = 1
2 CZ3,4(|00〉 + |11〉)1,3 ⊗ (|00〉 + |11〉)2,4. (49)

Note that CZ gate operates on the final two qubits. The
stabilizer generators of the initial Bell states are

g1 = X1X3, g2 = Z1Z3, g3 = X2X4, g4 = Z2Z4, (50)

and the generators of the state |�CZ〉 is updated to g′
i = U (gi ),

where U is the corresponding gate (CZ here):

g′
1 = X1X3Z4, g′

2 = Z1Z3, g′
3 = X2Z3X4, g′

4 = Z2Z4, (51)
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1
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3

4

CZ_{3,4}

FIG. 2. The Choi state: CZ gate operates on the Bell pairs. The
green (horizontal) line labels the CZ gate, and the black U -type line
labels the Bell pair.

on account of the commuting relations,

CZi, jXi( j)CZi, j = XiZ j (ZiXj ),

CZi, jZi( j)CZi, j = Zi( j). (52)

To verify the Choi state, we can use the four stabilizer
generators g′

i to construct the projection Pi = g′
i+I
2 , and the

verification operator is � = 1
2n

∑
i Pi (here n = 2) with the

gap being ν(�) = 1/2n. In fact, one can utilize all the nontriv-
ial 22n − 1 stabilizers to enhance the gap to 22n−1/(22n − 1)
[23,31], but may cost more state preparation and measurement
settings. In some cases, the measurement settings can be
reduced by the coloring of the corresponding graph states
[35–37], which is equivalent to the stabilizer states under
local Clifford gates [38]. For example, for the n-qubit Clifford
circuit with only CZ gates operating between each two neigh-
boring qubits, the corresponding Choi state is a two-color
graph state. In this case, the verification involves two kinds
of stabilizer configurations. We remark that, when there are
CZ gates between two nonadjacent qubits, the Choi state may
not be a two-color one.

Now, we translate the strategy expressed by verification
operator � to the realization with verification pairs (ρl , El ).
For the projector Pi, the corresponding subspace is the +1
subspace of g′

i = Ai ⊗ Bi, where Ai, Bi are two Pauli tensor
operators. Thus, the verification strategy (ρl , El ) is to input
the eigenstate |ψA〉 in the +1 (−1) subspace and project the
eigenstate to the +1 (−1) subspace of Bi. Since Ai, Bi are
Pauli operators, the verification can be accomplished with
inputting product pure states in the Pauli basis and Pauli
measurements. For instance, the verification pairs of projector
P1 and P2 are

{|+〉1 , (X3Z4)+}, {|−〉1 , (X3Z4)−},
{|0〉1 , Z+

3 }, {|1〉1 , Z−
3 }, (53)

and the verification pairs for P3 and P4 are similar. To be
specific, here {|+〉1 , (X3Z4)+} means that one inputs |+〉
on the first qubit (I/2 on the second qubit), and performs
measurement on the +1 basis of X3Z4. It is clear that (X3Z4)±
can be finished by local X3 and Z4 measurements and classical
postprocessings.

The above analysis can be generalized to the verification
of any Clifford gates, and we summarize it in the following
observation.

1

3

CCZ_{4,5,6}

2
4
5
6

1 2 3 4 5 6

H

H H

1

3
2

4
5
6

1 2 3 4 5 6

H H H

H

1

3
2

4
5
6

H

H

(a)

(b)

H

FIG. 3. The Choi state: CCZ gate operates on the Bell pairs. The
green (horizontal) line labels the CCZ gate, and the black U -type
line labels the Bell pair. Here, we transform the Choi states of Cn−1Z
and Cn−1X to the hypergraph states |HG〉 in (a) and (b), respectively.
Here, the hypergraph state |HG〉 owns three (red) normal edge and
one (green) n = 3 hyperedge, and the graph is n + 1 = 4 colorable.

Observation 3. Any n-qubit Clifford gate can be verified
under entanglement infidelity ε and significance level δ with
verification trial number upper bounded by

N �
⌈

2n

ε
ln δ−1

⌉
. (54)

This bound can be further reduced with more input states and
measurement settings,

N �
⌈

22n − 1

22n−1
ε−1 ln δ−1

⌉
, (55)

where the input states are in the Pauli basis and the measure-
ments are local Pauli ones.

C. Multiqubit control-Z and control-X gates

In this section, we show the verification protocol of the
Cn−1Z and Cn−1X , where

Cn−1Z := I − 2|00 . . . 0〉〈00 . . . 0|, (56)

and Cn−1X := HnCn−1XHn.
Similar as Sec. III B, we can find the updated “stabilizer”

generators, however, now the stabilizers are not in the Pauli
tensor form since the Cn−1Z (X ) gate is not a Clifford one.
Because the Cn−1Z gate can generate a hypergraph state
[39], in the following we adopt the verification operator of
a hypergraph state [36]. As shown in Fig. 3, the Choi state of
the Cn−1Z (X ) state is equivalent to the hypergraph state under
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local unitary, i.e., the single-qubit Hadamard gate,

|�Cn−1Z〉 =
n⊗

i=1

Hi|HG〉,

|�Cn−1X 〉 =
n−1⊗
i=1

Hi ⊗ H2n|HG〉. (57)

Here, the hypergraph state

|HG〉 =
n⊗

i=1

CZ{i,i+n}Cn−1Z{n+1→2n}|+〉⊗2n (58)

with the Cn−1Z gate operating on the final n qubits.
In this way, we can directly obtain the stabilizer generators

of the Choi states from the ones of the hypergraph state. For
example, for the |�Cn−1Z〉, the generator related to the fourth
qubit is g4 = X1X4CZ5,6. It is not hard to see that the graph
is n + 1 colorable in Fig. 3. Thus, one can verify |�Cn−1Z〉
and |�Cn−1X 〉 using verification operator constructed from the
stabilizers with the spectral gap 1/(n + 1) according to the
cover protocol in [36]. In a similar way as in Sec. III B, we
can transfer the state protocol to the verification strategy of
the unitary gates, and the verification trial number is N �
� n+1

ε
ln δ−1	. Note that one can still use local state inputs and

Pauli basis measurements since the Cn−1Z operator on n qubit
can be measured with the Z basis measurement Z⊗n using
postprocessing.

IV. APPLICATIONS IN CHANNEL PROPERTY TESTING

In this section, we show the application of the verification
protocol to the efficient test on the property of the underlying
quantum channel. Here, we focus on the entanglement prop-
erty of quantum channels. We believe that the following
analysis could be easily generalized to other properties, such
as the coherence generating power [40,41].

The entanglement property refers to whether the under-
lying channel is an entanglement-preserving (EP) or the
entanglement-breaking (EB) one. This kind of test is essential
for quantum communications, such as the quantum memory
and the quantum channel in quantum networks and distributed
quantum computing. An EB channel can always be described
by a measurement-and-preparation channel, thus destroys any
quantum correlation between the initial input state and other
possible parties. In the following sections, we first discuss the
verification of the entanglement property of the channel and
further quantifies this kind of quantumness with an estimation
of a lower bound for the (generalized) robustness of the
quantum memory [26,27].

A. Entanglement property detection

As a specific type of quantum channel, a good quantum
memory can preserve the quantum information to some ex-
tent. In the ideal case, the quantum memory keeps all the
information contained in the states and is reversible. The per-
fect memory is a known unitary U , e.g., the identity channel
I. In the following discussion, we show that the verification
protocol can help us reveal whether the noisy channel is EP.

Without loss of generality, here we focus on the strategies to
verify I.

It is known that a channel is EP iff the corresponding Choi
state is an entangled state. The Choi state �E is entangled
if the fidelity to the maximally entangled state Tr(�E�+) >

1/d , that is, by the violation of the following witness:

W := I

d
− �+, (59)

where the expectation value 〈W〉 � 0 for all separable states
[42].

As a result, the error threshold here is taken as ε = 1 −
1/d . From Theorem 1, we know that the optimal verification
round is

Nop =
⌈

ln δ−1

ln[1 − ν(�op)ε]−1

⌉
=
⌈

ln δ−1

ln
(

d+1
2

)
⌉

. (60)

Thus, EP property can be verified in a single round if
d � 2δ−1 − 1. Moreover, suppose we consider the verifi-
cation protocol just with two MUBs, which is the easiest
to realize in the experiment, the corresponding verification
round is

N2−MUB �
⌈

ln δ−1

ln
(
1 − d−1

2d

)−1

⌉
=
⌈

ln δ−1

ln
(

2d
d+1

)
⌉

. (61)

Thus, we can use two measurement settings, for example, X
and Z base states and measurements to detect the entangle-
ment property of the quantum channel.

B. Quantumness quantification

In this section, we further apply the verification to the
quantification of quantumness. Specifically, an operational
measure called the robustness of the quantum memory can be
lower bounded with the verification protocol.

We first introduce the robustness of entanglement [43]

Rs(ρ) := min
σ∈S

{
t � 0,

ρ + tσ

1 + t
∈ S
}
, (62)

where S is the set of separable states. Rs(ρ) quantifies how
much separable noise needs to be introduced to make the state
separable. If one allows the noisy state σ to be any state,
the definition becomes the generalized robustness Rs

G(ρ). By
definition, Rs

G(ρ) � Rs(ρ).
In a similar way, the robustness of quantum channel is

defined as [26,27]

R(E ) := min
M∈F

{
t � 0,

E + tM
1 + t

∈ F
}
, (63)

where F is the set of EB channels. If one allows the mixed
channel M to be any channel, the definition becomes the
generalized robustness RG(E ). By definition, RG(E ) � R(E ).
The (generalized) robustness measure of quantum channel
owns a few of significant operational meaning, such as the
amount of classical simulation cost and the advantage in state
discrimination-based quantum games.
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Observation 4.

Rs(�E ) � R(E ), Rs
G(�E ) � RG(E ), (64)

where �E is the Choi state of the quantum channel E .
Proof. Here, we prove the first inequality, and the second

can be proved in the same way. If we write Eq. (63) in the
Choi state form, we can see that the noisy Choi state �M
is not only a separable state, but also under the additional
constraint maximally mixed on the first subsystem. However,
the minimization of Rs(�E ) does not need this constraint,
thus serves as a lower bound. �

From Observation 4, one has Rs
G(�E ) � RG(E ) � R(E ).

Thus we can give a reliable lower bound of the robustness of
quantum channel by estimating the corresponding measure on
the Choi state. From Ref. [44], the generalized robustness of
entanglement on states can be lower bounded by the witness
as

Rs
G(ρ) � |Tr(Wρ)|

λmax
, (65)

where the expectation value of the witness should satisfy
Tr(Wρ) � 0 and λmax is the largest eigenvalue of the witness
operator W . Inserting the witness in Eq. (59), we have

Rs
G(�E ) � d Tr(�E�+) − 1. (66)

As a result, to confirm R(E ) � r, the entanglement infidelity
should satisfy ε � d−r−1

d . And we have the trial number of the
optimal strategy given by

Nop =
⌈

ln δ−1

ln[1 − ν(�op)ε]−1

⌉
=
⌈

ln δ−1

ln
(

d+1
r+2

)
⌉

. (67)

Note as r = 0, Eq. (67) becomes the result in Eq. (60) of
the verification of entanglement. We can further reduce the
measurement efforts by using less MUBs.

V. CONCLUSION AND OUTLOOK

In this work, we studied the verification of quantum gates.
Based on the Choi representation of quantum channels, we
analyze the verification strategies with local state inputs and
local measurements without the assistance of extra ancillaries.

In the nonadversarial scenario, the verification perfor-
mance characterized by the type-II error probability P(ε,�)
can be calculated by a semidefinite program. On account of
the unitary invariance and convexity of the passing probability
with respect to �, one can prove the optimality of a uniformly
mixing strategy �op in Eq. (19), which can be realized by a
CB test with (d + 1) MUB when d is a prime power or other
mixing strategy based on quantum state 2-design. Moreover,
we show that the performance of all the Bell-diagonal strate-
gies can be exactly evaluated.

In the adversarial scenario, the verification performance
characterized by the entanglement fidelity lower bound
F (N, δ,�) and number of trials upper bound N (ε, δ,�) are
in general hard to solve, while the corresponding state pa-
rameters FS (N, δ,�) and NS (ε, δ,�) can provide a useful
bound. We prove that, for the Bell-diagonal strategies with the
form in Eq. (33), the calculation of F (N, δ,�) and N (ε, δ,�)
can be reduced to its corresponding state version FS (N, δ,�)

and NS (ε, δ,�). Meanwhile, we prove that, among all the
Bell-supported strategies � defined in Sec. II C, for given trial
rounds N and significant level δ, the optimal F (N, δ,�) can
always be achieved by the homogeneous strategies.

More specifically, we analyze the local verification strate-
gies and their performance for some common quantum gates,
such as single-qubit and qudit gates, multiqubit Clifford gates,
and multiqubit controlled-Z and controlled-X gates. We also
demonstrate the application of gate verification for channels’
property testing. We show that gate verification can be used
to test the entanglement-preserving property and further the
quantification of the robustness of quantum memory.

To enhance the robustness of our work against state
preparation and measurement error, we may consider the
combination of channel verification with common robust
methods, such as randomized benchmarking [15,17], robust
tomographic information extraction [45], and gate set tomog-
raphy [14]. On the other hand, it is important to make the gate
verification protocol robust against a few rounds of failure
tests [46].

To characterize the quantumness in a channel is currently
a hot topic [26,27,47–51]. Here, we analyze the application
of gate verification to quantify the robustness of quantum
memory [26,27]. We believe that our method can be ex-
tended to quantify other properties of the channel, such as the
coherence-generating power [40,41], magic [52], and so on.

Note added. Recently, we noticed two recent related works
[53,54]. Comparing to Ref. [53], we analytically derive the
optimal verification strategy for the general d-level unitary.
Reference [54] develops a very general framework for the
quantum gate verification with local state inputs and local
measurements, which is suitable for quite a few gates, espe-
cially for the multipartite ones. Here, we focus on the prepara-
tion and measurement strategies and directly relate them to the
channel’s Choi representation. As a result, our performance
(by the number of trials) on the multiqubit Clifford gate in
Eq. (55), N � � 22n−1

22n−1 ε−1 ln δ−1	, is better than the one in
Ref. [54], N � �3ε−1 ln δ−1	. Moreover, we also consider the
quantum gate verification in the adversarial scenario and its
application in channel property testing.
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APPENDIX A: HEISENBERG-WEYL OPERATORS
AND GENERALIZED QUDIT BELL STATES

The Heisenberg-Weyl group is a generalization of Pauli
group. For a qudit Hilbert space with computational basis
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{|l〉}d−1
l=0 , we define

Z =
d−1∑
l=0

exp

(
i
2π

d
l

)
|l〉 〈l| ,

X =
d−1∑
l=0

|l + 1〉〈l|,
(A1)

where |l + 1〉 means |(l + 1) mod d〉.
The Heisenberg-Weyl operator W (u, v) is defined to be

W (u, v) = X uZv, (A2)

with u, v = 0, 1, . . . , d − 1. It is easy to verify that

X d = Zd = I, (X u)† =X −u, (Zv )† =Z−v,

X uZv = exp

(
−i

2π

d
uv

)
ZvX u,

W (u, v)W (u′, v′) = exp

(
−i

2π

d
(uv′ − vu′)

)

× W (u′, v′)W (u, v). (A3)

Define |�0,0〉 = |�+〉 = 1√
d

∑d−1
j=0 | j j〉. The generalized

qudit Bell states [55] are

|�u,v〉 := I ⊗ W (u, v) |�+〉

= 1√
d

d−1∑
l=0

exp

(
2π i

d
lv

)
|l〉A ⊗ |l + u〉B . (A4)

Denote �u,v := |�u,v〉 〈�u,v|. The qudit Bell states
{�u,v}d−1

u,v=0 form an orthonomal basis

〈�u,v|�u′,v′ 〉 = 〈�+| (I ⊗ W (u, v)†W (u′, v′)) |�+〉

= exp

(
−i

2π

d
udv

)
〈�+| (I ⊗ X ud Zvd ) |�+〉

= 1

d
exp

(
−i

2π

d
udv

) d−1∑
j=0

d−1∑
m,l=0

exp

(
i
2π

d
vd l

)

× 〈 j, j|m, l + ud〉 〈m, l| j, j〉

= 1

d
δud ,0 exp

(
−i

2π

d
udv

) d−1∑
j=0

exp

(
i
2π

d
vd j

)

= δud ,0δvd ,0, (A5)

where ud := u′ − u, vd := v′ − v.

APPENDIX B: PROOF OF LEMMA 2

Proof. The summation in Eq. (18) is a“twirling” operation
on the Weyl operators, and we first prove that the twirling
result is in the Bell-diagonal form. To prove this, we take out
an operator element |�w1〉 〈�w2 | in the Bell basis with the vec-
tor wi = (ui, vi ) and |�wi〉 = I ⊗ Wi |�+〉, and show that it
vanishes after the twirling unless w1 = w2. For simplicity, we
denote the phase factor as a = exp (−i 2π

d ) and the symplectic

inner product as {w,w′} = uv′ − vu′:∑
w

W∗(u, v) ⊗ W (u, v)(|�w1〉 〈�w2 |)

=
∑
w

(W ∗ ⊗ W )(|�w1〉 〈�w2 |)(W T ⊗ W †)

=
∑
w

(W ∗ ⊗ W )(I ⊗ W1) |�+〉 〈�+| (I ⊗ W †
2 )(W T ⊗ W †)

=
∑
w

a{w,w1}a−{w,w2}(I ⊗ W1)(W ∗ ⊗ W ) |�+〉

× 〈�+| (W T ⊗ W †)(I ⊗ W †
2 )

=
∑
w

a{w,w1−w2}(I ⊗ W1) |�+〉 〈�+| (I ⊗ W †
2 )

=
∑
w

a(w,w1−w2 ) |�w1〉 〈�w2 |

=
∑
u,v

e−i 2π
d (u�v′−v�u′ ) |�w1〉 〈�w2 |

= δw1−w2 |�w1〉 〈�w2 | , (B1)

where (�u′,�v′) = (u1 − u2, v1 − v2) = w1 − w2, and
δw1−w2 = 1 iff w1 = w2. Here, Eq. (A3) is applied to show
the third equality; the fourth equality is due to the invariance
of the maximally entangled state |�+〉 under the operation
W ∗ ⊗ W .

Then, we prove the nonincreasing of the passing proba-
bility P(ε,�). Note that the twirling operation is a mixing
of d2 verification operators �{u,v} = W∗(u, v) ⊗ W (u, v)(�)
with equal probability �′ = 1/d2∑�{u,v}. Thus, combin-
ing Observation 1 and Lemma 1, one has P(ε,�′) �
1/d2∑P(ε,�{u,v}) = P(ε,�). �

APPENDIX C: PROOF OF LEMMA 3

Proof. For the strategy �, we take a group of eigenvectors
{� j,l} corresponding to different eigenvalues {λ j}. If the rank
of � j is larger than 1, then l denotes the index in the
degenerated space. We set � j,0 to be (one of) the Bell state in
� j if � j ∈ S0(�). Obviously, {� j,l} are also the eigenvectors
of �′. We denote the set of maximally entangled basis in it as
�(� j,l ).

Similar to the argument in the proof of Observation 2, we
now introduce the permutation-invariant basis

�k = P̂S

⎛
⎝⊗

j,l

�
⊗k j,l

j,l

⎞
⎠, (C1)

where P̂S is the symmetrization operator, mixing all pos-
sible permutation with respect to different rounds, k :=
[k0,0, k0,1, . . . , kJ−1,L−1] is a sequence of non-negative integer
number with

∑
j,l k j,l = N + 1. If k is nonzero only on the

set �(� j,l ), the generated symmetric state �k will also be the
maximally entangled state. We denote the set of such �k as
the symmetric Bell basis �S(� j,l , N ).

Since pE and fE in Eqs. (25) and (28) only depend on the
diagonal elements of �E in the basis of �, without loss of
generality, we may assume that the Choi state is diagonal in
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the product basis of {� j,l}. We only need to consider the Choi
state �E as the mixture of �k,

�E (c) =
∑
k∈K

ck�k, (C2)

where c = {ck} are the non-negative mixing coefficients with∑
k∈K ck = 1, and K is the set of all possible k. Since �k

might not meet the requirement of Choi state, there is extra
limitation on the coefficients:

TrB[�E (c)] =
(
Id

d

)⊗(N+1)

. (C3)

We denote the set of legal coefficients c satisfying Eq. (C3)
as C(�k ), which is determined by {�k}. Note that, due to the
linearity of Eq. (C3), C(�k ) is a convex set.

According to Eqs. (25), (28), (C1), and (C2), one has

pE (c) =
∑
k∈K

ckηk(�λ), c ∈ C(�k )

fE (c) =
∑
k∈K

ckζk(�λ), c ∈ C(�k ) (C4)

where �λ := (λ0,0, λ0,1, . . . , λJ−1,L−1) is the eigenvalue of �

or �′, and

ηk(�λ) := p(k) =
∑

i|ki>0

ki

(N + 1)
λ

ki−1
i

∏
j �=i|k j>0

λ
k j

j ,

ζk(�λ) := f (k) = k0

(N + 1)

∏
i|ki>0

λ
ki
i . (C5)

Here, λ0
i is set to be 1, even if λi = 0. Due to the degeneration

of {λ j,l}, for different k, the values of ηk(�λ) and ζk(�λ) could be
the same. The optimization value of F (N, δ,�) is determined
by the two-dimensional region of (pE (c), fE (c)) with legal
c ∈ C(�k ).

Our main idea to prove F (N, δ,�′) � F (N, δ,�) to show
that the optimizing area of �′ belongs to the optimizing area
of �, that is, the point (pE (c), fE (c)) by coefficients c with
�′ can always be achieved by the same coefficients c with �.
First, for the strategy �′, all the value of (pE (c), fE (c)) with
c ∈ C(�k ) can be achieved even if we restrict our considera-
tion to the symmetric Bell basis �k ∈ �S(� j,l , N ). Since the
symmetric Bell basis terms {�k} naturally satisfy Eq. (C3),
the Bell coefficients {ck} can then be chosen freely, without
any extra requirements than non-negative and normalization.
On the other hand, due to the degeneracy of eigenvalues,
i.e., λ̃ j ∈ λ(S0(�)), all the values of ηk(�λ) and ζk(�λ) can be
realized by the symmetric Bell basis set �S(� j,l , N ). Second,
if we consider a symmetric Bell state �E (c) with coefficients
c = {ck}, the corresponding values of (pE (c), fE (c)) are the
same for �′ and �. This is because the values of ηk(�λ) and
ζk(�λ) for the symmetric Bell basis are independent of � and
�′. Third, the feasible coefficients region C(�k ) for � and �′
are the same since the region only depends on the eigenbasis
{�k}.

To summarize, for any point (pE (c), fE (c)) in the opti-
mization space of �′, it can be achieved by the a state �E (c)
on the space of the symmetric Bell basis �k ∈ �S(� j,l , N ).
The value of (pE (c), fE (c)) is the same for such symmetric
Bell state �E (c) using the strategy �. Therefore, any point
(pE (c), fE (c)) in the optimization space of �′ will be con-
tained in the optimization space of �. �
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