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Combinatorial optimization via highly efficient quantum walks
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We present a highly efficient quantum circuit for performing continuous time quantum walks (CTQWs) over
an exponentially large set of combinatorial objects, provided that the objects can be indexed efficiently. CTQWs
form the core mixing operation of a generalized version of the quantum approximate optimization algorithm,
which works by “steering” the quantum amplitude into high-quality solutions. The efficient quantum circuit
holds the promise of finding high-quality solutions to certain classes of NP-hard combinatorial problems such as
the Travelling Salesman Problem, maximum set splitting, graph partitioning, and lattice path optimization.
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I. INTRODUCTION

Combinatorial optimization problems are known to be
notoriously difficult to solve, even approximately in general
[1]. Quantum algorithms are able to solve these problems
more efficiently, with a brute force quantum search offering
a guaranteed square root speedup over the classical approach
[2,3]. Such a speedup is, unfortunately, insufficient to provide
practically useful solutions, since these combinatorial optimi-
sation problems scale up exponentially.

Farhi et al. [4] proposed the quantum approximate op-
timization algorithm (QAOA), derived from approximating
the quantum adiabatic algorithm on a gate model quantum
computer, to find high-quality solutions for general combina-
torial optimization problems [4]. More recently, we extended
the QAOA algorithm to solve constrained combinatorial op-
timization problems via alternating continuous-time quan-
tum walks over efficiently identifiable feasible solutions and
solution-quality-dependent phase shifts [5]. Throughout this
paper, we refer to this quantum-walk-assisted generalization
as QWOA.

The core component of QWOA is the continuous time
quantum walk (CTQW) [6–9], which acts as a “mixing”
operator for the algorithm, with probability amplitudes
transferred between feasible solutions of the problem. A
CTQW over the undirected graph with adjacency ma-
trix A, which connects all feasible solutions, is defined
by the propagator Û (t ) = e−itA. Quantum walks have
markedly different behavior to classical random walks due
to intrinsic quantum correlations and interference [10–13],
and they played a central role in quantum simulation
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and quantum information processing [14–25]. CTQWs are
particularly well known for their applications to quantum
spatial search [11,26,27], where the system is evolved for
a sufficient length of time under the addition of the graph
Hamiltonian A and an oracular Hamiltonian encoding the
marked element(s). However, in QWOA we apply CTQWs
independently, where a quantum circuit for Û (t ) = e−itA is
used to map some initial amplitude distribution over the
vertices to the distribution obtained after “walking” for time
t . The oracular Hamiltonian encoding solution qualities are
then applied sequentially, interleaved with further CTQWs.
Of significance is that, for the graph structures considered in
this paper, the runtime of a QWOA circuit can be made in-
dependent of the walk times, leading to a distinct algorithmic
advantage.

In this paper, we discuss a significant and innovative ap-
plication of QWOA to a wide range of combinatorial do-
mains, which is defined as the set of feasible solutions to
some specified combinatorial optimization problem. In Sec. II
we describe the QWOA procedure and its quantum circuit
implementation. In Sec. III, we detail our method for quantum
walking over a variety of combinatorial domains. Specifi-
cally, the domains applicable to this method are those with
an associated indexing function, which efficiently identifies
each object with a unique integer index. Indexing combi-
natorial objects is called ranking in the literature, however,
we refer to it here as “indexing” to avoid confusion with
ranking objects by their quality. We show that the domain
of combinatorial objects can be connected by any circu-
lant graph, barring some minor restrictions, which would
ensure a highly efficient quantum circuit implementation.
We also show how to design a unitary that efficiently per-
forms the indexing on computational basis states representing
objects.

In Sec. IV, we give a number of applicable combinatorial
domains along with their associated NP optimization prob-
lems, including well-known problems such as the Travelling
Salesman Problem and constrained portfolio optimisation. In
Sec. V, we present specific quantum circuits to implement the
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FIG. 1. An illustrative QWOA circuit for optimization over combinatorial domains having efficient indexing and un-indexing functions.
The circuit performs |ψ ′〉 = ÛW (t )ÛQ(γ )|ψ〉 with O(polylog N ) depth. Here the operator q̂ evaluates the quality of a solution to k bits of
precision, and λ̂ computes the eigenvalue of the circulant matrix to the same precision. The rotation angles γ and t can be varied by a classical
optimizer.

indexing functions. Finally, we describe the relevance of the
indexing unitary to quantum search in Sec. VI and then make
some concluding remarks.

II. QUANTUM WALK-ASSISTED
OPTIMIZATION ALGORITHM

QWOA uses the continuous time quantum walk as an
ansatz, distinguished from the original derivation of the
QAOA as a discretised adiabatic evolution. Specifically, in the
QWOA framework the quantum system evolves as [5]

|�γ , �t〉 = ÛW (tp)ÛQ(γp) . . . ÛW (t1)ÛQ(γ1)|s〉 . (1)

In a combinatorial optimization context, the QWOA proce-
dure can be interpreted as follows.

(1) |s〉 is the initial state, which can be taken to be an equal
superposition over all of the feasible combinatorial solutions.

(2) ÛQ(γ ) = eiγ Q̂, where Q̂ is a diagonal matrix with
diagonal elements q(x) corresponding to the solution quality
of the combinatorial object x. As such it applies a phase shift
to each combinatorial object, proportional to γ and its quality.

(3) ÛW (t ) performs a continuous-time quantum walk for
time t over the combinatorial domain; its details will be
discussed in the next section.

(4) The set of 2p parameters �γ = (γ1, . . . , γp) and �t =
(t1, . . . , tp) are chosen to maximize the expectation value
〈�γ , �t |Q̂|�γ , �t〉, representing the average measured solution
quality.

The QWOA state evolution consists of an interleaved series
of phase shifts, which introduce a bias to solutions dependent
on their quality, and quantum walks to mix amplitude between
solutions. A higher choice of p leads to better solutions at the
cost of a longer quantum computation with more variational
parameters. In the general case, a classical optimizer can be
used to vary the parameters �γ and �t such that the expectation
value of the solution quality is maximized. A circuit diagram
for the QWOA is illustrated in Fig. 1, consisting of a solution
quality dependent phase shift ÛQ(γ ) followed by a quantum
walk over the feasible solutions ÛW (t ).

The ÛQ(γ ) component of the QWOA circuit is straight-
forward to implement for any combinatorial optimization

problem in the NPO complexity class. Put another way, given
a combinatorial object x, we require that the solution quality
q(x) can be efficiently computed. If so, there is an efficient
quantum circuit that implements the desired solution quality-
dependent phase shift [28]. We show this implementation in
the left dashed box of Fig. 1. With this in mind, the remainder
of this paper proposes a generic approach to efficiently imple-
menting ÛW (t ) over a wide range of combinatorial domains.

III. QUANTUM WALKS OVER
COMBINATORIAL DOMAINS

Consider a set of M combinatorial objects, each encoded
as an n-bit string. An example is k-combinations of a set
S = {s0, s1, . . . , sn−1}, where each combinatorial object corre-
sponds to a unique k-combination of S. A straightforward en-
coding of a specific k-combination as a length-n binary string
is x = x0x1 . . . xn−1, where x j = 1 iff s j is selected as part of
the combination. In this case, the aim is to perform a quantum

walk over a graph connecting each of the M = (n
k
)

possible

k-combinations of S. Current approaches resort to sparse
or approximate Hamiltonian simulation of the XY model
Hamiltonian [29,30], which is not ideal as its corresponding

FIG. 2. (a) XY model connectivity of length-4 bitstrings with
exactly 2 bits on. The two central solutions have double the degree
of the outer ones, introducing bias. (b) Using our proposed approach
with the complete graph maintains symmetry among solutions.
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FIG. 3. Circuit for Û#, using an ancilla register of the same size
as the input register.

quantum circuit changes with the value of the walk time t (re-
quiring a longer circuit to approximate the quantum walk dy-
namics for a longer time). Furthermore the XY model does not
maintain symmetry among the relevant vertices, introducing
bias into the optimization algorithm, as illustrated in Fig. 2.
Our method provides the ability to resolve this issue with (for
example) the complete graph or the cycle graph, preserving
symmetry.

We choose to focus on circulant connectivity because all
circulant graphs are diagonalized by the Fourier transform.
Thus, the highly efficient quantum Fourier transform (QFT)
can be used to diagonalize any choice of circulant graph, while
the circuit structure remains largely unchanged [31–34]. The
first step of our approach is to unitarily map the M binary
strings corresponding to valid combinatorial objects, which
are “scattered” in a larger space of 2n binary strings, to a
canonical subspace of the first M binary strings (i.e., 0 through
to M − 1). This is done using a so-called “indexing unitary”
U#. The second step is to perform a continuous time quantum
walk over the first M computational basis states connected as
a circulant graph, where M is not necessarily a power of 2.
After “un-indexing” using U †

# , a CTQW over the circulantly
connected combinatorial objects is performed. Our approach
is summarized with

ÛW (t ) = Û †
# F̂

†
M exp(iλ̂t )F̂MÛ# , (2)

where Û# is the indexing unitary, F̂M is the quantum Fourier
transform modulo M [35], and λ̂ is a diagonal matrix con-
taining the M eigenvalues of the circulant adjacency matrix,
which describes the connectivity of the objects. In the follow-
ing subsections we describe each component of the overall
quantum walk, and the corresponding circuit implementation.

A. Indexing with Û#

Let S = {s1, s2, . . . , sM} be a set of bitstrings encoding
combinatorial objects. Assume the combinatorial objects can
be encoded using n qubits. For example, k-combinations from
[n] = {0, 1, . . . , n − 1} may be represented by an n-bit string
with exactly k bits set. We wish to perform a continuous
time quantum walk (CTQW) over S. Consider a bijective
function id : S → [M] that identifies each element of S with
its unique integer “index,” where both id and id−1 are effi-
ciently computable. Typical indexing functions usually order
lexicographically, although for our purposes the manner of
ordering is not relevant. Then with the application of a unitary
that performs indexing on the subspace of valid combinatorial
bitstrings, quantum walking over S is reduced to quantum
walking over [M].

We now briefly explain how to construct the indexing
unitary Û#, given classical algorithms for indexing and un-
indexing. Since we assume we have an efficient classical algo-
rithm for indexing, we can construct a reversible circuit to per-
form Ûid |x〉|z〉 = |x〉|z ⊕ id (x)〉. Similarly, we can construct a
unitary for un-indexing, Ûid−1 |id (x)〉|z〉= |id (x)〉|z ⊕ x〉. It is
straightforward to check that

Û#|x〉|0〉 ≡ Uid−1 ŜÛid |x〉|0〉 = |id (x)〉|0〉 , (3)

where Ŝ swaps the first and second registers. We give the
circuit diagram in Fig. 3. Clearly, un-indexing is performed
with Û †

# .
The indexing algorithm depends on the specific combi-

natorial family. However, there is a general framework by
Wilf [36] that applies when the combinatorial objects are
constructed recursively. For example, an arbitrary n-choose-k
combination is built from the

(n−1
k

)
subsets not including n,

and the
(n−1

k−1

)
subsets that do include n. In this sense, the

construction of a combinatorial object can be thought of as a
certain path on a directed graph, with each step partially build-
ing the object. The initial point of the walk—for example,
(n, k) in the lattice describing all set combinations—describes
the so-called order of the object. In this framework, the
indexing algorithm has complexity scaling as a polynomial in
the object’s order. As per [36], some illustrative combinatorial
families for which this framework applies include k-subsets

FIG. 4. (a) A Möbius ladder graph connecting subsets of {0, 1, 2, 3} that do not contain exactly two elements. (b) The adjacency matrix
before and after applying the indexing unitary. Rows colored grey correspond to invalid states.
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of [n], permutations of [n] with k cycles, and k-partitions
of [n]. Associated with each of these example families is a
formula to obtain the number of objects of a given order—the
binomial coefficients, the Stirling numbers of the first kind,
and the Bell numbers, respectively. This is a property induced
by Wilf’s framework, and applies to all the combinatorial
families within it. Thus for our purposes, the number of
objects M is always explicitly known (or can be determined
efficiently).

Finally, given the ability to index objects of a given order,
the indexing algorithm can be extended to handle a range
of orders a � k � b. This makes our framework naturally
applicable to many more relevant combinatorial domains. For
example, to index a combination �c = (c0, . . . , c j−1) of [n]
with respect to all combinations of � K elements,

id�K (�c) = idlen(�c)(�c) +
len(�c)−1∑

k=0

(
n

k

)
, (4)

where len(�c) is the order of �c, i.e., the number of elements in
the combination.

B. Preparation of the initial state

In the original QAOA, one prepares an equal superposition
over all N = 2n computational basis states. However, in gen-
eral, up to half of these bitstrings do not correspond to a valid
combinatorial object contained in the set S, i.e., M < N .

Instead, to prepare the equal superposition |s〉 over the valid
combinatorial objects, we first apply the quantum Fourier
transform modulo M to the |0〉⊗n state. There are highly
depth-efficient quantum circuits that can be used to imple-
ment the Fourier transform with arbitrary modulus [37]. This
creates the superposition (1/

√
M )

∑M−1
x=0 |x〉. Then the un-

indexing unitary U −1
# can be carried out, thus efficiently

preparing the desired initial state

|s〉 = 1√
M

∑
x∈S

|x〉 . (5)

C. Quantum walk with exp(iĈt )

We now connect the indices in a circulant manner, defining
a circulant matrix Ĉ of size M × M. This circulant matrix
is diagonalized by the Fourier matrix F̂M . Therefore the
quantum walk over the graph with adjacency matrix C is

exp(iĈt ) = F̂M exp(iλ̂t )F̂†
M . (6)

Again, the quantum Fourier transform modulo M can be used
to efficiently perform the diagonalization.

The diagonal unitary exp (iλ̂t ) can be implemented ef-
ficiently using well-known methods from [28], similar to

ÛQ(γ ). We require that the diagonal elements of λ̂ be ef-
ficiently computable, which is the case for graphs having
efficiently computable eigenvalues. This holds for circu-
lant graphs when the maximum degree grows polynomially,
or when the eigenvalues are known in closed-form (e.g.,
complete, cycle, and Möbius ladder graphs). Since each
unitary can be implemented efficiently, the entire walk is
efficient. It is anticipated that a low choice of p, lead-
ing to a relatively shallow circuit, will have a quantum
advantage for near-term NISQ applications as discussed
in [38].

IV. APPLICATIONS

In the following, we give an overview of a number of
combinatorial structures and give their associated indexing
functions. A continuous time quantum walk can be efficiently
performed over each of following domains using the above-
described scheme.

There are a wide range of integer sequences with index-
ing and un-indexing algorithms (or equivalently an efficient
closed-form expression for the nth element of the sequence
an, where the inverse operation is also efficiently computable).
A comprehensive list of such sequences can be found on
the On-Line Encyclopedia of Integer Sequences (OEIS) [39],
with some examples given below. For brevity we do not give
details on the corresponding un-indexing functions; their im-
plementations are similar to indexing with the same runtime
complexity, and are available in the references provided in the
below sections.

A. Set k-combinations

Let a binary string x = x1 . . . xn denote a combination,
where x j = 1 iff the jth element is selected. Then an efficient
indexing algorithm, to index a given k-combination among all
other k-combinations, is given in Algorithm 1.

Algorithm 1. INDEX_COMB(x, k).

c ← list of j where x j = 1

sort c in ascending order

return sum from j = 1 to k of
(c[ j]

j

)

As discussed in Sec. III A, the k-combination indexing
function can be “wrapped” to index combinations among
others of chosen sizes. As a nontrivial example, in Fig. 4
we show a Möbius ladder graph connecting all subsets of
{0, 1, 2, 3} except those with exactly two elements.

FIG. 5. Notation for the unitary operations required to implement Ûid for n-choose-k-combinations and n-permutations. Fundamental gate
counts: (a) O(k log n), (b) O(n log n), (c) O(log n), (d) O(log n).
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By choosing n to be even and k = n/2, this is the domain
of the graph partitioning problem. Similarly, this indexing
algorithm can be applied to the critical node detection problem
[40]. Another real-world application is to constrained finan-
cial portfolio optimization in finance, where up to k assets
are selected to create a financial portfolio with minimum risk
and/or maximum return.

In Sec. V, we give two quantum circuits to perform effi-
cient k-combination ranking, depending on how the combina-
tions are represented in the quantum register.

B. Permutations

A permutation can be indexed in linear time using Algo-
rithm 2 [41], where π is a permutation of [n] and π−1 is the
inverse permutation (which can be computed in linear time).

Algorithm 2. INDEX_PERM(n, π, π−1).

if n = 1 then

return 0

end if

s ← π [n − 1]

swap π [n − 1] and π [π−1[n − 1]]

swap π−1[s] and π−1[n − 1]

return s + n × INDEX_PERM(n − 1, π, π−1)

As an example, the well-known NP-hard Travelling Sales-
man Problem has domain corresponding to the k! possible
permutations of visiting each of k cities exactly once and then
returning to the starting city. A straightforward encoding is
to use k
log k� qubits, where each block of 
log k� qubits
represents the next city to visit. The indexing unitary U# can
then be used to map this encoding of a tour to an integer from
0 to (k! − 1), and vice versa.

In Sec. V, we provide a simple quantum circuit to perform
efficient permutation ranking.

C. Lattice paths

A Dyck path is a lattice path from (0, 0) to (n, n) which
never goes above the diagonal y = x. They are an example
of a combinatorial structure characterized by the Catalan
numbers, a sequence appearing in a number of combinatorial
applications. Catalan numbers have an efficient indexing
function provided in Algorithm 3, where the function

NUM_DYCK(i, j) counts the total number of Dyck paths
between (0, 0) and (i, j) [42].

Algorithm 3. INDEX_CATALAN(x).

n ← number of bits of x

c1 ← 2

for j = 2 to n do

c j ← max(x j−1 + 1, 2 j)

end for

r ← 1

for j = 1 to n − 1 do

for k = c j to bj − 1 do

r ← r + NUM_DYCK(n − j, n + j − k)

end for

end for

return r

There are other lattice path applications. For example, an
arbitrary length-n path in three-dimensional (3D) space can be
characterized by an n-letter word where each letter is chosen
from an alphabet of six directions. Any “word” composed of
a sequence of letters from some specified alphabet can be
indexed, and constraints on some/all of the letters can also
be incorporated [43].

V. QUANTUM CIRCUITS FOR INDEXING

In this section, we give some quantum circuits for Uid .
We use the notation shown in Fig. 5 for the required unitary
operations.

A. Combinations

Here we present quantum circuits for indexing the two
main representations of k-combinations. Consider a selection
of k integers from the set [n]. The first representation is to use
a binary string x of length n, where x j = 1 if j is selected. This
clearly requires n bits for any k. The second representation
is to directly represent the k combination as a sequence of
k integers, requiring O(k log n) space. Both circuits follow
the indexing method provided in Algorithm 1. To un-index,
a circuit to prepare uniform superpositions of Dicke states can
be used, such as [44].

FIG. 6. Quantum circuit for indexing a k-combination represented by x = x0 . . . xn−1, where xi = 1 if j is selected.
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FIG. 7. Quantum circuit for indexing a k-combination represented by (c0, . . . , ck−1) with elements in ascending order.

The first quantum circuit for indexing k-combinations of
[n] is given in Fig. 6. It consists of an input register |x〉 of
n qubits and an output register of the same size, as well as
two ancilla registers of O(log k) and n qubits, respectively.
The fundamental gate count is O(nk log n), using the gate
complexities for fundamental operations given in Fig. 5.

The quantum circuit for the second representation is shown
in Fig. 7. The input, output, and ancilla register are of size
O(k log n). The fundamental gate count is O(k2 log n).

It depends upon the application as to which representation
is more appropriate. If k scales proportionally to n, then
the binary representation is more space and time-efficient.
Otherwise, if k is small (or constant) then the second quantum
circuit is appropriate.

B. Permutations

To design a quantum circuit for indexing permutations, we
use the expression

id (π ) = {. . . [d0(n − 1) + d1] · (n − 2) + · · · + dn−2} · 1

(7)

where di is the ith digit of the Lehmer code corresponding to
π . Explicitly, di = |{ j > i : π j < πi}|. Note that to un-index
permutations a circuit to prepare superpositions of permuta-
tions can be used, such as [45].

Consider a permutation on [n], π = π0 . . . πn−1. The per-
mutation indexing circuit requires an input register |π〉 =
|π0〉 . . . |πn−1〉 of size O(n log n), to hold each of the n el-
ements |πi〉 having size O(log n). An output register of the
same size to hold id (π ), and an additional single qubit ancilla,
are also required.

We first give a quantum circuit to implement a Lehmer op-
erator Di in Fig. 8(a). This circuit performs |π〉|0〉 �→ |π〉|di〉,
using O(n log n) gates.

Using the Lehmer subcircuit, indexing becomes straight-
forward as per Fig. 8(b). There are O(n) uses of D̂i, leading to
a gate count of O(n2 log n) to index permutations in this way.
Although there is a classically linear approach to indexing
given in Algorithm 2, it appears to become quadratic when
quantized due to requiring access to the input register in
a superposition of locations, leading to an additional linear
overhead [46].

VI. QUANTUM SEARCH

Finally, we briefly make explicit the connection with
quantum search. The aim here is to search for one or more
combinatorial objects having a desired property out of a set of
M objects. Again, M is not necessarily a power of 2. Typically,
one would encode each solution using n bits, for sufficiently
large n, and perform a Grover search over the space of N = 2n

binary strings (not marking the binary strings which do not
correspond to any combinatorial object). Using the indexing
unitary, however, the search space can be cut down from N to
M. As per Brassard et al. [3], the Grover iteration over a set of
size M takes the form

Q̂ = −F̂MŜ0F̂−1
M Ŝ f , (8)

where Ŝ f conditionally negates the amplitude of objects
meeting the search criteria and Ŝ0 conditionally negates
the amplitude of the all-zero state. The only modification
required is Ŝ f �→ Ŝ#Ŝ f Û

†
# . This un-indexes the integers to

their corresponding combinatorial object, so each object can
be meaningfully interpreted and marked according to some

FIG. 8. (a) The quantum circuit for unitary operator D̂i, where D̂i|π〉|0〉 = |π〉|di〉. Here, di is the ith digit of the Lehmer code corresponding
to permutation π . (b) The quantum circuit for indexing a given permutation π .
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combinatorial criteria and then be mapped back to an integer
index. Thus, the modified Grover iteration is

Q′ = −F̂MŜ0F̂−1
M Û#Ŝ f Û

†
# . (9)

Quantum search over a set of M combinatorial objects with an
associated indexing function can be performed in O(

√
M/k)

for k marked combinatorial objects. In general, this will lead
to a constant-factor speedup over Grover search on the full
Hilbert space.

VII. CONCLUSION

In this paper we established a general framework for
combinatorial optimization via highly efficient continuous-
time quantum-walk over finite but exponentially large
sets of combinatorial objects. We focus on combinatorial
families with an associated “indexing algorithm,” which
efficiently identifies the position of a given combinatorial
objects among all objects of the same order. Examples of
combinatorial families with associated indexing functions
include combinations, permutations, partitions, and lattice
walks under a variety of constraints. Using a quantum index-
ing unitary, the binary representation of the objects can be
mapped to a smaller and simpler canonical subspace to allow
straightforward implementation of the CTQW.

This approach is particularly beneficial for use as
an quantum walk-based approximate optimization scheme,
to optimize over nontrivial combinatorial domains. The
proposed efficient quantum algorithm requires that the choice
of graph connecting the combinatorial objects is circulant. The
variational parameters in this case are the quantum walk times

�t and the quality phase factors �γ . A specific benefit of our
approach is that the size and design of the quantum circuit
is completely independent of these parameters, so the circuit
does not need to be recompiled each time these parameters
are updated. In addition, by choosing a symmetric graph, the
optimization algorithm is not biased towards any solution over
another. In this paper we also briefly discuss the relevance to
Grover search over combinatorial domains.

Furthermore, each ÛW in the QWOA state evolution does
not need to remain the same operator. One can consider
different connectivities among combinatorial objects for each
quantum walk. For example, it may be beneficial to start with
an initial quantum walk that is highly connected (cf. complete
graph) and decrease the intersolution connectivity each time,
ending with a quantum walk over the objects connected as a
cycle graph. This approach may be beneficial to “hone in” on a
high-quality solution through a systematically modifying ÛW ;
we leave this to future work.

Finally, it is worth noting that this approach does not work
if the combinatorial domain cannot be efficiently indexed,
or if its size cannot be efficiently determined. For example,
independent sets do not have an efficient indexing function;
even the problem of counting the number of independent sets
of a graph belongs to the complexity class #P.
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