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Non-Hermitian random matrices have been utilized in such diverse fields as dissipative and stochastic
processes, mesoscopic physics, nuclear physics, and neural networks. However, the only known universality class
of level-spacing statistics is that of the Ginibre ensemble characterized by complex-conjugation symmetry. Here
we report our discovery of two other distinct universality classes characterized by transposition symmetry. We
find that transposition symmetry alters repulsive interactions between two neighboring eigenvalues and deforms
their spacing distribution. Such alteration is not possible with other symmetries, including Ginibre’s complex-
conjugation symmetry, which can affect only nonlocal correlations. Our results complete the non-Hermitian
counterpart of Wigner-Dyson’s threefold universal statistics of Hermitian random matrices and serve as a basis
for characterizing nonintegrability and chaos in open quantum systems with symmetry.

DOI: 10.1103/PhysRevResearch.2.023286

I. INTRODUCTION

Symmetry and universality are two important concepts of
Hermitian random matrix theory. Dyson’s threefold symmetry
classes in terms of time-reversal symmetry (TRS) [1] led
to three distinct universality classes (Fig. 1), where certain
spectral statistics become independent of the detailed struc-
tures of matrices [2]. The three distinct universal statistics
have found applications in diverse research fields including
nuclear physics [3], mesoscopic physics [4,5], quantum chaos
[6,7], and information theory [8]. The most direct manifes-
tation of the universality lies in the level-spacing distribu-
tion, which measures local correlations of eigenvalues. Level-
spacing distributions of nonintegrable systems are described
by those of Gaussian random matrices known as Wigner-
Dyson’s universal statistics [7,9,10]. They belong to one of
the following three random matrix ensembles: the Gaussian
unitary ensemble (GUE) for the class without TRS (class
A), the Gaussian orthogonal ensemble (GOE) for the class
with TRS whose square is +1 (class AI), and the Gaussian
symplectic ensemble (GSE) for the class with TRS whose
square is −1 (class AII).

While Dyson’s classification is about Hermitian matrices,
non-Hermiticity plays a key role in such diverse systems as
dissipative systems [11–13], mesoscopic systems [14], and
neural networks [15]. Many of these systems have been inves-
tigated in terms of non-Hermitian random-matrix ensembles
introduced by Ginibre (Fig. 1), which are referred to as
GinUE, GinOE, and GinSE as non-Hermitian extensions of
GUE, GOE, and GSE [16]. These three Gaussian ensembles
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are defined in terms of complex conjugation (TRS) and have
thoroughly been investigated [17–22].

Interestingly, three different symmetry classes (GinUE,
GinOE, and GinSE for the Gaussian case) share the same uni-
versal level-spacing statistics of GinUE unlike the Hermitian
case. In fact, TRS only creates nonlocal correlations between
complex-conjugate pairs of eigenvalues but does not alter
the repulsive interactions between neighboring eigenvalues
away from the real axis. Thus, the Ginibre distribution is
the only previously known universal nearest-neighbor spacing
distribution that is common to all three different symmetry
classes with TRS, in contrast to the Hermitian case where
TRS leads to three distinct universality classes. Here, sym-
metry classification is defined solely by algebraic structures
of matrix ensembles, whereas the universality classification is
defined by spectral statistics that may be the same for different
matrix ensembles [2].

Motivated by experiments of non-Hermitian systems
[23–32], symmetry classification of non-Hermitian matrix
ensembles has witnessed remarkable developments [33–35].
Quite recently, two of us have shown that there are 38
non-Hermitian symmetry classes [35] as an extension of
the Hermitian symmetry classes by Altland and Zirnbauer
[36]. The classification includes symmetry classes AI† and
AII† that arise from transposition symmetry [33–35,37–43],
which is Hermitian conjugate of TRS, i.e., TRS†. A rich
variety of experimentally realizable systems belong to these
classes such as optical systems with gain and/or loss [44–46].
However, it has remained largely unexplored how these
symmetry classes are related to the universality classifica-
tion of non-Hermitian random matrices. While some spec-
tral statistics have been calculated for non-Ginibre Gaussian
random matrices [37,40], their universality has yet to be
explored. Note that, while Ref. [37] claims that it exhausts the
universality classification of non-Hermitian random matrices,
the result presented there is not universal statistics but symme-
try classification in terms of symmetric spaces. We also note
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FIG. 1. Schematic illustration of universality classes of random matrices. Dyson’s threefold symmetry classes of Hermitian matrices in
terms of TRS lead to three distinct universal statistics of level-spacing distributions p(s), where �y is defined in Eq. (3). In each panel,
the level-spacing distributions corresponding to GSE, GUE and GOE are shown from top to bottom. In contrast, Ginibre’s three classes of
non-Hermitian matrices based on time-reversal symmetry (TRS) lead to a single universality class. We show that three symmetry classes in
terms of transposition symmetry, which is distinct from TRS due to non-Hermiticity, lead to three distinct universality classes of p(s), as seen
from the peak structure as in the Hermitian case. The black dotted lines show the peak height for class A in the Hermitian and non-Hermitian
cases, and the blue solid curve in each panel in the non-Hermitian case shows Ginibre’s level-spacing distribution.

that level-spacing distributions of real eigenvalues are sensi-
tive to TRS [47] and that different universality classes can
appear in the limit of weak non-Hermiticity [48,49], where
eigenvalues appear near the real axis. We do not consider these
special cases here.

We here investigate the nearest-neighbor spacing distribu-
tions of random matrices which belong to the simplest classes
(i.e., classes with a single symmetry) in the non-Hermitian
symmetry classification [33–35]. As shown in Table I and
Figs. 2(c)–2(k), we numerically find two universal level-
spacing distributions that are distinct from GinUE for classes

TABLE I. Symmetry classes, constraints, and nearest-neighbor
spacing distributions. The sign of each symmetry class indicates
whether the square of the symmetry operator is +1 or −1. Only
classes AI† and AII† show the distributions different from that of
Ginibre’s unitary ensemble (GinUE). Here TRS, PHS, CS, SLS
and pH stand for time-reversal symmetry, particle-hole symme-
try, chiral symmetry, sublattice symmetry and pseudo-Hermiticity,
respectively.

Class Symmetry Constraint pGinUE(s)?

A None – Yes [16]
AI (D†) TRS, + (PHS†, +) H = H∗ Yes [11]
AII (C†) TRS, − (PHS†, −) H = �yH∗�y Yes [16]
AI† TRS†, + H = HT No
AII† TRS†, − H = �yHT �y No
D PHS, + H = −HT Yes
C PHS, − H = −�yHT �y Yes
AIII CS (pH) H = −�zH †�z Yes
AIII† SLS (CS†) H = −�zH�z Yes

AI† and AII†. Thus, Wigner-Dyson’s three universal statis-
tics are extended to the non-Hermitian three universal statis-
tics (classes A, AI†, and AII†) with transposition symmetry
(TRS†) instead of complex-conjugation symmetry (TRS) in
Ginibre’s symmetry classes. Analyzing the level-spacing dis-
tributions for small matrices, we elucidate the similarity and
difference between Dyson’s classification and the new non-
Hermitian generalization: TRS† alters the complex-valued
degrees of freedom that control the repulsive interaction of
neighboring eigenvalues and hence nearest-neighbor spacing
distributions. We show for the first time that the newly found
universality classes indeed manifest themselves in dissipative
quantum many-body nonintegrable systems described by the
Lindblad dynamics and non-Hermitian Hamiltonians.

The rest of this paper is organized as follows. In Sec. II,
we briefly review 9 non-Hermitian symmetry classes char-
acterized by a single symmetry among the 38 symmetry
classes [35]. In Sec. III, we illustrate our finding of new
universal level-spacing statistics arising from the transposition
symmetry. In Sec. IV, we investigate effective small matrices
that capture the qualitative features of the level-spacing dis-
tributions. In Sec. V, we demonstrate that the newly found
universality classes manifest themselves in dissipative quan-
tum many-body systems described by the Lindblad dynamics
and non-Hermitian Hamiltonians. In Sec. VI, we summarize
the paper and discuss some future problems.

II. NON-HERMITIAN RAMIFICATION
OF SYMMETRY CLASSES

A. Dyson and Ginibre’s classifications

Dyson’s classification includes symmetry classes A, AI,
and AII. Let us consider Hermitian N×N matrices in each
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FIG. 2. [(a) and (b)] Single realization of a matrix sampled from (a) Gaussian and (b) Bernoulli random 32×32 matrices for class A, where
the real and imaginary parts are displayed separately. [(c)–(k)] Nearest-neighbor spacing distributions p(s) of 2000×2000 random matrices for
classes (c) A, (d) AI†, (e) AII†, (f) AI, (g) AII, (h) D, (i) C, (j) AIII, and (k) AIII†. The main panels are for Gaussian matrices and the insets for
classes A, AI†, AII† are for Bernoulli matrices. While classes A, AI, AII, D, C, AIII, and AIII† obey the GinUE distribution pGinUE(s), the peak
of p(s) is lower for class AI† and higher for class AII† than that of pGinUE(s) shown in blue curves. Statistics are taken from eigenvalues away
from the edges of the spectrum (i.e., away from the circumference of a circle within which the spectrum resides) and away from the symmetric
line (real or imaginary axis).

of these three classes. Matrices in class A have no symmetry
constraint except for Hermiticity. Matrices in class AI satisfy

H = H∗ = HT . (1)

Matrices in class AII satisfy

H = �yH∗�y = �yHT �y, (2)

where H has a two-by-two block structure and

�y =
(

0 −iI N
2 × N

2

iI N
2 × N

2
0

)
(3)

with the N/2×N/2 identity matrix I N
2 × N

2
. Here, without loss

of generality, we take a unitary operator T as the identity in
H = T H∗T −1 with T T ∗ = +1 for class AI. Similarly, T can
be taken as �y in H = T H∗T −1 with T T ∗ = −1 for class
AII. Below we consider the same simplification for the other
classes (see Appendix A for general symmetry operators).

Ginibre presented the three non-Hermitian symmetry
classes A, AI, and AII by considering complex-conjugation
symmetry (TRS) [16]. Non-Hermitian random matrices in
class A have no symmetry constraint; matrices in class AI
respect

H = H∗, (4)

and matrices in class AII respect

H = �yH∗�y. (5)

In the presence of TRS, eigenvalues are either real or form
complex-conjugate pairs (Eα, E∗

α ).

B. The other symmetry classes with a single symmetry

As shown in the next section, we find the non-Hermitian
two universal statistics distinct from Ginibre’s by noticing that

the distinction between complex conjugation and transposi-
tion for non-Hermitian matrices alters interactions between
eigenvalues. The three universality classes arise from symme-
try classes AI† and AII† in addition to class A, where matrices
respect transposition symmetry (TRS†) [35]. Matrices satisfy

H = HT ( �=H∗) (6)

in class AI† and

H = �yHT �y ( �=�yH∗�y) (7)

in class AII†. TRS† imposes constraints on the left and right
eigenvectors of all the individual complex eigenvalues instead
of nonlocal correlations. In class AI†, for example, a right
eigenvector and the complex conjugate of the corresponding
left eigenvector are proportional to each other. On the other
hand, TRS imposes not local constraints on individual eigen-
vectors but nonlocal constraints on complex-conjugate pairs
of eigenvectors.

We can also investigate the entire non-Hermitian 38-fold
classification [35]. We focus on 9 symmetry classes that have
single symmetries, as summarized in Table I (see Appendix A
for details). In class D, matrices possess particle-hole sym-
metry (PHS) and satisfy HT = −H . In class C, matrices
possess PHS and satisfy �yHT �y = −H . Class AIII has
chiral symmetry (CS), which satisfies �zH†�z = −H , where

�z =
(
I N

2 × N
2

0
0 −I N

2 × N
2

)
. (8)

Finally, in class AIII† (Hermitian conjugate of class AIII),
sublattice symmetry (SLS) exists and matrices satisfy
�zH�z = −H . Note that these symmetries only create non-
local correlations between pairs of complex eigenvalues.
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III. LEVEL-SPACING DISTRIBUTIONS

A. New universality classes of the nearest-neighbor
spacing distribution

We now numerically calculate the nearest-neighbor spac-
ing distributions p(s) in the complex plane away from the
symmetric line (i.e., the real or imaginary axis) for random
matrices in each symmetry class, where p(s) is assumed to be
normalized as ∫ ∞

0
p(s)ds =

∫ ∞

0
sp(s)ds = 1. (9)

Note that the level spacing for an eigenvalue Eα on the
complex plane is essentially given by the minimum dis-
tance d1,α = minβ |Eα − Eβ |. On the other hand, we need to
perform the unfolding procedure to obtain the normalized
level spacing sα from the bare distance d1,α . We do this by
following Ref. [50]. We first note that a local mean density of
eigenvalues can be evaluated as

ρ = n

πd2
n,α

, (10)

where n is sufficiently larger than unity (say 10–30 in our
simulations, which is sufficiently small compared with matrix
sizes) and dn,α is the nth-nearest-neighbor distance from Eα .
Then, sα is defined as [50]

sα = d1,α

√
ρ, (11)

with which the dependence of the level spacing on the local
density of eigenvalues vanishes.

To confirm the universality, we introduce Gaussian and
Bernoulli ensembles of random matrices H . For the Gaussian
ensemble, the probability distribution takes the form

P(H )dH ∝ exp(−βTr[H†H])dH (12)

with a constant β > 0. For the Bernoulli ensemble, each
matrix element is randomly taken from ±1 or ±1 ± i while
satisfying the symmetry constraint (see Appendix A). We
show in Figs. 2(a) and 2(b) single realizations of matrices
sampled from the Gaussian and Bernoulli random matrices
for class A.

Figures 2(c)–2(k) show p(s) for 2000×2000 Gaussian or
Bernoulli random matrices (the latter results are shown only
for classes A, AI†, and AII† for simplicity). Class A obeys the
distributions of GinUE [14,50],

pGinUE(s) = C p̃(Cs), (13)

where

p̃(s) = lim
N→∞

[
N−1∏
n=1

en(s2)e−s2

]
N−1∑
n=1

2s2n+1

n!en(s2)
(14)

with

en(x) =
n∑

m=0

xm

m!
(15)

and [50]

C =
∫ ∞

0
dssp̃(s) = 1.1429 · · · . (16)

We find similar results for classes AI, AII, D, C, AIII,
and AIII†, which indicates that, while symmetries for theses
classes create pairs of eigenvalues, i.e., (Eα, E∗

α ), (Eα,−Eα ),
or (Eα,−E∗

α ), they do not alter local correlations between
neighboring eigenvalues away from the symmetric line (the
real or imaginary axis).

By contrast, p(s) for classes AI† and AII† are distinct
from that of the GinUE in that the peak is lower (higher)
and the variance is larger (smaller) for class AI† (AII†) than
that of the GinUE. This is reminiscent of the Hermitian case,
where the peak of the nearest-neighbor spacing distribution is
lower for class AI (GOE) and higher for class AII (GSE) than
class A (GUE). Here, we note that the nearest-level-spacing
distribution for class AII† is calculated through identification
of the two degenerate eigenvalues.

We conjecture that GinUE for symmetry classes A, AI, AII,
D, C, AIII, and AIII† and that the other two distributions for
classes AI† and AII† are universal. To further confirm that
the universality appears for larger matrix sizes, we show in
Fig. 3 the results of p(s) for 6000×6000 matrices for the nine
different symmetry classes. We find that classes A, AI, AII, D,
C, AIII, and AIII† obey the distribution for GinUE, class AI†

has a lower peak, and class AII† has a higher peak than that
of the GinUE. Similar results are obtained for the Bernoulli
ensembles (data not shown). We here note that the universality
of class A and that of class AI have recently been rigorously
proven under certain assumptions on the fourth moment of the
random entries in the matrix elements [51].

B. Cumulants of the spacing distributions

Next, to confirm our universality more quantitatively, we
study up to the fourth cumulants of p(s) as a function of the
size of a matrix for different symmetry classes and matrix
distributions (Gaussian or Bernoulli). The second, third, and
fourth cumulants are given by

c2 = m2 − m2
1, (17)

c3 = m3 − 3m1m2 + 2m3
1, (18)

c4 = m4 − 4m1m3 − 3m2
2 + 12m2

1m2 − 6m4
1, (19)

respectively, where

mk =
∫ ∞

0
sk p(s)ds (20)

is the kth moment. We fix the scale of s such that m1 = 1.
As shown in Fig. 4, we find the following properties that
strengthen our argument on the universality:

(i) The results for the Gaussian and Bernoulli ensembles
in the same symmetry class are almost the same for all the
cases. Small deviations for the largest matrices are attributed
to the limited number of samples used in our analysis.

(ii) For sufficiently large matrix sizes, we clearly see three
distinct universality classes even for the high-order cumulants:
classes A, AI, AII, D, C, AIII, and AIII† have the same
cumulants, but classes AI† and AII† have different ones.

(iii) The cumulants cA,2, cA,3, and cA,4 approach val-
ues calculated from the exact distribution pGinUE(s) (cA,2 =
0.0875, cA,3 = −0.000471, and cA,4 = −0.00215). However,
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FIG. 3. Nearest-level-spacing distributions p(s) for random matrices whose matrix elements obey Gaussian distributions under their
respective symmetry constraints. The distributions p(s) for classes (a) A, (d) AI, (e) D, (f) C, (g) AII, (h) AIII, and (i) AIII† obey the
GinUE distribution pGinUE(s). In contrast, the peak of p(s) is lower for class (b) AI† and higher for class (c) AII† compared with that of
the GinUE. These results are obtained from diagonalization of 6000×6000 matrices and averaging over 300 ensembles. Statistics are taken
from eigenvalues that are away from the edges of the spectrum and the symmetric line (i.e., the real or imaginary axis) if it exists.

FIG. 4. (a) Second, (b) third, and (c) fourth cumulants c2, c3, c4 as a function of the matrix size for different symmetry classes and matrix
ensembles (solid lines: Gaussian ensembles; dashed lines: Bernoulli ensembles). The results for the Gaussian and Bernoulli ensembles of the
same symmetry class are almost the same for all the cases. For sufficiently large matrix sizes, we find three distinct universality classes even
for the high-order cumulants; classes A, AI, AII, D, C, AIII, and AIII† have the same cumulants that approach values calculated from the
exact distribution pGinUE(s) (thick solid lines), but the cumulants for classes AI† and AII† approach different values. Statistics are taken from
eigenvalues that are away from the edges of the spectrum and the symmetric line (i.e., the real or imaginary axis) if it exists. We average the
data over 20 000, 4000, 2000, 1000, and 300 samples for the matrix size of 100, 500, 1000, 2000, and 6000, respectively.
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the cumulants for classes AI† and AII† approach different
values, which indicate that the newly found distributions for
classes AI† and AII† are distinct from that of the GinUE
even in the infinite-size limit. From Fig. 4, we conjecture
that cAI†,2 � 0.11, cAII†,2 � 0.075, cAI†,3 � 0.004, cAII†,3 �
−0.0025, and cAI†,4 � −0.003, cAII†,4 � −0.001.

These results suggest that only three universality classes
for p(s) exist. Interestingly, we find that c2 (i.e., the variance)
for class AI† (AII†) is larger (smaller) than that for class
A. This behavior is similar to the Hermitian counterpart,
where the variance for class AI (AII) is larger (smaller) than
that for class A. As discussed below, the broadening of the
variance is attributed to an increase in the complex-valued
degrees of freedom f ( f = 2, 3, and 5 for classes AI†, A, and
AII†, respectively) for the repulsive interaction between two
neighboring eigenvalues.

We also conjecture that only three universality classes due
to TRS† exist for p(s) among 38 non-Hermitian symmetry
classes [35], which may contain multiple symmetries. Indeed,
symmetries other than TRS† cannot alter the local interaction
between eigenvalues away from the symmetric lines.

IV. ANALYSIS FOR SMALL MATRICES

A. Effective small matrices describing repulsive interactions

The main feature of our results can be understood from
the analysis of small matrices, i.e., the calculation of p(s)
obtained from two-by-two or four-by-four matrices. While
the results of small matrices are quantitatively different from
larger matrices [50], we expect that it can describe some
qualitative features of level-spacing distributions, such as the
change of the height and width of the distribution due to
TRS† [11]. This is because the repulsion between two close
eigenvalues due to perturbations is qualitatively understood
through diagonalization of the corresponding two-by-two or
four-by-four transition matrix [11].

To see this, we consider a situation in which elements of
a random matrix H are slightly perturbed in a symmetry-
preserving manner. The eigenvalues of the original matrix are
correlated with this perturbation V . To simplify the problem,
we assume that two (distinct) eigenvalues are much closer to
each other than to the rest. Then the repulsion of these two
eigenvalues can be estimated from diagonalization of V in
the subspace spanned by the corresponding eigenvectors. We
expect that qualitative behavior of the nearest-level-spacing
distributions can be described by this method [11,50].

The matrices that we obtain by the above method depend
on the symmetry of H (and equivalently V ). Let us first
consider the simplest case, class A, and let φ1 (χ1) and φ2 (χ2)
be the corresponding right (left) eigenvectors. In this case, the
corresponding two-by-two matrix is(

χ
†
1V φ1 χ

†
1V φ2

χ
†
2V φ1 χ

†
2V φ2

)
=:

(
a b

c d

)
. (21)

Since φ1 and φ2 become independent random vectors for
large H and no direct relation between φα and χα exists in
general, a, b, c, d ∈ C can be regarded as independent random
variables. Let us assume that a, b, c, and d are Gaussian ran-
dom variables, motivated by the fact that the matrix elements

with respect to random eigenvectors become Gaussian for the
Hermitian cases [3].

Next we consider class AI. Whereas time-reversal sym-
metry imposes a constraint on two eigenvectors that are
placed symmetrically around the real axis, it does not on
two close eigenvectors that are off the real axis. Thus, the
obtained matrix again has the form of Eq. (21). Note that
a, b, c, and d are complex despite time-reversal symmetry
of V , since the eigenvectors φ1 and φ2 spontaneously break
time-reversal symmetry. In this sense, the interaction between
two eigenvalues that are off the real or imaginary axis is also
characterized by Hsmall,A even for class AI. The discussion
also holds true for classes AII, D, C, AIII, and AIII†: The
eigenvectors φ1 and φ2 away from the real axis are regarded
as two independent random vectors subject to no constraint,
and we can consider Hsmall,A. In other words, global reflection
symmetry of the spectrum in the complex plane does not affect
the local statistics away from the real or imaginary axis, as
noted in Ref. [50].

On the other hand, the situation is different for classes with
TRS†. Here we consider an arbitrary unitary matrix C+ (see
Appendix A) to clarify the generality of our discussion. Note
that we have chosen C+ = IN×N for class AI† and C+ = �y

for class AII† in the previous sections.
Let us consider class AI†. In this case, we have a condition

C+χ∗
α = φα (we have chosen the proportionality factor to be

unity). Then, while χ
†
1V φ1 and χ

†
2V φ2 become independent

complex variables, we obtain the following relation for the
off-diagonal terms:

χ
†
1V φ2 = (χ†

1V φ2)T = φT
2 V T χ∗

1

= χ
†
2CT

+V T C−1
+ φ1 = χ

†
2C+V T C−1

+ φ1

= χ
†
2V φ1, (22)

where we have used CT
+ = C+ for class AI†. Thus, we obtain

the symmetric matrix (b = c) in Eq. (21).
Finally, we consider class AII†. Since H has the Kramers

degeneracy, we need to consider the four-by-four matrices
spanned by φ1, φ1, φ2, and φ2 together with the corresponding
left eigenvectors χ1, χ1, χ2, and χ2, where φα = C+χ∗

α and
χα = (φT

α C−1
+ )† are Kramers pairs. We have the following

relation:

χ†
αV φβ = φT

α C−1
+ VC+χ∗

β = (
φT

α C−1
+ VC+χ∗

β

)T

= χ
†
βCT

+V T (CT
+ )−1φα = χ

†
βC+V T C−1

+ φα

= χ
†
βV φα, (23)

where we have used CT
+ = −C+ for class AII†. We also have

χ†
αV φβ = (χ†

αVC+χ∗
β )T = χ

†
βCT

+V T χ∗
α

= −χ
†
βC+V T χ∗

α = −χ
†
βVC+χ∗

α = −χ
†
βV φα (24)

and

χ†
αV φβ = (

φT
α C−1

+ V φβ

)T = φT
β V T (CT

+ )−1φα

= −φT
β V T C−1

+ φα = −φT
β C−1

+ V φα

= −χ
†
βV φα. (25)
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TABLE II. Wigner-Dyson’s Hermitian three universal statistics
with TRS and our non-Hermitian three universal statistics with TRS†

for Gaussian-distributed small matrices. While they share the same
degrees of freedom f = 2, 3, and 5, the difference between real-
valued and complex-valued degrees leads to the distinct families of
level-spacing distributions, i.e., the transformed χ2 distribution for
the Hermitian case and the K distribution for the non-Hermitian case.

Hermitian (TRS) Non-Hermitian (TRS†)

f 2 (AI), 3 (A), 5 (AII) 2 (AI†), 3 (A), 5 (AII†)
(as real variables) (as complex variables)

psmall χ 2 distribution K distribution
vsmall AI > A > AII AI† > A > AII†

We can now analyze

Hsmall,A =
(
a b

c d

)
, Hsmall,AI† =

(
a b

b d

)
,

Hsmall,AII† =

⎛
⎜⎝

a 0 e b

0 a c g

g −b d 0
−c e 0 d

⎞
⎟⎠ (26)

for a, b, c, d, e, g ∈ C. Note that Hsmall,A also describes classes
AI, AII, D, C, AIII, and AIII†. Notably, as complex vari-
ables, the degrees of freedom determining the level-spacing
distribution are f = 2 for class AI†, 3 for class A, and
5 for class AII† (see Table II). Here, one degree of free-
dom is reduced from all the variables because the trace
of the matrix does not affect the level spacings. This is a
natural generalization of the Hermitian case, where f = 2
for class AI, 3 for class A, and class 5 for AII as real
variables [50].

B. Level-spacing distributions

As shown in Appendix B, the analytic expressions of
the level-spacing distributions psmall with the complex-valued
degrees of freedom f for Gaussian-distributed small matrices

are obtained as

psmall(s) = (Cf s)3

N f
K f −2

2
[(Cf s)2], (27)

where Kν (x) = ∫∞
0 dze−x cosh z cosh(νz) is the modified Bessel

function, and Cf and N f are some constants. The forms of
p(s) for specific values of f can also be given by

psmall,A(s) = 2C4
3 s3e−C2

3 s2
,

psmall,AI† (s) = 2C4
2 s3K0

(
C2

2 s2),
psmall,AII† (s) = 2C4

5 s3

3

(
1 + C2

5 s2
)
e−C2

5 s2
, (28)

where C2= 1
8
√

2

( 1

4 )
2=1.16187 . . . , C3= 3

4

√
π=1.32934 . . . ,

and C5 = 7
8

√
π � 1.5509 . . . . Here

K1/2(x) =
√

π

2x
e−x, (29)

K3/2(x) =
√

π

2x

(
1 + 1

x

)
e−x, (30)

are used to obtain Eq. (28). In Fig. 5, we plot Eq. (27)
[or Eq. (28)] and compare it with numerical results, which
shows a perfect agreement. Note that, in a manner similar to
Figs. 2(c)–2(e), psmall,AI† (s) has a lower peak and psmall,AII† (s)
has a higher peak compared with psmall,A(s).

The analytic forms in Eq. (27) are derived in a unified
manner: psmall(s) is understood as the distribution of

s =
√√√√∣∣∣∣∣

f∑
i=1

z2
f

∣∣∣∣∣, (31)

where zi are complex Gaussian random variables. All of the
three distributions are then obtained from transformations of
the so-called K distribution with a different shape parameter
for each class [52] (see Appendix B for details). We also
perform a similar analysis for Hermitian small matrices:

psmall(s) is understood by the distribution of s =
√∑ f

i=1 x2
f

with real Gaussian random variables xi, which leads to simple
transformations of the χ2 distributions (see Table II). To our
best knowledge, such a unified interpretation of level-spacing

FIG. 5. Nearest-level-spacing distributions p(s) for two-by-two [for classes (a) A and (b) AI†] and four-by-four [for class (c) AII†] random
matrices described by Eq. (26). The numerically obtained histograms are well described by the analytical expression in Eq. (27). Similar to
Figs. 2(c)–2(e), psmall,AI† (s) (red curve) has a lower peak and psmall,AII† (s) (black curve) has a higher peak than psmall,A(s) (blue curve). The
results are obtained from averaging over 106 ensembles.

023286-7



HAMAZAKI, KAWABATA, KURA, AND UEDA PHYSICAL REVIEW RESEARCH 2, 023286 (2020)

distributions for Hermitian matrices from the χ2 distribution
has never been presented.

In the Hermitian case, the asymptotic behavior of χ2 dis-
tributions leads to the class-dependent level-repulsion factor.
However, the K distribution has the same asymptotic behavior
except for the logarithmic correction in class AI†, leading to
the class-independent factor s3 as noted in Ref. [11] for the
non-Hermitian case.

While the level-repulsion factor of psmall(s → 0) is univer-
sally ∼s3 in the non-Hermitian case, the entire distribution
depends on the symmetry class as in the Hermitian case,
since TRS† alters the repulsive interactions between complex
eigenvalues through f . Indeed, the peak of psmall,AI† (s) is
lower and that of psmall,AII† (s) is higher than that of psmall,A(s)
in Eq. (27), and the normalized variances vsmall satisfy
(see Fig. 5)

vsmall,AI† > vsmall,A > vsmall,AII† . (32)

We can intuitively understand this behavior from the fact that

psmall(s) is the normalized distribution of s =
√

|∑ f
i=1 z2

f |,
whose variance becomes smaller for larger f .

The above properties for the peak and variance also hold
true in numerical calculations of large matrices as seen from
suppression or enhancement of the Ginibre distribution in
Fig. 2. The detailed pieces of information such as the peak
and variance are needed to fully characterize chaos even in
Hermitian systems [53,54]. We also note that the relation be-
tween cumulants higher than the second is not necessarily re-
vealed by small matrices, since we ignore the effect of nearby
eigenvalues other than two close ones in calculating psmall(s).

V. UNIVERSALITY IN DISSIPATIVE QUANTUM
MANY-BODY SYSTEMS

As a direct application of the new universality for the
level-spacing distributions, we discuss the classification of
dissipative quantum many-body chaos. Other statistics, such
as the statistics of the normalized largest eigenvalues of ran-
dom Hermitian matrices (i.e., the Tracy-Widom distribution)
are relevant to other physics such as fluctuations of a growing

interface [55]. On the other hand, the characterization of
chaotic systems requires universal local statistics in the bulk of
the spectrum, represented by the level-spacing distributions.

It is conjectured [9] that the level-spacing statistics for
Hermitian quantum chaotic Hamiltonians obey those of ran-
dom matrices [7,9,56–73], in contrast with integrable sys-
tems that obey the Poisson distributions. As a natural gen-
eralization of this conjecture, the level-spacing statistics of
non-Hermitian random matrices have been applied to probe
the nonintegrability-integrability transition and the chaos-
localization transition in open quantum systems [12,74,75].
However, it has remained unclear how the distributions
change with symmetry. We here demonstrate that the newly
found universality classes appear in dissipative quantum
many-body systems described by a Lindblad equation and
a non-Hermitian Hamiltonian. These results show that the
newly found universality classes play key roles in characteriz-
ing nonintegraiblity of dissipative many-body systems.

A. Lindblad many-body equation

We introduce a dissipative one-dimensional spin-1/2 model
described by the Lindblad equation d ρ̂

dt = L[ρ̂] [Fig. 6(a)]
[76], where

L[ρ̂] = −i[Ĥ, ρ̂] +
L∑

j=1

γ

[

̂ j ρ̂
̂

†
j − 1

2
{
̂†

j 
̂ j, ρ̂}
]
. (33)

The Hamiltonian is an Ising model with transverse and longi-
tudinal fields:

Ĥ = −
L−1∑
j=1

(1 + ε j )σ̂
z
j σ̂

z
j+1 −

L∑
j=1

(−1.05σ̂ x
j + 0.2σ̂ z

j

)
(34)

where ε j is randomly chosen from [−0.1, 0.1] for each site
j to break unwanted symmetries. Local dissipators 
̂ j are
either (i) dephasing σ̂ z

j or (ii) damping σ̂−
j . This model can

be realized with Rydberg atoms [77].
We consider the Liouvillian spectrum of the superoperator

L in Eq. (33). Namely, we consider the supereigenvalue

FIG. 6. (a) Schematic illustration of a locally interacting system described by the Lindblad equation (33). (b) Nearest-level-spacing
distributions p(s) for two different dissipation mechanisms [(i) dephasing σ̂ z

j and (ii) damping σ̂−
j ] after the unfolding procedure of super

eigenvalues. Comparison with Figs. 2(c)–2(e) reveals that local correlations of the Liouvillian spectra are well described by non-Hermitian
random matrices with their respective symmetry: Model (i) belongs to class AI† universality (red curve, the same data in Fig. 2(d)), while
model (ii) belongs to class A universality (blue curve). The results are obtained from averaging over 10 ensembles for γ = 0.75 and L = 7.
Statistics are taken from supereigenvalues that are away from the edges of the spectrum.
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FIG. 7. (a) Schematic illustration of a locally interacting spin system described by the non-Hermitian Hamiltonian (40). (b) Nearest-level-
spacing distributions p(s) for the three non-Hermitian models (i), (ii), and (iii) in Eq. (40) after the unfolding procedure of eigenenergies.
Comparison with Fig. 2 reveals that local correlations of eigenenergies of the dissipative systems are well described by non-Hermitian random
matrices with their respective symmetry: Model (i) belongs to class A (blue curve), model (ii) belongs class AI† [red curve, the same data with
Fig. 2(d)], and model (iii) belongs class AII† [purple curve, the same data with Fig. 2(e)]. The parameters used are h = 0.5, D = 0 for model
(i), h = 0.5, D = 0.9 for model (ii), and h = 0, D = 0.9 for model (iii), and J = 0.2 and L = 13 for all the models. The results are obtained
from averaging over 30 ensembles. Statistics are taken from eigenenergies that are away from the edges of the spectrum.

equation

L[ν̂α] = λαν̂α, (35)

where λα is a supereigenvalue for a supereigenstate ν̂α .
When we consider L as a matrix, model (i) has a transposi-

tion symmetry (σ̂ x,z
j → σ̂ x,z

j , σ̂
y
j → −σ̂

y
j ) but model (ii) does

not. Both L’s have additional TRS, but it does not affect the
level-spacing distribution away from the real axis as discussed
above.

To understand this symmetry structure, it is convenient to
use the operator representation of superoperators. That is, we
consider the isomorphic mapping

Â |i〉 〈 j| B̂ → (Â ⊗ B̂T ) |i〉 ⊗ | j〉 , (36)

where we have doubled the Hilbert space by adding a dual
space. Then, the Lindblad superoperator can be represented
by

L → L̂ = −i(Ĥ ⊗ I − Î ⊗ ĤT )

+ γ

L∑
j=1

[

̂ j ⊗ 
̂∗

j − 1

2

̂

†
j 
̂ j ⊗ Î − Î ⊗ 
̂T

j 
̂∗
j

]
,

(37)

whose eigenvalues are λα .
For arbitrary 
̂ j , L̂ has TRS with T+T ∗

+ = +1. Indeed, for
the unitary swap operation T+ = SWAP that exchanges the
original and the copied Hilbert spaces (i.e., T+(Â ⊗ B̂)T −1

+ =
B̂ ⊗ Â), T+L̂∗T −1

+ = L̂ and T+T ∗
+ = +1 [see Eq. (A9)] are

satisfied because Ĥ = Ĥ†.
On the other hand, for our Ising model with transverse

and longitudinal fields, L̂ can also have TRS† depending on

̂ j . Indeed, since Ĥ = ĤT in the conventional Pauli basis, we

have

L̂T = −i(Ĥ ⊗ Î − Î ⊗ ĤT )

+ γ

L∑
j=1

[

̂T

j ⊗ 
̂
†
j − 1

2

̂T

j 
̂∗
j ⊗ Î − Î ⊗ 
̂

†
j 
̂ j

]
.

(38)

Thus, if


̂T
j = 
̂ j, [
̂†

j , 
̂ j] = 0, (39)

then we have the transposition symmetry, L̂T = L̂. This con-
dition is satisfied for (i) dephasing 
̂ j = σ̂ z

j but not for (ii)

damping 
̂ j = σ̂−
j .

Figure 6(b) shows p(s) for the two models (i) and (ii)
after the unfolding procedure of the spectra. We clearly see
that there appear distinct distributions that correspond to
the universality classes of the random-matrix ensembles in
class AI† or A in Fig. 2. Note that the model in Eq. (33)
generally exhibits properties which are very different from
those predicted by random matrices in that the matrix is sparse
due to the local interactions and that the randomness ε j is
small. Nevertheless, our results show that local correlations
of supereigenvalues of nonintegrable dissipative Lindblad sys-
tems are well described by non-Hermitian random matrices
that take into account transposition symmetry.

B. Non-Hermtian many-body Hamiltonian

We also find the universal results for non-Hermitian many-
body systems which belong to class AII† as well as class A or
class AI†. We consider a one-dimensional spin-1/2 model with
a non-Hermitian Ising interaction, transverse and longitudinal
fields, and the Dzyaloshinskii-Moriya interaction as follows
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[Fig. 7(a)]:

Ĥ (J, h, D) = ĤI (J ) + ĤF (h) + ĤDM(D), (40)

where

ĤI (J ) = −
L−1∑
j=1

(1 + iJε j )σ̂
z
j σ̂

z
j+1,

ĤF (h) = −h
L∑

j=1

(−2.1σ̂ x
j + σ̂ z

j

)
,

ĤDM(D) =
L−1∑
j=1

�D · ( �̂σ j×�̂σ j+1). (41)

Here L is the size of the system, ε j is chosen randomly from
[−1, 1] for each site j to break unwanted symmetries, �D :=
D√

2
(�ex + �ez ), and the open boundary condition is assumed.

The numerical factor 2.1 in ĤF is chosen such that the model
becomes sufficiently nonintegrable. Note that non-Hermitian
many-body systems can be realized in continuously measured
quantum many-body systems [78,79]. In particular, the non-
Hermitian term in Eq. (40) arises if we consider the collective
dephasing σ̂ z

j σ̂
z
j+1 and postselect the null measurement out-

come.
The symmetry of this model depends on the parameters

J, h, and D. For J �= 0, the model belongs to (i) class A for
h �= 0, D �= 0, (ii) class AI† for h �= 0, D = 0 because
Ĥ = ĤT , and (iii) class AII† for h = 0, D �= 0 and

odd L because Ĥ = (
∏L

i=1 σ̂
y
i )ĤT (

∏L
i=1 σ̂

y
i )

−1
with

(
∏L

i=1 σ̂
y
i )(
∏L

i=1 σ̂
y
i )

∗ = (−1)L. Note that, for J = 0, the
model reduces to (Hermitian) classes (i) A, (ii) AI, and (iii)
AII, whose level-spacing distributions become (i) GUE, (ii)
GOE, and (iii) GSE, respectively [80,81].

Figure 7(b) shows the distributions p(s) for the non-
Hermitian models (i), (ii), and (iii) after the unfolding pro-
cedure of eigenenergies [50]. We can clearly see that there
appear distinct distributions that correspond to the universality
classes of the random-matrix ensembles with the same sym-
metries as in Fig. 2. Note that the model in Eq. (40) generally
exhibits properties very different from the predictions of
random matrices in that matrices are sparse due to the local
interactions and that the randomness Jε j is small. Neverthe-
less, our results show that local correlations of eigenenergies
of nonintegrable non-Hermitian systems are well described
by non-Hermitian random matrices with the corresponding
symmetry.

VI. CONCLUSION

We discover two new universality classes distinct from the
GinUE exclusively for symmetry classes AI† and AII† by
investigating the universality of the nearest-neighbor spacing
distributions of non-Hermitian random matrices. The three
universal statistics for classes A, AI†, and AII† defined by
TRS† (transposition symmetry) constitute a natural gener-
alization of Wigner-Dyson’s universal statistics for Hermi-
tian matrices. Only three universality classes due to TRS†

are shown to exist for the level-spacing distribution away
from the symmetric lines among 38 non-Hermitian symmetry

classes [35]. Our results serve as a basis for characterizing
nonintegrability and chaos in open quantum systems with
symmetry.

Our work paves the way toward understanding universality
in non-Hermitian systems and raises many open questions. It
merits further study to investigate if new universality appears
for other statistics, such as correlation functions of distant
eigenvalues and distributions of the edges of the spectrum. We
note that TRS† appears in a wide range of physical systems
in addition to dissipative many-body systems reported here,
such as systems with gain and loss [45,46], and classical
many-body dynamics for a set of coupled oscillators [82].
It is an interesting future problem to investigate how our
new classes lead to universal physical phenomena (such as
nonintegrablity-integrability transitions) in those systems, as
Dyson’s classes have done in Hermitian systems.

Note added in proof. After our manuscript appeared on
arXiv, two related works appeared [83,84], which discuss the
appearance of non-Hermitian random-matrix universality in
dissipative quantum many-body systems.
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APPENDIX A: SYMMETRY CLASSES AND THEIR
FUNDAMENTAL PROPERTIES

We formulate symmetries in non-Hermitian systems and
describe their fundamental properties according to the clas-
sification in Ref. [35]. We also derive explicit forms of the
probability distributions of Gaussian ensembles and Bernoulli
ensembles for each symmetry class. In the following, a com-
plex eigenvalue is denoted as Eα and the corresponding right
(left) eigenvector is denoted as φα (χα):

Hφα = Eαφα, χ†
αH = χ†

αEα. (A1)

1. Symmetry for non-Hermitian matrices

Non-Hermiticity alters the nature of symmetry in a funda-
mental manner. In particular, non-Hermiticity ramifies sym-
metry [35]. To see this symmetry ramification, let us consider
TRS as an example. For Hermitian matrices, TRS is defined
by T H∗ T −1 = H, where T is a unitary matrix. We can
similarly define TRS for non-Hermitian matrices as

T+ H∗ T −1
+ = H, (A2)

where T+ is a unitary matrix. However, for non-Hermitian
matrices, we can define TRS in a different way. The crucial
observation here is that complex conjugation is equivalent to
transposition for Hermitian matrices: H∗ = HT . As a result,
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T H∗ T −1 = H is equivalent to T HT T −1 = H for Hermitian
H . However, since H∗ �= HT for non-Hermitian matrices, we
can define another symmetry by

C+ HT C−1
+ = H, (A3)

where C+ is a unitary matrix. Since physical TRS is described
by Eq. (A2) [35], we refer to the symmetry in Eq. (A2) as TRS
for non-Hermitian matrices, and the symmetry in Eq. (A3) as
TRS†.

Such symmetry ramification occurs also for all the other
symmetries. For example, let us consider CS, which is defined
for Hermitian matrices by


 H† 
−1 = −H, (A4)

where 
 is a unitary matrix. Note that CS is equivalent to SLS
for Hermitian matrices, which is defined without Hermitian
conjugation (i.e., 
H
 = −H). Equation (A4) can be directly
generalized to non-Hermitian matrices, but again, CS can be
generalized in a different manner. In fact, for non-Hermitian
matrices, Eq. (A4) is different from SLS, defined by

S H S−1 = −H (A5)

because H �= H†. Since physical CS is described by Eq. (A4)
[35], we refer to the symmetry in Eq. (A4) as CS, and the sym-
metry defined by Eq. (A4) as CS† or SLS for non-Hermitian
matrices.

In a similar manner, PHS for Hermitian matrices, satisfying
CHT C−1 = CH∗C−1 = −H , ramifies in the presence of non-
Hermiticity. In the main text and the following discussions,
we define PHS for non-Hermitian matrices by C−HT C−1

− =
−H together with a unitary matrix C−. On the other hand, we
define PHS† for non-Hermitian matrices by T−H∗T −1

− = −H
together with a unitary matrix T−.

Non-Hermiticity not only ramifies but also unifies symme-
try [85]. To see this symmetry unification, we consider the
following antiunitary symmetries:

T+ H∗ T −1
+ = H, T− H∗ T −1

− = −H. (A6)

Here T+ denotes TRS, while T− denotes PHS†. TRS and PHS
are clearly distinct from each other for Hermitian matrices.
However, when a non-Hermitian matrix H respects TRS,
the non-Hermitian matrix iH respects PHS†. Thus, a set of
all the non-Hermitian matrices with TRS coincides with a
different set of all the non-Hermitian matrices with PHS†;
non-Hermiticity unifies TRS and PHS†.

As a result of the symmetry ramification, the 5 classes
(AIII, AI, D, AII, and C) for Hermitian matrices with a single
symmetry (TRS, PHS, or CS) bifurcate into the 10 classes
(AIII, AI, D, AII, C, AIII†, AI†, D†, AII†, and C†). Moreover,
as a result of the symmetry unification, classes AI and D†,
and classes AII and C†, are equivalent to each other. Adding
class A, which has no symmetry at all, we have in total the 9
classes as listed in Table I for non-Hermitian classes where
up to one symmetry is relevant (the other 29 classes have
more than one symmetry, such as PHS and TRS). We note
that the entire 10 Altland-Zirnbauer symmetry classes for
Hermitian matrices [36] ramify into 38 symmetry classes for
non-Hermitian matrices [35]. In the following, we describe

some key properties of non-Hermitian matrices for each of
the above-mentioned 9 classes.

2. Class A

Matrices in class A are not constrained by any symmetry
and thus include most general non-Hermitian matrices. The
probability distribution of a Gaussian ensemble is given as

P(H )dH ∝ e−βTr[H†H ]dH

∝ exp

⎡
⎣−β

∑
i, j

|Hi j |2
⎤
⎦∏

i, j

dHi jdH∗
i j, (A7)

where Hi j is the element in the ith row and the jth column
of the matrix H . On the other hand, for a Bernoulli ensemble,
each matrix element is randomly chosen as

Hi j =

⎧⎪⎨
⎪⎩

1 + i with probability 1/4;
1 − i with probability 1/4;
−1 + i with probability 1/4;
−1 − i with probability 1/4.

(A8)

3. Class AI and class D†

Matrices in class AI respect TRS defined by

T+H∗T −1
+ = H, T+T ∗

+ = +1, (A9)

where T+ is a unitary matrix (i.e., T+T †
+ = T †

+T+ = 1). In the
presence of TRS, we have

H (T+φ∗
α ) = T+H∗φ∗

α = E∗
α (T+φ∗

α ). (A10)

Hence, T+φ∗
α is also an eigenvector of H with its eigenvalue

E∗
α , and eigenvalues form (Eα, E∗

α ) pairs in general. Note that
the eigenvalue remains real if the corresponding eigenvector
satisfies T+φ∗

α ∝ φα . Similarly, matrices in class D† respect
the Hermitian conjugate of PHS, which we denote by PHS†:

T−H∗T −1
− = −H, T−T ∗

− = +1, (A11)

which leads to (Eα,−E∗
α ) pairs in the complex plane. Notably,

symmetry classes AI and D† are equivalent to each other [85].
In fact, when a non-Hermitian matrix H satisfies Eq. (A9)
and belongs to class AI, another non-Hermitian matrix iH
satisfies Eq. (A11) and belongs to class D†. In particular, the
level-spacing distributions are the same for classes AI and D†,
provided that the spectrum is rotated by 90◦ in the complex
plane.

For Gaussian ensembles, we can assume that T+ is the
identity operator without loss of generality, which leads to

Hi j = H∗
i j . (A12)

Thus, matrices in class AI can be represented by real non-
Hermitian matrices. Indeed, the condition (A9) means that
U −1HU is real, where U = √

T+ is unitary. Since P(H )dH =
P(U −1HU )d (U −1HU ) for Gaussian ensembles, we can con-
sider the ensemble of real matrices in Eq. (A12). Then we can
consider the probability distribution of a Gaussian ensemble
given as

P(H )dH ∝ exp

⎡
⎣−β

∑
i, j

H2
i j

⎤
⎦∏

i, j

dHi j . (A13)
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While a Bernoulli ensemble depends on the explicit form
of T+, we here consider T+ = 1. Then each matrix element is
randomly chosen as

Hi j =
{

1 with probability 1/2;
−1 with probability 1/2.

(A14)

4. Class AII and class C†

Matrices in class AII respect TRS defined by

T+H∗T −1
+ = H, T+T ∗

+ = −1. (A15)

In analogy with class AI, eigenvalues form (Eα, E∗
α ) pairs in

general. In addition, class AII is equivalent to class C†, whose
matrices respect PHS†:

T−H∗T −1
− = −H, T−T ∗

− = −1. (A16)

In contrast to the Hermitian case and class AII† described
below, only those eigenvalues that lie on the real axis can
be twofold degenerate through formation of Kramers pairs.
However, eigenvalues away from the real axis are not, in
general, degenerate because they do not form Kramers pairs.
However, Kramers pairs on the real axis do not exist for
almost all random matrices, since eigenvalues for generic
matrices exhibit level repulsions.

We choose T+ as a matrix

�y = σ y ⊗ I N
2 × N

2
, (A17)

which again allows us to describe the probability distribution
for Gaussian ensembles for general T+ with T+T ∗

+ = −1. In
this case, we obtain

H = I2×2 ⊗ a + iσ x ⊗ b + iσ y ⊗ c + iσ z ⊗ d, (A18)

where a, b, c, and d are real N/2×N/2 non-Hermitian ma-
trices. The probability distribution of a Gaussian ensemble is
then given as

P(H )dH ∝ exp

⎡
⎣−β

∑
i, j

(
a2

i j + b2
i j + c2

i j + d2
i j

)⎤⎦
×
∏
i, j

dai jdbi jdci jddi j . (A19)

On the other hand, for a Bernoulli ensemble, each element is
randomly chosen as

ai j, bi j, ci j, di j =
{

1 with probability 1/2;
−1 with probability 1/2.

(A20)

5. Class AI†

Matrices in class AI† respect the Hermitian conjugate of
TRS, i.e., TRS†, defined by

C+HT C−1
+ = H, C+C∗

+ = +1, (A21)

where C+ is a unitary matrix (i.e., C+C†
+ = C†

+C+ = 1). Noting
that the transpose of the eigenequation (A1) gives

HT χ∗
α = Eαχ∗

α , (A22)

we have, in the presence of TRS†,

H (C+χ∗
α ) = C+HT χ∗

α = Eα (C+χ∗
α ). (A23)

Hence, C+χ∗
α is also an eigenvector of H having the same

eigenvalue Eα as φα . Thus, if there is no degeneracy, the
constraint

C+χ∗
α ∝ φα (A24)

is imposed on the right and left eigenvectors. Importantly, this
symmetry constraint is imposed for all the eigenvectors in the
entire complex plane in stark contrast to class AI, which leads
to a new universality class of the level-spacing distribution as
demonstrated in the main text.

We assume that C+ is the identity (which again allows us to
describe the probability distribution for Gaussian ensembles
for general C+ with C+C∗

+ = 1), which leads to

Hi j = Hji. (A25)

Thus, matrices in class AI† can be represented by symmetric
non-Hermitian matrices. The probability distribution of a
Gaussian ensemble is then given as

P(H )dH ∝ exp

⎡
⎣−β

⎛
⎝∑

i

|Hii|2 +
∑
i> j

2|Hi j |2
⎞
⎠
⎤
⎦

×
∏
i� j

dHi jdH∗
i j . (A26)

On the other hand, for a Bernoulli ensemble, each matrix
element is randomly chosen as

Hi j =

⎧⎪⎨
⎪⎩

1 + i with probability 1/4;
1 − i with probability 1/4;
−1 + i with probability 1/4;
−1 − i with probability 1/4;

(A27)

under the constraint (A25).

6. Class AII†

Matrices in class AII† respect TRS† defined by

C+HT C−1
+ = H, C+C∗

+ = −1. (A28)

Importantly, there is a non-Hermitian generalization of the
Kramers degeneracy theorem in class AII† [38,39]. In fact,
from CT

+C−1
+ = −1, we have

χ†
αC+χ∗

α = (χ†
αC+χ∗

α )T = χ†
αCT

+χ∗
α = −χ†

αC+χ∗
α , (A29)

which leads to χ†
αC+χ∗

α = 0. Thus, the eigenvectors φα and
C+χ∗

α are biorthogonal to each other and linearly independent
of each other. This independence implies that all the eigenvec-
tors are at least twofold degenerate in the presence of TRS†

with C+C∗
+ = −1. Since all the eigenvectors are subject to this

non-Hermitian extension of the Kramers degeneracy, class
AII† is sharply contrasted with class AII in non-Hermitian
systems.

We choose C+ as the matrix �y, which allows us to
describe the probability distribution for Gaussian ensembles
for general C+ with C+C∗

+ = −1. We then have

H =
(

a b
c d

)
, (A30)

where non-Hermitian matrices a, b, c, and d satisfy

a = dT , b = −bT , c = −cT . (A31)
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The probability distribution of a Gaussian ensemble is then
given as

P(H )dH

∝ exp

⎧⎨
⎩−2β

⎡
⎣∑

i� j

|ai j |2 +
∑
i> j

(|bi j |2 + |ci j |2 + |di j |2)

⎤
⎦
⎫⎬
⎭

×
∏
i� j

dai jda∗
i j

∏
i> j

dbi jdb∗
i jdci jdc∗

i jddi jdd∗
i j . (A32)

On the other hand, for a Bernoulli ensemble, each element is
randomly chosen as

ai j, bi j, ci j, di j =

⎧⎪⎨
⎪⎩

1 + i with probability 1/4;
1 − i with probability 1/4;
−1 + i with probability 1/4;
−1 − i with probability 1/4;

(A33)

under the constraint (A31).

7. Class D

Matrices in class D respect PHS defined by

C−HT C−1
− = −H, C−C∗

− = +1, (A34)

where C− is a unitary matrix (i.e., C−C†
− = C†

−C− = 1). In
analogy with classes AI† and AII†, we have

H (C−χ∗
α ) = −C−HT χ∗

α = −Eα (C−χ∗
α ). (A35)

Hence, C−χ∗
α is also an eigenvector of H with its eigenvalue

−Eα , and eigenvalues form (Eα,−Eα ) pairs in general. Thus,
PHS only makes pairs of eigenvalues (Eα,−Eα ) and imposes
no local constraints on generic eigenvectors away from the
zero eigenvalue, which is similar to TRS and PHS† and in
contrast with TRS†.

We assume that C− is the identity operator, which allows
us to describe the probability distribution for Gaussian ensem-
bles for general C− with C−C∗

− = 1. We then have

Hi j = −Hji. (A36)

Thus, matrices in class D can be represented by antisymmetric
non-Hermitian matrices. The probability distribution of a
Gaussian ensemble is then given as

P(H )dH ∝ exp

⎡
⎣−2β

∑
i> j

|Hi j |2
⎤
⎦∏

i> j

dHi jdH∗
i j . (A37)

On the other hand, for a Bernoulli ensemble, each matrix
element is randomly chosen as

Hi j =

⎧⎪⎨
⎪⎩

1 + i with probability 1/4;
1 − i with probability 1/4;
−1 + i with probability 1/4;
−1 − i with probability 1/4;

(A38)

subject to the constraint (A36).

8. Class C

Matrices in class C respect PHS defined by

C−HT C−1
− = −H, C−C∗

− = −1. (A39)

In analogy with class D, eigenvalues form (Eα,−Eα ) pairs in
general.

We choose C− as the matrix �y, which allows us to
describe the probability distribution for Gaussian ensembles
for general C− with C−C∗

− = −1. We then have Eq. (A30) with

a = −dT , b = bT , c = cT . (A40)

The probability distribution of a Gaussian ensemble is then
given as

P(H )dH

∝ exp

⎧⎨
⎩−2β

∑
i� j

(
|aii|2 + |bii|2

2
+ |cii|2

2

)⎫⎬
⎭

× exp

⎧⎨
⎩−2β

∑
i> j

(|ai j |2 + |bi j |2 + |ci j |2 + |di j |2)

⎫⎬
⎭

×
∏
i� j

dai jda∗
i jdbi jdb∗

i j

∏
i> j

dci jdc∗
i jddi jdd∗

i j . (A41)

On the other hand, for a Bernoulli ensemble, each element is
randomly chosen as

ai j, bi j, ci j, di j =

⎧⎪⎨
⎪⎩

1 + i with probability 1/4;
1 − i with probability 1/4;
−1 + i with probability 1/4;
−1 − i with probability 1/4;

(A42)

subject to the constraint (A40).

9. Class AIII

Matrices in class AIII respect CS defined by


H†
−1 = −H, 
2 = 1, (A43)

where 
 is a unitary matrix (i.e., 

† = 
†
 = 1). In the
presence of CS, we have

H (
χα ) = −
H†χα = −E∗
α (
χα ). (A44)

Hence, 
χα is also an eigenvector of H with its eigenvalue
−E∗

α , and eigenvalues form (Eα,−E∗
α ) pairs in general. In

analogy with the equivalence between TRS and PHS† [85],
CS is equivalent to pseudo-Hermiticity [86] which is defined
by the presence of the unitary matrix η such that

ηH†η−1 = H, η2 = 1. (A45)

This condition implies the presence of (Eα, E∗
α ) pairs in the

complex plane. In fact, when a non-Hermitian matrix H satis-
fies Eq. (A43) and respects CS, another non-Hermitian matrix
iH satisfies Eq. (A45) and respects pseudo-Hermiticity. We
note that unlike Hermitian systems, CS is distinct from SLS
defined by Eq. (A50).

We choose 
 to be a matrix

�z = σ z ⊗ I N
2 × N

2
(A46)

to obtain a nontrivial result, which leads to Eq. (A30) with

a = −a†, b = c†, c = b†, d = −d†. (A47)

We note that H always reduces to an anti-Hermitian matrix
when we take a special choice 
 = I, which trivially reduces
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to class A in Hermitian systems and is not considered here.
The probability distribution of a Gaussian ensemble is then
given as

P(H )dH

∝ exp

{
−β

∑
i

(|aii|2 + |dii|2 + 2 |bii|2)

}

× exp

⎧⎨
⎩−2β

∑
i> j

(|ai j |2 + |bi j |2 + |ci j |2 + |di j |2)

⎫⎬
⎭

×
∏
i� j

dai jddi jdbi jdb∗
i j

∏
i> j

dci jdc∗
i jddi jdd∗

i j . (A48)

On the other hand, for a Bernoulli ensemble, each element is
randomly chosen as

ai j, bi j, ci j, di j =

⎧⎪⎨
⎪⎩

1 + i with probability 1/4;
1 − i with probability 1/4;
−1 + i with probability 1/4;
−1 − i with probability 1/4;

(A49)

subject to the constraint (A47).

10. Class AIII†

Matrices in class AIII† respect SLS defined by

SHS−1 = −H, S2 = 1, (A50)

where S is a unitary matrix (i.e., SS† = S†S = 1). In the
presence of SLS, we have

H (Sφα ) = −SHφα = −Eα (Sφα ). (A51)

Hence Sφα is also an eigenvector of H with its eigenvalue
−Eα , and eigenvalues form (Eα,−Eα ) pairs in general.

We choose S as the matrix �z to obtain a nontrivial result,
which leads to Eq. (A30) with

a = d = 0. (A52)

In analogy with class AIII, we do not consider the special
choice S = I, which leads to the trivial case H = 0. The
probability distribution of a Gaussian ensemble is then given
as

P(H )dH ∝ exp

⎡
⎣−β

∑
i, j

(|bi j |2 + |ci j |2)

⎤
⎦∏

i, j

dbi jdci j .

(A53)

On the other hand, for a Bernoulli ensemble, each element is
randomly chosen as

bi j, ci j =

⎧⎪⎨
⎪⎩

1 + i with probability 1/4;
1 − i with probability 1/4;
−1 + i with probability 1/4;
−1 − i with probability 1/4.

(A54)

APPENDIX B: PROOF OF Eq. (27) AND ITS MEANING

In this Appendix, we compute the level-spacing probability
distributions of Hsmall,A, Hsmall,AI† , and Hsmall,AII† . First, we

TABLE III. Examples of matrix bases for classes AI†, A, and
AII†. Note that σ x,y,z are Pauli matrices and that γ 1,2,3,4,5 are the Dirac
matrices according to the notation in Ref. [87].

Class f Basis

AI† 2 σ x, σ z

A 3 σ x, σ y, σ z

AII† 5 γ 1, γ 2, γ 3, γ 4, γ 5

express the level spacing s in terms of the following stochastic
variable:

Xf = z2
1 + · · · + z2

f , (B1)

where z1, . . . , z f are independently and identically distributed
complex variables under the Gaussian distribution P(z) ∝
e−|z|2 .

We show below the following relation

s ∝ |Xf |1/2, (B2)

where f = 2, 3, and 5 for classes AI†, A, and AII†, re-
spectively. After showing (B2), we derive the probability
distribution function of |Xf |2, from which the level-spacing
distribution follows.

1. Derivation of Eq. (B2)

For classes A, AI†, and AII†, the set of all the matrices
with the corresponding symmetry forms a complex vector
space that is closed under Hermitian conjugation. Therefore,
a random n×n matrix H can take the following form:

H = z0I +
f∑

j=1

z jL j, z0, z1, . . . , z f ∈ C, (B3)

where L1, . . . , L f are Hermitian matrices satisfying

TrLj = 0, TrLiL j = nδi j . (B4)

We regard the coefficients z0, . . . , z f as random variables
rather than matrix entries. The condition (B4) implies that
z0, z1, . . . , z f are independent and identically distributed
Gaussian variables:

P(H ) ∝ e−βTr[H†H ] = exp[−nβ(|z0|2 + |z1|2 + · · · + |z f |2)].

(B5)

Since the term z0I does not affect the level spacing, we
eliminate z0 from Eq. (B3) and instead consider the traceless
random matrix:

H̃ =
f∑

j=1

z jL j . (B6)

Now we consider Hsmall,A, Hsmall,AI† , and Hsmall,AII† de-
fined in Eq. (26). In each of these matrices, the matrix
basis {L1, . . . , L f } can be taken as listed in Table III. The
matrices in the basis become spinor matrices characterized
by the anticommutation relation 1

2 (LiL j + LjLi ) = δi j I . As a
consequence, the traceless matrix H̃small obtained from Hsmall
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satisfies

H̃2
small = (

z2
1 + · · · + z2

f

)
I. (B7)

At the same time, H̃small has only two distinct eigenvalues
(λ,−λ) of the same multiplicity. Therefore, we also have the
following equality:

H̃2
small = λ2I. (B8)

Comparing Eqs. (B7) and (B8), the level spacing of H̃small

(and hence of Hsmall) is found to be described by the following
quantity:

s = 2|λ| = 2
√

nβ
∣∣Xf

∣∣1/2
, (B9)

where the factor
√

nβ arises from the difference in the scaling
between the random variables in (B5) and those in (B1).

A similar argument applies to the analysis of Hermitian
random matrices if we use real Gaussian variables instead
of complex ones. In this case, the stochastic variable Xf is
replaced by X ′

f = x2
1 + · · · + x2

f with real Gaussian variables
x1, . . . , x f . Then, X ′

f is subject to the χ2 distribution: P(X ′
f =

r) = χ2
f (r) ∝ r f /2−1e−r . Therefore, the level-spacing distri-

bution is the transformed χ2 distribution,

psmall(s) = 2sχ2
f (s2) ∝ s f −1e−(Cs)2

, (B10)

where the level repulsion ∝ s f −1 depends on the degree f
of the χ2 distribution. Since p(s) for large matrices is well
approximated by psmall in the Hermitian case, it is also ap-
proximately described by χ2

f (X ′
f ).

In the following, the distribution of Xf for non-Hermitian
matrices is shown to be the K distribution. The degree of
the level repulsions is confirmed to be independent of f � 2
except for a logarithmic correction at f = 2.

2. Distribution function of |Xf |2

The probability density of the squared modulus |Xf |2 is
given by

P(|Xf |2 = ρ) =
∫

δ
(
ρ − ∣∣z2

1 + · · · + z2
f

∣∣2)π− f e−||z||2 d2 f z,

(B11)

where z = (z1, . . . , z f ) is a complex vector. Let u and v be the
real and imaginary parts of z (z = u + iv), respectively. Then,
Xf is expressed in terms of the magnitudes u, v of u, v and the
angle θ between them as

Xf = ||u||2 − ||v||2 + 2iu · v = u2 − v2 + 2iuv cos θ.

(B12)

Thus,

|Xf |2 = u4 + v4 + 2u2v2(2 cos2 θ − 1). (B13)

Substituting (U,V, q) = (u2, v2, cos θ ) for (u, v, θ ), we ob-
tain

|Xf |2 = U 2 + V 2 + 2UV (2q2 − 1). (B14)

Associated with this change of variables, the measure d2 f z is
transformed as

d2 f z = d f ud f v

= 2π f /2


( f /2)

2π ( f −1)/2


[( f − 1)/2]
u f −1duv f −1dv sin f −2 θdθ

= 2 f π f −1


( f − 1)
u f −1duv f −1dv sin f −2 θdθ

= 2 f −2π f −1


( f − 1)
(UV )( f −2)/2dUdV (1 − q2)( f −3)/2dq,

(B15)

where the duplication formula 
(x)
(x + 1/2) =
21−2xπ1/2
(2x) is used. Therefore, Eq. (B11) becomes

P(|Xf |2 = ρ)

= 1

π
( f − 1)

∫ ∞

0

∫ ∞

0
dUdV (4UV )

f −2
2 e−(U+V )

×
∫ 1

−1
(1 − q2)

f −3
2 dqδ(ρ − [U 2 + V 2

+ 2UV (2q2 − 1)]). (B16)

We integrate the δ function with respect to q. For this purpose,
we define

qρ =
[
ρ − (U − V )2

4UV

]1/2

, (B17)

which satisfies 0 � qρ � 1 if and only if |U − V | � √
ρ �

U + V . Then we obtain

δ(ρ − [U 2 + V 2 + 2UV (2q2 − 1)])

= 1

8UV qρ

[δ(q − qρ ) + δ(q + qρ )] (B18)

and

P(|Xf |2 = ρ)

= 1

π
( f − 1)

∫
dUdV (4UV )( f −2)/2e−(U+V )

× (1 − q2
ρ )( f −3)/2

4UV qρ

= 1

π
( f − 1)

∫
dUdVe−(U+V ) [(U + V )2 − ρ]( f −3)/2

[ρ − (U − V )2]1/2
,

(B19)

where the integral is performed within the region satisfying
|U − V | � √

ρ � U + V and we have used

(
1−q2

ρ

) f −3
2

qρ

=
[

4UV

ρ − (U − V )2

] 1
2
[

(U + V )2 − ρ

4UV

] f −3
2

.

(B20)
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Finally, we change the variables of integration from (U,V ) to
(x, y) = (U + V,U − V ), obtaining

P(|Xf |2 = ρ)

= 1

2π
( f − 1)

∫ ∞

√
ρ

dx
∫ √

ρ

−√
ρ

dye−x (x2 − ρ)( f −3)/2

(ρ − y2)1/2

= 1

2
( f − 1)

∫ ∞

√
ρ

dxe−x(x2 − ρ)( f −3)/2. (B21)

Here we use the formula:∫ ∞

r
dxe−x(x2 − r2)α−1/2 = r2α

∫ ∞

0
dte−r cosh t (sinh t )2α

= 
(2α)

2α−1
(α)
rαKα (r), (B22)

the proof of which will be provided at the end of this
Appendix. Substituting α = f /2 − 1 and r = √

ρ in (B22),
we obtain the distribution function of |Xf |2:

P(|Xf |2 = ρ) = 2− f /2


( f /2)
ρ f /4−1/2Kf /2−1(

√
ρ ). (B23)

This probability distribution coincides with the K distribution
with shape parameters ( f /2, 1) [52,88]. In the limit of ρ →
+0, the right-hand side of (B23) converges to 1

f −2 for f > 2
and diverges as O[log(1/ρ)] at f = 2.

3. Level-spacing distribution of Hsmall

Since the level spacing s is equal to ρ1/4 times a scaling
factor, the probability distribution of s reads

p(s) ∼= 4s3P(|Xf |2 = ρ)|ρ=s4 = 22− f /2


( f /2)
s f +1Kf /2−1(s2),

(B24)

where ∼= denotes the equivalence of stochastic variables that
differ only by a constant factor. The level repulsion is O(s3)
for f > 2 and O[s3 log(1/s)] at f = 2.

The distribution function is rescaled to the unit average
spacing [i.e.,

∫∞
0 dssp(s) = 1] by multiplying the scaling

factor

Cf =
∫ ∞

0
ds

22− f /2


( f /2)
s f +2Kf /2−1(s2)

=
∫ ∞

0

2− f /2


( f /2)
ρ f /4−1/4Kf /2−1(

√
ρ )

= 
(1/4)
( f /2 + 1/4)

2
√

2
( f /2)
, (B25)

where the last integration follows from the normalization of
the K distribution with shape parameters ( f /2 + 1/4, 5/4)
[88].

Thus, we have derived the level-spacing distribution for
general f :

p(s) = 22− f /2C f +2
f


( f /2)
s f +1Kf /2−1

(
C2

f s2)
= 1

N f
(Cf s) f +1Kf /2−1[(Cf s)2], (B26)

where we have set N f = 2 f /2−2
( f
2 )C−1

f , which leads to
Eq. (27).

4. Proof of Eq. (B22)

Let us define

f1(r) :=
∫ ∞

r
dxe−x(x2 − r2)α−1/2, (B27)

f2(r) := r−α f1(r), (B28)

f3(r) := r−2α f1(r) =
∫ ∞

0
dte−r cosh t (sinh t )2α. (B29)

First, we derive a differential equation for f3(r):

r2 f3(r) − r2 f ′′
3 (r)

= r2
∫ ∞

0
dte−r cosh t (1 − cosh2 t )(sinh t )2α

= r2
∫ ∞

0
dte−r cosh t (sinh t )2α+2

= −r
∫ ∞

0
dt

(
d

dr
e−r cosh t

)
(sinh t )2α+1

= r
∫ ∞

0
dte−r cosh t

[
d

dr
(sinh t )2α+1

]

= (2α + 1)r
∫ ∞

0
dte−r cosh t (cosh t )(sinh t )2α

= (2α + 1)r f ′
3(r). (B30)

Substituting f3(r) = r−α f2(r) in Eq. (B30), we obtain a dif-
ferential equation for f2(r):

(r2 + α2) f2(r) + r f ′
2(r) + r2 f ′′

2 (r) = 0, (B31)

which coincides with that of the modified Bessel equation.
Here f1(r) vanishes at r → ∞, so does f2(r), and therefore
we can write f2(r) = CKα (r) with a constant C. This constant
can be determined by evaluating f1(0) in two ways:

f1(0) =
∫ ∞

0
dxe−xx2α−1 = 
(2α), (B32)

f1(0) = lim
r→+0

CrαKα (r) = 2α−1
(α)C. (B33)

Hence we obtain

C = 
(2α)

2α−1
(α)
. (B34)

[1] F. J. Dyson, J. Math. Phys. 3, 1199 (1962).
[2] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller,

Phys. Rep. 299, 189 (1998).

[3] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and
S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981).

[4] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).

023286-16

https://doi.org/10.1063/1.1703863
https://doi.org/10.1063/1.1703863
https://doi.org/10.1063/1.1703863
https://doi.org/10.1063/1.1703863
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1103/RevModPhys.53.385
https://doi.org/10.1103/RevModPhys.53.385
https://doi.org/10.1103/RevModPhys.53.385
https://doi.org/10.1103/RevModPhys.53.385
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731


UNIVERSALITY CLASSES OF NON-HERMITIAN RANDOM … PHYSICAL REVIEW RESEARCH 2, 023286 (2020)

[5] C. W. J. Beenakker, Rev. Mod. Phys. 87, 1037 (2015).
[6] F. Borgonovi, F. Izrailev, L. Santos, and V. Zelevinsky,

Phys. Rep. 626, 1 (2016).
[7] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,

Adv. Phys. 65, 239 (2016).
[8] A. M. Tulino and S. Verdú, Random Matrix Theory and Wireless

Communications (Now Publishers Inc, Boston, Delft, 2004).
[9] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52,

1 (1984).
[10] M. Aßmann, J. Thewes, D. Fröhlich, and M. Bayer, Nat. Mater.

15, 741 (2016).
[11] R. Grobe and F. Haake, Phys. Rev. Lett. 62, 2893 (1989).
[12] R. Grobe, F. Haake, and H.-J. Sommers, Phys. Rev. Lett. 61,

1899 (1988).
[13] J. T. Chalker and Z. J. Wang, Phys. Rev. Lett. 79, 1797 (1997).
[14] H. Schomerus, in Stochastic Processes and Random Matri-

ces, edited by G. Schehr et al., Lecture Notes of the Les
Houches Summer School (Oxford University Press, Oxford,
2017), Vol. 104, p. 409.

[15] H. J. Sommers, A. Crisanti, H. Sompolinsky, and Y. Stein,
Phys. Rev. Lett. 60, 1895 (1988).

[16] J. Ginibre, J. Math. Phys. 6, 440 (1965).
[17] N. Lehmann and H.-J. Sommers, Phys. Rev. Lett. 67, 941

(1991).
[18] A. Edelman and E. Kostlan, Bull. Am. Math. Soc. 32, 1 (1995).
[19] J. T. Chalker and B. Mehlig, Phys. Rev. Lett. 81, 3367 (1998).
[20] E. Kanzieper and G. Akemann, Phys. Rev. Lett. 95, 230201

(2005).
[21] P. J. Forrester and T. Nagao, Phys. Rev. Lett. 99, 050603 (2007).
[22] Z. Burda, J. Grela, M. A. Nowak, W. Tarnowski, and P. Warchoł,

Phys. Rev. Lett. 113, 104102 (2014).
[23] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-

Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Phys. Rev. Lett. 103, 093902 (2009).

[24] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192
(2010).

[25] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov,
D. N. Christodoulides, and U. Peschel, Nature 488, 167 (2012).
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