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Optical response of atom chains beyond the limit of low light intensity:
The validity of the linear classical oscillator model
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Atoms subject to weak coherent incident light can be treated as coupled classical linear oscillators, supporting
subradiant and superradiant collective excitation eigenmodes. We identify the limits of validity of this linear
classical oscillator model at increasing intensities of the drive by solving the quantum many-body master
equation for coherent and incoherent scattering from a chain of trapped atoms. We show that deviations from the
linear classical oscillator model depend sensitively on the resonance linewidths υα of the collective eigenmodes
excited by light, with the intensity at which substantial deviation occurs scaling as a power law of υα . The linear
classical oscillator model then becomes inaccurate at much lower intensities for subradiant collective excitations
than superradiant ones, with an example system of seven atoms resulting in critical incident light intensities
differing by a factor of 30 between the two cases. By individually exciting eigenmodes, we find that this critical
intensity has a υ2.5

α scaling for narrower resonances and more strongly interacting systems, while it approaches
a υ3

α scaling for broader resonances and when the dipole-dipole interactions are reduced. The υ3
α scaling also

corresponds to the semiclassical result whereby quantum fluctuations between the atoms have been neglected.
We study both the case of perfectly mode-matched drives and the case of standing-wave drives, with significant
differences between the two cases appearing only at very subradiant modes and positions of Fano resonances.
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I. INTRODUCTION

Light incident on closely spaced resonators (atoms, meta-
molecules, quantum dots, etc.) can scatter coherently multi-
ple times between the resonators, resulting in strong light-
mediated, long-range interactions. This provides a highly con-
trollable system to explore classical and quantum many-body
physics, which has been shown to boast subradiance [1–15]
and other collective phenomena in trapped atomic ensem-
bles [16–43] and in resonator arrays [44–47], with potential
applications to quantum information processing [48–50], the
studies of nontrivial topological phases [51–53], and atomic
clocks [54–57].

The exponentially large Hilbert space of a quantum many-
atom system has confined most analyses of collective op-
tical response to the low light intensity regime, modeling
the system as a collection of coupled linear classical oscil-
lators (radiatively coupled dipoles) and by an identical (in
terms of one-body expectation values) linear single-photon
description [1–6,8–10,12,14–29,31–35,37–39,42–45,47–54].
Semiclassical [30,40,46,55] and other approximate methods
[8,11–13,36,41,42,49,56] have also been employed. In the
limit of low light intensity, the model of the coupled linear
classical oscillators for coherently driven two-level atoms
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becomes exact [58,59]. In this regime, the polarizations evolve
linearly as a function of a coherent drive field, and can
therefore be understood by dividing the system into collective
eigenmodes uα , α = 1, . . . , N , with corresponding radiative
resonance linewidths υα . For a dense ensemble of cold atoms,
strong light-induced correlations between different atoms in
the limit of low light intensity emerge from the fluctuations of
atomic positions [60,61], while for the atoms at fixed positions
the correlations are absent.

Solving the full quantum dynamics beyond the limit of
low light intensity is computationally much more demanding,
and hence many-body quantum effects on scattering has seen
little exploration. Examples of full quantum studies include
the spectra of small arrays of atoms [62] and the identifica-
tion of quantum effects in the transmission of light through
planar arrays of atoms [63]. Importantly, the precise limits of
validity of the linear classical oscillator model and the onset
of quantum fluctuations in the low-excitation regime have
not been addressed in strongly coupled many-atom systems.
Experiments are frequently modeled using the linear classical
oscillator model, even though reaching the weak excitation
limit in small atomic ensembles may sometimes in practice
be challenging. Therefore, determining the limits of validity
of the approximation is relevant for interpreting experimental
findings.

In this paper, we explore light scattering from one-
dimensional atomic chains [9,10,12,13,37–43,64–67] of
subwavelength-spaced two-level atoms via simulations of the
full quantum many-body master equation. Collective optical
responses of regular arrays of atoms have now been exper-
imentally measured for the case of a planar optical lattice
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in a Mott-insulator state, demonstrating subradiant resonance
narrowing [15]. By simulating both coherent and incoherent
scattering for the atomic chain as a function of drive strength,
we identify the regimes of validity of the linear classical
oscillator model. We find that the low light intensity collec-
tive linewidths υα play a crucial role in determining when
the coherent scattering deviates from that of radiating linear
oscillators. In particular, the critical intensity IC at which
this deviation becomes appreciable is much smaller for drive
fields mode-matched and resonant with subradiant collective
modes than superradiant ones. Even in small example systems
(� 10 atoms), IC can dramatically differ by up to two orders
of magnitude between the most subradiant and superradiant
modes, imposing very different conditions for the validity of
simulations using linear classical oscillator models.

We simulate the optical response from a variety of lattice
spacings, orientations, and atom numbers, and find that IC

scales as a power law of υα . We first consider drive fields
exactly mode-matched to the low light intensity collective
modes uα . For modes with narrow resonances υα � 0.5γ

(with γ the single atom linewidth), or all modes in the limit
of strong light-mediated interactions (small array spacing),
we find that IC ∝ υ2.5

α . The remaining modes scale as IC ∝
υ3

α . Semiclassical simulations, whereby quantum fluctuations
between the atoms have been neglected, give IC ∝ υ3

α for all
the cases, which reproduces the superradiant scaling outside
the regime of very strong interactions. We find that the critical
intensity II at which incoherent scattering becomes apprecia-
ble closely follows the behavior of IC . We extend our analysis
to standing-wave drive fields, with the incident angle of the
drive chosen to maximize overlap with each of the low light
intensity collective modes. For modes with wavelengths inside
the light line, the standing-wave drive gives quantitatively
similar results to the perfectly mode-matched case, except at
positions of Fano resonances.

The paper is organized as follows. In Sec. II, we introduce
the system setup and provide necessary background details.
In Sec. III, we study the validity of the linear classical oscil-
lator model for drive fields mode-matched and resonant with
different low light intensity collective modes. We study the de-
viation between the coherent scattering predicted by the linear
classical oscillator model and the full quantum solution, and
identify the intensity at which incoherent scattering becomes
appreciable. In Sec. IV, we compare the previous results with
those obtained using standing-wave drives. We conclude in
Sec. V.

II. BACKGROUND

A. System setup

We consider the dynamics of a regular chain of N iden-
tical two-level atoms with positions rm = a(m − 1)ẑ, m =
1, . . . , N , driven by a coherent drive E+(r)ei�t , see Fig. 1.
We consider only a monochromatic drive. A finite bandwidth
analysis would become relevant for short pulses. The pos-
itive frequency component of the light amplitude E+(r) =
D+

F (r)/ε0 [where D+
F (r) denotes the electric displacement

outside the atoms] along the direction ê of the dipole moments
of the atoms is parameterized as

E+(r) = 1
2E0ϕ(r)ê, (1)

EE+

FIG. 1. System setup. A coherent field is incident on a chain of
two-level atoms oriented along ẑ with spacing a < λ. A detector
completely enclosing the atoms collects all of the scattered light E+

s ,
to give a photon scattering rate n. Analyzing the coherent nC and
incoherent nI photon scattering rates allows a systematic study of the
limits of validity of the linear classical oscillator model, as a function
of incident intensity Iin.

with the spatial dependence ϕ(r) normalized as∑
m |ϕ(rm)|2 = 1 and E− = (E+)∗. The incident field

intensity averaged over the atoms is

Iin = 1

N

∑
m

2ε0c|E+(rm)|2 = ε0c|E0|2
2N

. (2)

The dynamics of the atoms in a frame rotating at the driving
field frequency � is described, in the length gauge [61,68–
70], by the master equation for the reduced density matrix ρ

[71,72],

dρ

dt
= − i

h̄

∑
m

[Hm, ρ] + i
∑

m

∑
n �=m


mn[σ+
m σ−

n , ρ]

+
∑
m,n

Lmn[ρ], (3)

with

Hm = −h̄
[
δσ ee

m + R∗ϕ∗(rm)σ−
m + Rϕ(rm)σ+

m

]
,

Lmn[ρ] = γmn(2σ−
n ρσ+

m − σ+
m σ−

n ρ − ρσ+
m σ−

n ). (4)

Here and below, all summation indices run over all
N atoms, unless otherwise indicated. The Hamiltonian Hm

and single-atom decay terms Lmm describe the single-atom
dynamics, while the remaining terms describe the light-
mediated interactions. For each atom m, σ+

m and σ−
m are

spin-1/2 raising and lowering operators, respectively, σ ee
m =

σ+
m σ−

m is the excited state population operator, and Rϕ(rm) =
ϕ(rm)DE0/(2h̄) is the complex Rabi frequency, with D the
reduced dipole matrix element that without loss of generality
we choose to be real. We have made the rotating wave
approximation in Hm by omitting the fast corotating terms
R∗ϕ∗(rm)σ−

m e2i�t + Rϕ(rm)σ+
m e−2i�t . The drive field is de-

tuned from the two-level transition frequency ω by δ = � −
ω, and γmm = γ = D2k3/(6π h̄ε0), where k = 2π/λ is the
resonant wave number of the incident light, with c the speed
of light in vacuum and λ = c/ω the resonant wavelength. We
neglect recoil effects from the light scattering (which in dense
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atom clouds can also be correlated [73]) and have considered
the atoms as being stationary. We also assume the lattice
confinement is sufficiently tight such that position fluctuations
of the atoms can be ignored.

The light-mediated coherent and dissipative interactions
are obtained from the dipolar scattering kernel G(r), with
respective strengths


mn = 1

h̄ε0
Re[d∗ · G(rmn)d], (5)

γmn = 1

h̄ε0
Im[d∗ · G(rmn)d], (6)

with rmn = rm − rn, d = Dê and [74]

G(r)d = −dδ(r)

3
+ k3

4π

{
(r̂ × d) × r̂

eikr

kr

− [3r̂(r̂ · d) − d]

[
i

(kr)2
− 1

(kr)3

]
eikr

}
. (7)

(with r̂ = r/|r|). Note that γmm = γ whereas 
mm diverges.
The divergence of 
mm can be accounted for by a proper treat-
ment of the Lamb shift, which we assume has been absorbed
into the single atom detuning δ. Light-mediated interactions
are significant when the lattice spacing a satisfies a � λ. Due
to the anisotropic radiation profile of an oscillating dipole, the
orientation and polarization of the incident drive relative to
the lattice direction ẑ affects the strength of the interactions.
We take ê to be a circularly polarized unit vector. For light
incident parallel to the atom chain, we have ê = (x̂ − iŷ)/

√
2

and so ẑ · ê = 0. For light incident perpendicular to the atom
chain, we have ê = (ẑ − ix̂)/

√
2 and |ẑ · ê| = 1/

√
2.

B. Scattered light properties

The total field outside of the atoms is the sum of the
incident and scattered fields,

E±(r) = E±(r) + E±
sc(r), (8)

with

ε0E±
sc(r) =

∑
m

G(r − rm)dσ∓
m . (9)

The scattered field consists of both a mean field 〈E±
sc〉 and fluc-

tuations δE±
sc = E±

sc − 〈E±
sc〉. The total light intensity outside

of the atoms is

I (r) = 2ε0c
〈
E−(r) · E+(r)

〉
, (10)

with

〈E−(r) · E+(r)〉 = E+(r) · E−(r) + E+(r) · 〈E−
sc(r)〉

〈E+
sc(r)〉 · E−(r) + 〈E+

sc(r)〉 · 〈E−
sc(r)〉

+ 〈δE+
sc(r) · δE−

sc(r)〉. (11)

The first term in Eq. (11) is the incident field contribution to
the intensity. The next two terms give the interference between
the incident field and the mean scattered field amplitude,
which can be detected by homodyne measurements. The
second, third, and fourth terms produce the coherent scattering
and the fifth term the incoherently scattered light intensity,
which, for the case of fixed atomic positions, arises solely
from quantum fluctuations.

We assume that the incident field has been blocked before
its photons are detected, for example, by a thin wire as in the
dark-ground imaging technique [75]. Only the scattered light
intensity Isc is therefore detected, with

Isc(r) = 2ε0c(〈E−
sc(r)〉 · 〈E+

sc(r)〉 + 〈δE−
sc(r) · δE+

sc(r)〉).
(12)

The photon count-rate integrated over a detector surface S is
then

n = 1

h̄ω

∫
S

dS Isc(r), (13)

where dS denotes an area element. The photon count rate is
made up of two contributions: a coherent scattering rate,

nC = 2ε0c

h̄ω

∫
S

dS 〈E−
sc(r)〉 · 〈E+

sc(r)〉, (14)

that survives in the absence of fluctuations E±
sc → 〈E±

sc〉, and
an incoherent scattering rate,

nI = 2ε0c

h̄ω

∫
S

dS 〈δE−
sc(r) · δE+

sc(r)〉. (15)

For simplicity, we assume that the detector completely
encloses the atoms, so all the scattered light is collected.
The surface integral in Eqs. (13)–(15) can then be evaluated
analytically to give [76] (see Appendix)

n = 2
∑
m,n

γmn〈σ+
m σ−

n 〉,

nC = 2
∑
m,n

γmn〈σ+
m 〉〈σ−

n 〉,

nI = 2
∑
m,n

γmn(〈σ+
m σ−

n 〉 − 〈σ+
m 〉〈σ−

n 〉). (16)

Equations (16) also follow immediately from Eq. (3),
as the loss rate of excitations, which equals the pho-
ton detection rate n (when all photons are detected), is∑

m,n,k Tr(σ+
k σ−

k Lmn[ρ]) = 2
∑

m,n γmn〈σ+
m σ−

n 〉.
For atoms with fixed positions, a nonzero incoherent

scattering rate requires one of two things: either nonneg-
ligible population in the excited levels of one or more
atoms, 〈σ ee

m 〉 > 0, or nonnegligible many-body correlations
〈σ+

m σ−
n 〉 �= 〈σ+

m 〉〈σ−
n 〉 for n �= m, which can be generated via

the light-mediated interactions. For N = 1, both the steady-
state coherent and incoherent scattering rates can be solved
analytically [77],

nC = γ Iin/Is

(1 + δ2/γ 2 + Iin/Is)2
,

nI = γ

(
Iin/Is

1 + δ2/γ 2 + Iin/Is

)2

, (17)

where

Is = h̄ck3γ

6π
(18)

is the single atom saturation intensity. Note Iin/Is = 2|R|2/γ 2,
hence Iin ∼ Is equates to driving the system such that the mag-
nitude of the Rabi frequency is comparable to the single atom
linewidth. Assuming a resonant drive, for low drive intensities
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Iin � Is we can expand Eqs. (17) in Iin/Is to give nC ∝ Iin

and nI ∝ I2
in. In this linear regime, the coherent scattering

dominates, nC � nI . Nonlinear effects become notable for
Iin � Is.

C. Limit of low light intensity:
The linear classical oscillator model

In the limit of low light intensity, we can neglect terms
that contain two or more excited-state field amplitudes or one
or more excited-state amplitudes multiplied by the driving
field, where the field amplitudes refer to second-quantized
atomic fields [61]. In our system, this amounts to neglecting
terms 〈σ+

m σ−
n 〉 (along with higher order correlators of σ±

m )
and R〈σ+

m 〉. The only nontrivial elements in the equation of
motion are for ρ (m)

ge (t ) = 〈σ−
m (t )〉 and Eq. (3) reduces to

dρ (m)
ge

dt
= i

∑
k

Hmkρ
(k)
ge + iRϕ(rm). (19)

The diagonal elements of the matrix H describe the single-
atom detuning and linewidth, Hmm = δ + iγ , while the off-
diagonal elements arise from the low light intensity dipole-
dipole interactions, Hmk = 
mk + iγmk , for k �= m. Equation
(19) is identical to the equation for classical coupled dipoles.
Equation (19) in the absence of the incident field drive also de-
scribes the exact quantum dynamics of one-body expectation
values when the atom ensemble contains a single excitation in
its initial state [78].

Consistently, the limit of low light intensity for the optical
response is obtained from Eq. (11) by calculating the coher-
ently scattered light intensity to the lowest order in the field
amplitude:

〈E−(r) · E+(r)〉 = E+(r) · E−(r) + E+(r) · 〈E−
sc(r)〉

〈E+
sc(r)〉 · E−(r) + O[|〈E+

sc(r)〉|2]. (20)

The field amplitude 〈E+
sc(r)〉 in Eq. (20) is obtained from

Eq. (9) after solving for 〈σ−
m 〉 using Eq. (19).1

The complex symmetric matrix H affords a complete but
not necessarily orthogonal basis of eigenstates {uα} (α =
1, . . . , N), which are the low light intensity collective excita-
tion eigenmodes [79]. We assume the uα vectors are normal-
ized, |uα| = 1. The corresponding complex eigenvalues {ζα +
iυα} have real part ζα , which is the collective mode resonance
shift from the resonance of an isolated atom, and imaginary
part υα , which is the collective linewidth. Collective modes
with broad resonances υα > γ are termed superradiant, while
those with narrow resonances υα < γ are termed subradiant.
The range of collective linewidths can span many orders of

1Equation (19) gives the dynamics of atoms at fixed positions
r1, r2, . . . , rN . One can formally show that the model provides an
exact solution for coherently scattered light of laser-driven atoms
also for the case of stochastically distributed atomic positions in the
limit of low light intensity [58,59]. In that case, the linear classical
oscillator model is solved for each stochastic realization of fixed
atomic positions r1, r2, . . . , rN that are sampled from the appropriate
distribution, and the calculated optical response is then ensemble-
averaged over many such runs.

magnitude [4,9,10,12,19,27], hence the radiative properties of
weakly excited atomic ensembles vary greatly depending on
whether subradiant or superradiant modes are excited. If the
field profile of the drive is chosen to match a collective mode,
ϕ(rm) = uα (rm), with uα (rm) the mth component of uα , the
steady-state polarization is simply

〈σ−
m 〉 = R

ζα + iυα

uα (rm). (21)

This is identical to the polarization of a single harmonic
oscillator but with the single atom detuning and linewidth
replaced by the collective mode detuning and linewidth.

Here we investigate the linear classical oscillator model
Eq. (19) beyond the low light intensity regime (20) by study-
ing the coherent scattering rate nC , which is second order
in E+(r) (or 〈E+

sc(r)〉). The linear classical oscillator model
predicts a linear dependence of nC on the incident intensity
Iin. In the limit that the incoherent scattering is dominated by
position fluctuations of the atoms, the linear classical oscilla-
tor model can also represent the incoherently scattered light
intensity, in which case the 〈δE−

sc(r) · δE+
sc(r)〉 contribution is

entirely generated by the fluctuating positions of the atoms.
For atoms at fixed positions, as considered in this paper, the
incoherent scattering from the linear classical oscillator model
vanishes and all fluctuations are solely due to quantum effects.

III. VALIDITY OF THE LINEAR CLASSICAL
OSCILLATOR MODEL

We investigate the limits of validity of the linear classi-
cal oscillator model by comparing its predictions for light
scattering with predictions from the full quantum many-body
master equation (3), as a function of drive intensity, the atom
number, and the atomic spacing. For simplicity, we examine
the steady-state optical responses. Coherent scattering devi-
ating from a linear dependence on Iin signifies discrepancies
from the linear classical oscillator model, in which case the
model no longer provides an accurate description of the
scattering. The presence of appreciable incoherent scattering
also directly implies dynamics beyond the linear classical
oscillator model. For a given atom number N , we drive the
system with a field mode-matched and resonant with different
collective modes uα , i.e., ϕ(rm) = uα (rm), ζα = 0, for α =
1, . . . , N . For the most subradiant modes in systems with a
very small lattice spacing, such a drive field is an idealization,
as the phase variation required for the field is too rapid
(subwavelength). We consider standing-wave drive fields in
Sec. IV, where we will also be able to address how realistic
fields will affect the excitation of such eigenmodes. Equation
(3) is solved by first transforming the density matrix ρ into a
vector [80] and then evaluating its time evolution using exact
diagonalization.

A. Coherent scattering

In Fig. 2(a), we plot the relative deviation between the
coherent scattering rate nC , obtained from the steady-state
solution of the full quantum description Eq. (3), and the
coherent scattering rate nlin

C , obtained from the steady-state
solution of the linear classical oscillator model Eq. (19), as
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FIG. 2. Deviation between the full quantum scattering and scat-
tering predicted from the linear classical oscillator model. Parameters
are N = 7, a = 0.4λ, and ê = (x̂ − iŷ)/

√
2. The separate curves

correspond to drive fields that are mode matched and resonant with
different low light intensity collective modes uα (dots are numerical
simulations, red curves are spline fits). In (a) and (b), the correspond-
ing linewidths are, from shallowest curve to steepest curve, υα =
(1.41, 1.29, 1.15, 0.97, 1.03, 0.96)γ (main figures) and υα = 0.18γ

(insets). (a) The relative deviation between the coherent scattering
rate obtained from the linear classical oscillator model (nlin

C ) and the
full quantum solution (nC) grows proportional to Iin. In all but one
case, the slope of the curves depends inversely on the collective mode
linewidth. The semiclassical model (dotted black curve) for a drive
mode-matched and resonant with the most superradiant mode (main
figure) and most subradiant mode (inset) captures the qualitative
behavior of the scattering but is not quantitatively accurate. (b) The
ratio of incoherent (nI ) to coherent scattering displays the same
behavior as (nlin

C − nC )/nC . The results for a single isolated atom,
obtained from Eqs. (17), are shown by the gray dashed lines in (a) and
(b) for comparison.

a function of drive intensity, for N = 7 atoms. We do this
for drives mode-matched and resonant with each of the N
different low light intensity collective modes. The relative de-
viation (nlin

C − nC )/nC clearly scales proportional to Iin for the
intensities shown. We find that the slope (nlin

C − nC )/(nCIin)
has a pronounced dependence on which collective mode is
driven, with a smaller υα resulting in a larger slope in all
but one case.2 The drive mode-matched to the υα = 0.96γ

2The exception occurs at the υα = 0.97γ curve, which is less steep
than the υα = 1.03γ curve.

mode, for example, results in appreciable deviation between
nC and nlin

C at intensities Iin � 0.02Is, whereas a drive mode-
matched to the most superradiant mode (υα = 1.41γ ) shows
similar deviation at thrice this intensity. A more extreme case
occurs when the lattice spacing is increased to a = 0.6λ.
Then, driving the subradiant mode with υα = 0.63γ results in
substantial deviation between nC and nlin

C at intensities Iin �
0.01Is, whereas driving the superradiant mode with υα =
2.0γ gives a similar deviation only at much higher intensities
Iin � 0.3Is. The low light intensity collective modes therefore
play a crucial role in determining the response of the atoms
not just within the regime of validity of the linear classical
oscillator model, but also when quantum and nonlinear effects
start becoming important due to increasing light intensity.3

For stochastically distributed atoms in ensembles where
light induces strong spatial correlations between the atoms
(due to their fluctuating positions), a semiclassical (SC) model
where all quantum fluctuations between the atoms are ne-
glected [59] has provided in several regimes of interest a
numerically tractable description for the full quantum dy-
namics of the system [30,63,81,82], as well as a systematic
mechanism to unambiguously identify quantum effects in the
scattered light [63]. For atoms at fixed positions, as we are
interested in here, the analogous approximation corresponds
to neglecting all correlations between the atoms and obtaining
a mean-field-theoretical solution [83,84]. This is obtained by
explicitly factorizing all correlations between atoms in the
equations of motion Eq. (3), 〈σμ

m σ ν
n 〉 → 〈σμ

m 〉〈σ ν
n 〉 for μ, ν ∈

{+,−, ee} and n �= m. Equation (3) within this approximation
reduces to a set of the nonlinear equations,

dρ (m)
ge

dt
= (iδ−γ )ρ (m)

ge + i
(
1−2ρ (m)

ee

)⎡⎣Rϕ(rm) +
∑
k �=m

Hmkρ
(k)
ge

⎤
⎦,

dρ (m)
ee

dt
=−2γ ρ (m)

ee − 2 Im

⎡
⎣ρ (m)

eg Rϕ(rm) + ρ (m)
eg

∑
k �=m

Hmkρ
(k)
ge

⎤
⎦,

(22)

where ρ (m)
ee (t ) = 〈σ ee

m (t )〉 and ρ (m)
eg = (ρ (m)

ge )∗ [ρ (m)
ee (t ) +

ρ (m)
gg (t ) = 1]. In the absence of light-established

interatomic coupling terms, i.e., the terms proportional
to Hmk , the model becomes equal to independent-atom
optical Bloch equations. Equations (22) in the steady
state can be numerically solved to obtain a SC
prediction nSC

C for the steady-state coherent scattering
rate.

To compare the SC model with the full quantum solution,
we plot in Fig. 2(a) the relative deviation (nlin

C − nSC
C )/nSC

C for
drives mode-matched and resonant with the most subradiant
and superradiant collective modes. The SC model captures
well the linear dependence of (nlin

C − nC )/nC on Iin, with a
slope that depends strongly on the collective mode linewidth.
This will be explored further in Sec. III C.

3Note that perfect mode matching to the most subradiant mode in
Fig. 2 is an idealization, as the required phase variation is too rapid.
We will later show how this is modified when a realistic drive is used
instead.

023273-5



L. A. WILLIAMSON AND J. RUOSTEKOSKI PHYSICAL REVIEW RESEARCH 2, 023273 (2020)

B. Incoherent scattering

The linear classical oscillator model derived for the co-
herent scattering from laser-driven atoms in the limit of low
light intensity can only describe incoherent scattering for the
atomic ensembles where the positions of atoms are spatially
fluctuating. For atoms at fixed spatial positions, the only
contributions to incoherent scattering are correlation functions
such as 〈σ+

m σ−
n 〉 and 〈σ ee

m 〉, both of which are neglected in the
linear classical oscillator model.4 The presence of nonnegli-
gible incoherent scattering in our system therefore provides
another signature of scattered light beyond the predictions of
the linear classical oscillator model [Eq. (19)]. By gradually
increasing the drive intensity, we can determine at what point
the incoherent scattering becomes appreciable. In Fig. 2(b),
we plot the ratio of the incoherent to coherent scattering rate
as a function of drive intensity, obtained from the steady-state
solution of Eq. (3), using the same parameters as Fig. 2(a).
The behavior of nI/nC is very similar to that of (nlin

C − nC )/nC

displayed in Fig. 2(a). Indeed, we find numerically that nlin
C −

nC ≈ 2nI + O(I6
in). Hence, in this case, nonlinear coherent

scattering and appreciable incoherent scattering provide an
equivalent signature for the validity of the linear classical
oscillator model. Note, though, that this will not hold for
general detector geometries, as incoherently scattered light is
distributed everywhere, whereas coherently scattered light can
be very directional.

C. Variation with collective mode linewidth

To quantify more precisely the behavior of coherently
scattered light in Fig. 2(a), we introduce a critical intensity IC

defined as the lowest intensity Iin at which nC deviates from
nlin

C by 10%, i.e., nlin
C − nC = 0.1nC . In Fig. 3, we plot IC as a

function of υα for drives mode-matched and resonant with the
different low light intensity collective modes of atom chains
with (a) a = 0.4λ, ê = (x̂ − iŷ)/

√
2, (b) a = 0.4λ, ê = (ẑ −

ix̂)/
√

2, and (c) a = 0.6λ, ê = (x̂ − iŷ)/
√

2. For each chain,
we include points for all low light intensity collective modes
for all atom numbers from N = 2 to N = 10. The qualitative
result that IC on average increases with increasing υα is
clearly evident, as was observed in Fig. 2(a). Indeed, the data
in (a) as well as modes υα � 0.5γ in (b) follow an empirical
scaling IC ∝ υ2.5

α . As another example, the chain with a =
0.3λ, ê = (x̂ − iŷ)/

√
2 (not shown) in our simulations also

exhibits IC ∝ υ2.5 scaling for all modes.
For comparison, we calculate IC from the SC model

Eqs. (22), for the same atom chains and drive fields. A power-
law fit to these values, fitted to all υα data points from all
atom numbers, is shown by the dashed curves in Fig. 3 for
each lattice spacing and drive polarization. The fits predict a
scaling very close to IC ∝ υ3

α for all υα . The chains in (b)
and (c) show reasonable agreement with the SC scaling for

4A single photon can give rise to incoherent scattering, as is evident
from considering a single isolated atom at the origin. The incoher-
ently scattered light intensity is then 2c|G(r)d|2(〈σ ee〉 − |〈σ−〉|2)/ε0.
Absorption of a single photon by an atom in the ground state results
in 〈σ ee〉 = 1 and 〈σ−〉 = 0. The likelihood of an incoherent photon
emission then occurring by time t after the absorption is 1 − e−2γ t .
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FIG. 3. Driving the atom chain with a field that is mode-matched
and resonant with a low light intensity collective eigenmode uα

results in a critical intensity IC that depends strongly on the col-
lective mode linewidth υα . The atom chains used are (a) a = 0.4λ,
ê = (x̂ − iŷ)/

√
2, (b) a = 0.4λ, ê = (ẑ − ix̂)/

√
2, and (c) a = 0.6λ,

ê = (x̂ − iŷ)/
√

2. In each case, we plot points for all collective
modes of all atom numbers from N = 2 to N = 10. A power law
fit IC ∝ υ2.5

α (solid curves) describes well the data in (a), as well as
modes υα � 0.5γ in (b) (insets, with log-log scale). A power-law
fit to IC calculated from the semiclassical model Eqs. (22) (dotted
curves) gives good agreement for drives mode-matched to collective
modes with υα � 0.5γ in (b) and (c). In each figure, the grey
dashed horizontal lines give the value of IC for a single isolated
atom.

υα � 0.5γ . Also shown in Fig. 3 is the value of IC for a single
isolated atom, obtained from Eqs. (17). This gives IC ≈ 0.05,
which lies above the values of IC for many atoms for υα � γ

and below for υα � γ .
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The observation that superradiant modes follow the SC
model more closely than subradiant modes is expected [63]:
the dipoles of a superradiant mode are much more uniform,
and hence the mean-field contribution of these dominates
over the quantum fluctuations. Increasing the lattice spacing
from a = 0.4λ [Fig. 3(a)] to a = 0.6λ [Fig. 3(c)] reduces the
strength of the resonance dipole-dipole interactions, which
will also reduce the likelihood of quantum fluctuations, and
hence give better agreement with the SC model [83]. For a
lattice spacing of a = 0.4λ, (ka)−1 ≈ 0.4 and hence the dom-
inant term in the radiation kernel Eq. (7) is the term ∝ (kr)−1.
Changing the dipole orientation from ê = (x̂ − iŷ)/

√
2 to ê =

(ẑ − ix̂)/
√

2 reduces this term by a factor of 2, hence reducing
the dipole-dipole interactions, which may account for the
better agreement with the SC model in Fig. 3(b) compared
to Fig. 3(a).

We can also quantify the accuracy of the linear classical
oscillator model by an intensity II at which incoherent scat-
tering becomes appreciable. We take this to be the intensity
Iin at which nI = 0.1nC . As in Fig. 2, we find that II follows
closely the behavior of IC , with II/IC ≈ 2, independent of
the eigenmode.

D. Variation with atom number

For a sufficiently large atom chain, the collective eigen-
modes of a chain of atoms become those of the Bloch waves,
obtained using periodic boundary conditions,

uα (rm) −−−→
N→∞

Aμ sin(Kμrm) or Aμ cos(Kμrm), (23)

with Kμ = 2πμ/(Na), μ = 0, 1, . . . , floor(N/2), A0 =√
(1/N ) and Aμ>0 = √

(2/N ). This provides collective
linewidths in the infinite chain limit and a reasonable
approximation for the eigenmodes of many finite systems
also [12]. We plot these in Fig. 4 for ê = (x̂ − iŷ)/

√
2

with lattice spacing (a) a = 0.4λ and (b) a = 0.6λ. For
a = 0.6λ, the most subradiant mode occurs at Kμ = 0. The
a = 0.4λ chain has a similar spectrum for Kμ � 2π/λ and
then drops abruptly to zero. The light line at Kμ = 2π/λ

separates radiating modes from completely dark modes and
corresponds to the point where the wave vector of light
radiating perpendicular to the atom chain changes from a
radiating field to an evanescent field [12].

In Figs. 4(c) and 4(d), we show the critical intensity IC for
ê = (x̂ − iŷ)/

√
2, as in Figs. 3(a) and 3(c), but now as a func-

tion of N . We assign Bloch waves wa
Kμ

(rm) = Aμ sin(Kμrm) or

wb
Kμ

(rm) = Aμ cos(Kμrm) to the finite lattice collective modes

uα by maximizing the overlap |∑m wa,b
Kμ

(rm)uα (rm)|. We can
then join points from different atom numbers that have the
same Kμ and standing wave parity, e.g„ K0 = 0 (for all N),
KN/2 = π/a (for even N), and KN/3 = 2π/(3a) (for N that is a
multiple of 3). For a chain with a = 0.4λ, the Kμ = π/a curve
decreases exponentially with increasing N [inset to Fig. 4(c)].
This wave vector resides outside the light line and therefore
gives a linewidth that goes to zero in the limit of an infinite
chain. Note also the broken degeneracy of the KN/3 curves,
due to finite size effects. The separation between the solutions
decreases as N increases, and in the infinite chain limit these
two curves will coincide. The collective linewidths of the

FIG. 4. (a), (b) The collective radiative linewidths υα of an
infinite chain of atoms for ê = (x̂ − iŷ)/

√
2 for (a) a = 0.4λ and (b)

a = 0.6λ. The spectrum drops abruptly to zero outside the light line,
Kμ > 2π/λ. The linewidths of each mode of chains with ten atoms
are shown for comparison (blue circles), at a wave vector (chosen
to be positive) of the standing wave with maximum overlap with
the mode. (c), (d) The critical intensity IC as a function of atom
number, for drives mode-matched and resonant with each of the
N low light intensity collective modes uα (black dots). Results for
lattice spacings (c) a = 0.4λ and (d) a = 0.6λ, for ê = (x̂ − iŷ)/

√
2.

The solid curves join the collective modes of different atom numbers
that have maximum overlap with the same Kμ, for Kμ = π/a (blue
curve), Kμ = 0 (red curve), and Kμ = 2π/(3a) for a cosine mode
(green curve) and a sine mode (purple curve). The KN/2 mode in
(c) lies outside the light line and the corresponding IC decreases
exponentially with increasing N (inset, with log vertical scale). The
single atom value of IC/Is is indicated by a thick horizontal marker
on the vertical axis.

chains with ten atoms are shown in Fig. 4(a) and 4(b), at a
wave vector (chosen to be positive) of the standing wave that
has maximum overlap with the given collective mode. These
follow closely the infinite chain result.

IV. STANDING-WAVE DRIVING FIELDS

We now consider standing-wave drive fields. Perfect over-
lap with a standing wave Eq. (23) with Kμ � 2π/λ can be
achieved by varying the angle between k, the wave vector of
the incident light, and the atom chain so k · ẑ = Kμ. Modes
with Kμ > 2π/λ lie outside the light line, see Fig. 4(a),
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FIG. 5. Occupation measure Lβ of each of the collective modes
β with the steady-state polarization obtained in the limit of low light
intensity, for a standing-wave drive targeting mode α. The linewidth
of the targeted modes are indicated in the figures, with occupations
given by the unfilled red bar. The filled blue bars give the occupations
of the remaining modes. In cases (a)–(c), the overlap is dominated
by the targeted mode, even in (a) where the targeted mode lies
outside the light line. An anomaly occurs in (d) where the most
subradiant mode dominates the occupation despite the drive targeting
a superradiant mode. This is due to a Fano resonance between the two
modes, as discussed further in the main text.

and in the infinite lattice limit cannot be excited due to
their rapid phase variation. We find an optimal standing-wave
drive for each of the collective modes uα by maximizing
| ∑m wa,b

K (rm)uα (rm)|, with 0 � K � 2π/λ a continuous vari-
able, and setting ϕ(rm) = wa,b

K (rm). The targeting is further
enhanced by tuning the drive frequency to the resonance of
the targeted mode, such that ζα = 0.

The effectiveness of the standing waves to target a particu-
lar collective eigenmode can be quantified by the occupation
measure Lβ of the exact eigenstates in the steady-state polar-
ization, defined by [6]

Lβ =
∣∣∑

m uβm〈σ−
m 〉∣∣2

∑
η

∣∣∑
m uηm〈σ−

m 〉∣∣2 , (24)

with 〈σ−
m 〉 calculated using the low light intensity equa-

tion (19). [Note the absence of a complex conjugation of the
uα (rm). The modes uα are not orthogonal, but they do satisfy
the biorthogonality condition uT

α uβ = δαβ except for possible
(rare) cases when uT

α uα = 0. Hence a transpose rather than a
conjugate transpose is used in Eq. (24).] Example distribu-
tions of Lβ are shown in Fig. 5 for an atom chain with a =
0.4λ, ê = (x̂ − iŷ)/

√
2, for drive fields targeting four different

low light intensity collective modes. In all but one case, the
occupation is dominated by the targeted mode, even for the
mode with υα = 0.06γ , which resides outside the light line.
The anomalous case Fig. 5(d) is due to a Fano resonance
between the targeted mode and the most subradiant mode and
will be discussed further shortly.

Using standing-wave drives, we can carry out an analogous
study to that in Fig. 3. In Fig. 6, we plot the resulting IC as a
function of the collective linewidths υα of the targeted mode
for chains of ten atoms for (a) a = 0.4λ and (b) a = 0.6λ, with
ê = (x̂ − iŷ)/

√
2. Also included are the results for IC using

a perfectly mode-matched drive [from Figs. 3(a) and 3(c)].
Both the standing-wave drive and the perfectly mode-matched
drive give comparable IC for the a = 0.6λ atom chain. For
the a = 0.4λ chain, the standing wave and perfectly mode-
matched drive give comparable IC for targeted modes with
υα � 0.5γ , aside from one anomalous point at υα = 1.24γ

that will be discussed shortly. The standing-wave drive gives
a substantially larger IC for the most subradiant mode in
Fig. 6(a), which lies outside the light line and hence overlap
between the standing wave and this collective mode is small.
We find similar results for a chain of ten atoms with a = 0.3λ

(not shown), with the two subradiant modes residing outside
the light line giving substantially larger IC for a standing-
wave drive compared to a perfectly mode-matched drive.

We now explore further the anomalous point in Fig. 6(a)
at υα = 1.27γ . In Fig. 6(c), we plot the relative deviation
(nlin

C − nC )/nC , where the drive ϕ1.27(r) is a standing wave
overlapping with the υα = 1.27γ mode. The result for a
standing-wave drive overlapping with the υα = 1.24γ mode is
also shown for comparison. The initial growth for the ϕ1.27(r)
drive is much more rapid than the linewidth υα = 1.27γ alone
would suggest, resulting in a much lower IC , close to that of
the most subradiant modes. The occupation measures Lβ for
these two drives are shown in Figs. 5(c) and 5(d). The ϕ1.24(r)
drive [(c)] leads to a predominant occupation in the targeted
mode, whereas the ϕ1.27(r) drive [(d)] predominantly targets
the most subradiant mode. This is due to the nonorthogonality
between the superradiant mode with υα = 1.27γ and the most
subradiant mode with υβ = 0.059γ is |u†

αuβ | ≈ 0.3, which is
appreciable. Furthermore, the collective level shift of the most
subradiant mode lies within the linewidth of the υα = 1.27
mode (both collective level shifts are ≈1.0γ ). The combina-
tion of these effects leads to a Fano resonance between the
υα = 1.27γ mode and the υβ = 0.059γ mode, resulting in a
suppressed scattering rate [6,39]. This is likely responsible for
the much lower IC .

V. CONCLUSIONS

We compared light scattering obtained from the linear
classical oscillator model with a full quantum treatment as
a function of increasing light intensity. We showed that de-
viations between the two approaches become appreciable at
an intensity that is much lower for drive fields targeting sub-
radiant modes than superradiant modes, and identify scaling
relationships between this intensity and the linewidth of the
mode being driven. The scaling only slowly varies with atom
number, lattice orientation, lattice spacing, and precise drive
field profile. An SC model captures the qualitative conclusions
of our results and, for superradiant modes, many of the quanti-
tative features also. It would be interesting to test how well the
results carry over to higher dimensional lattices and lattices
with different geometries. Further work could also explore the
effects of fluctuating positions [19] on our findings, in which
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FIG. 6. (a), (b) The critical intensity IC for both the optimized
standing-wave drives (blue circles) and the perfectly mode-matched
drives (red diamonds), as a function of the collective mode linewidth
of the targeted mode. The optimized standing-wave drive agrees
well for the perfectly mode-matched drive for most cases. Solid
curves show the υ2.5

α scaling from Fig. 3. (a) a = 0.4λ. The most
subradiant collective mode lies outside the light line, for which the
standing-wave drive gives a substantially higher IC than the perfectly
mode-matched drive. At υα = 1.27γ the standing-wave drive gives
an anomalously low IC (point indicated by an arrow). (b) a = 0.6λ.
All the collective modes lie inside the light line, and the standing-
wave drive and perfectly mode-matched drive give comparable IC

for all υα . (c) Deviation between the full quantum scattering and
scattering predicted by the linear classical oscillator model for the
a = 0.4λ atom chain driven by a standing-wave drive overlapping
with the υα = 1.24γ mode (monotonic curve) and the υα = 1.27γ

mode (nonmonotonic curve) (dots are numerical simulations, red
curves are spline fits). A Fano resonance at υα = 1.27γ results in
an anomalously high IC .

case incoherent scattering can also occur within the linear
classical oscillator model. For example, it would be interesting
to compare the importance of incoherent scattering arising
from position fluctuations with incoherent scattering arising
from excited state occupations.

Data used in this publication is available at [85].
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APPENDIX: EVALUATION OF THE FAR-FIELD
INTERFERENCE INTEGRAL

Substitution of Eq. (9) into Eqs. (13)–(15) gives the inter-
ference integrals:

Imn = 2c

h̄ε0ω

∫
S

dS[G(r − rm)d]∗G(r − rn)d. (A1)

For a detector sufficiently far from the atoms, we can take the
far-field (Fraunhofer) limit for the scattering kernel G,

G(r − rm)d −−−→
r→∞

k2

4πr
eikre−ikr̂·rm (r̂ × d) × r̂. (A2)

Using dS = r2dθdφ sin θ , for polar angle θ and azimuthal
angle φ, this gives

Imn = 3γ

4π

∫
S

dθdφ sin θ (1 − |r̂ · ê|2)eikr̂·rmn . (A3)

In our choice of coordinate system, we have r̂mn = ẑ (r̂mn =
rmn/|rmn|). For a detector that completely encloses the atoms,
the integral is over a full 4π surface and hence

Imn = 3γ

4π

∫ π

0
dθ

∫ 2π

0
dφ sin θ (1 − |x̂ · ê cos φ sin θ

+ ŷ · ê sin φ sin θ + r̂mn · ê cos θ |2)eikrmn cos θ

= 3γ

4

∫ π

0
dθ sin θ (2 − 2|r̂mn · ê|2

− (1 − 3|r̂mn · ê|2) sin2 θ )eikrmn cos θ

= 3γ (1 − |r̂mn · ê|2)
sin krmn

krmn

+ 3γ (1 − 3|r̂mn · ê|2)

(
cos krmn

k2r2
mn

− sin krmn

k3r3
mn

)

= 2γmn. (A4)
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