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The Gottesman-Kitaev-Preskill (GKP) quantum error-correcting code has emerged as a key technique in
achieving fault-tolerant quantum computation using photonic systems. Whereas [Baragiola et al., Phys. Rev.
Lett. 123, 200502 (2019)] showed that experimentally tractable Gaussian operations combined with preparing
a GKP codeword |0〉 suffice to implement universal quantum computation, this implementation scheme involves
a distillation of a logical magic state |H〉 of the GKP code, which inevitably imposes a trade-off between
implementation cost and fidelity. In contrast, we propose a scheme of preparing |H〉 directly and combining
Gaussian operations only with |H〉 to achieve the universality without this magic state distillation. In addition,
we develop an analytical method to obtain bounds of fundamental limit on transformation between |H〉 and |0〉,
finding an application of quantum resource theories to cost analysis of quantum computation with the GKP code.
Our results lead to an essential reduction of required non-Gaussian resources for photonic fault-tolerant quantum
computation compared to the previous scheme.
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I. INTRODUCTION

Photonic quantum systems provide promising architectures
toward implementing quantum computation [1–3]. Quantum
computation brings advantages over conventional classical
computation in terms of computational speedups [4–7] and
stronger security [8,9]. Compared to other matter-based can-
didates for implementing quantum computation such as su-
perconducting qubits [10,11] and ion traps [12,13], character-
istics of the photonic architectures are scalability in generating
quantum entanglement among more than one million optical
modes [14] and flexibility in geometrical constraints on in-
teractions that are essentially free from the two-dimensional
surface of the matter. The scalability is especially key to
attaining high fault tolerance in quantum computation by
means of quantum error correction [15–18], where quantum
information of a logical qubit is redundantly encoded in a
physical quantum system.

To implement fault-tolerant quantum computation using
photonic systems, besides single-photon-based candidates
such as Knill-Laflamme-Milburn scheme [19], it is promis-
ing to exploit the Gottesman-Kitaev-Preskill (GKP) quantum
error-correcting code [20] for correcting errors that occur in
continuous-variable (CV) systems [21–25]. The GKP code
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can encode a logical qubit into a CV degree of freedom in
an optical mode. Reference [26] has recently shown that if we
can realize a light source that emits an optical mode prepared
in a codeword |0〉 of a GKP code, experimentally tractable
Gaussian operations combined with this light source suffice to
implement universal quantum computation in a fault-tolerant
way. When we implement fault-tolerant quantum computation
using qubits, magic state distillation [27] serves as a key
technique for preparing a special type of logical state of
a qubit-based quantum error-correcting code, a magic state
such as a Hadamard eigenstate |H〉 of the code, from noisy
magic states. Preparation of a codeword |0〉 of the qubit-based
code is typically much easier, by means of projection using
stabilizers [16], than that of |H〉, and cheap |0〉′s can be
combined with expensive |H〉′s to achieve universal quantum
computation in a fault-tolerant way. The photonic scheme of
fault-tolerant quantum computation in Ref. [26] also exploits
a magic state distillation for the GKP code, where many non-
Gaussian |0〉 of the GKP code are transformed by Gaussian
operations into another GKP-code state |H〉, a GKP magic
state. This scheme suggests a route to implementing universal
quantum computation by realizing only one type of a GKP-
code state |0〉; that is, it is no longer required to develop
technologies for realizing two different light sources for |0〉
and |H〉 of the GKP code and coordinating the two. However,
in contrast to the qubit-based codes, both |0〉 and |H〉 of the
GKP code are non-Gaussian and hence costly to prepare com-
pared to realizing Gaussian operations. Thus, the overhead
cost of consuming many expensive |0〉′s per distillation of
|H〉 may become a crucial obstacle in implementing quantum
computation under this scheme.

To circumvent this obstacle arising from the magic state
distillation and achieve a fundamental cost reduction in im-
plementing photonic fault-tolerant quantum computation, this
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paper aims at putting forward an idea of preparing only the
logical magic state |H〉 of the GKP code. We show a scheme
that combines Gaussian operations only with |H〉, instead of
|0〉, to implement universal quantum computation. In contrast
with the previous scheme, our scheme can be free from the
overhead cost of the magic state distillation because |0〉 can be
deterministically prepared from as few as two |H〉′s by means
of the state-injection protocol [27]. While the state injection
is well known in the qubit-based quantum computation, our
key contribution is an essential reduction of non-Gaussian
resources in implementing photonic fault-tolerant quantum
computation. Notice that the cost reduction stems from the
nature of photonic architecture that non-Gaussian |0〉 and |H〉
of the GKP code are costly to prepare compared to performing
Gaussian operations. This cost reduction does not necessarily
hold for qubit-based quantum error-correcting codes where
logical |0〉 is much easier to prepare than |H〉; it does not nec-
essarily hold either for other architectures than the photonics,
such as superconducting cavities [28] and trapped-ion me-
chanical oscillators [29] using its oscillator mode to prepare
the GKP code, where Gaussian operations are not necessarily
easy to implement compared to non-Gaussian operations. In
addition, we introduce a simple analytical method for obtain-
ing a fundamental bound that limits transformation between
|H〉 and |0〉 of the GKP code by any Gaussian operations,
discovering an application of quantum resource theories [30]
for CV quantum computation, especially the resource theory
of non-Gaussianity [31,32]. We also show feasibility of direct
preparation of |H〉. The existing proposals [28,29,33–51] on
realizing the GKP code mostly focus on the preparation of
|0〉, but we discuss generalizations of some of the proposals to
demonstrate that |H〉 can be prepared at a technological cost
comparable to that of |0〉 using these proposals. Our results
open up a previously overlooked yet arguably promising
avenue toward implementing photonic fault-tolerant quantum
computation by realizing a light source of |H〉 of the GKP
code rather than |0〉.

The rest of this paper is structured as follows. In Sec. II,
we recall conventions on the GKP code and universal quan-
tum computation. In Sec. III, we show a scheme of univer-
sal quantum computation that combines Gaussian operations
only with |H〉 In Sec. IV, we present the resource-theoretical
method for analyzing the fundamental limit on the transfor-
mations between |H〉 and |0〉 of the GKP code by Gaussian
operations. The feasibility of direct preparation of |H〉 is
shown in Sec. V. Our conclusion is given in Sec. VI.

II. UNIVERSAL QUANTUM COMPUTATION
USING GKP QUBITS

The GKP code [20] is a CV code for encoding a logical
qudit into position quadrature q̂ and momentum quadrature
p̂ of an oscillator, e.g., an optical mode at a physical level,
where we write h̄ = 1, q̂ := 1√

2
(â + â†), p̂ := 1√

2i
(â − â†),

and â† and â are creation and annihilation operators, respec-
tively [1,2]. Each of the logical codewords {|0〉, |1〉, . . .} of
a GKP code is ideally a superposition of infinitely many
eigenstates of q̂. The simplest class of the GKP codes is
the one-mode square-lattice GKP code encoding one qubit

per mode, and its logical codewords {| j〉 : j = 0, 1} are rep-
resented as | j〉 ∝ ∑

s∈Z |√π (2s + j)〉q, where |q0〉q is an
eigenstate of q̂ satisfying q̂|q0〉q = q0|q0〉q. In this paper, the
GKP code refers to this square-lattice GKP code for simplicity
of the presentation. We refer to the logical qubit encoded in a
physical mode by the GKP code as a GKP qubit, and to a
physical state of GKP qubits as a GKP state.

While the codewords of the ideal GKP code are non-
normalizable and hence unphysical, we can circumvent this
normalization problem by considering an approximate GKP
code, where a standard form of the approximate GKP code-
words is given in Ref. [52]. While the eigenstates of q̂ in
the definition of the ideal GKP codewords can be considered
to be infinitely squeezed, the approximate GKP code has
approximately orthogonal codewords {| jσ 2〉 : j = 0, 1} given
by replacing each infinitely squeezed eigenstate of q̂ in the
definition of the ideal GKP codewords with a finitely squeezed
vacuum state of variance σ 2 weighted by a Gaussian en-
velop [20,52], as summarized in Appendix A. By conven-
tion [21,52], we represent the degree of the approximation
using the squeezing level in decibel, i.e., −10 log10(2σ 2). The
approximate GKP codeword approaches to the ideal one as
σ → 0, that is, −10 log10(2σ 2) → ∞.

Universal quantum computation is achieved by implement-
ing an arbitrary quantum circuit on qubits that is composed
of Clifford gates and non-Clifford gates [53]. A Clifford gate
refers to a quantum logic gate generated by the Hadamard gate
H , the phase gate S, and the controlled NOT gate CNOT, while
a non-Clifford gate otherwise, such as the T gate. Operations
composed of preparing qubits in Pauli eigenstates, applying
Clifford gates to the qubits, and measuring the qubits in Pauli
eigenbases are called Clifford operations, which can imple-
ment only a subclass of quantum computation, and efficient
classical simulation of Clifford operations is possible [54].
Clifford operations combined with non-Clifford gates, e.g.,
the T gate, can achieve universal quantum computation [53].

We can implement most of the logical Clifford operations
on GKP qubits by Gaussian operations [20]. Gaussian op-
erations [1,2] are a subclass of operations on CV quantum
systems composed of preparing the vacuum state, applying
Gaussian unitary gates, and performing homodyne detection.
Gaussian operations are technologically easy to implement
compared to non-Gaussian operations, but efficient classical
simulation of Gaussian operations is possible. If a pure CV
state can be prepared only by Gaussian operations from the
vacuum state, this pure state is a Gaussian state, that is, a
CV state whose Wigner function is represented as a Gaussian
function, where the Winger function of a density operator ψ̂

is defined as Wψ̂ (q, p) := 1
2π

∫ ∞
−∞ dx eixp〈q − x

2 | ψ̂ | q + x
2 〉.

Logical Clifford gates on GKP qubits can be implemented
by Gaussian operations achieving the following symplectic
transformations of quadratures [20]: H : q̂ → p̂, p̂ → −q̂; S :
q̂ → q̂, p̂ → p̂ − q̂; CNOT : q̂1 → q̂1, p̂1 → p̂1 − p̂2, q̂2 →
q̂1 + q̂2, p̂2 → p̂2, where q̂1, p̂1 and q̂2, p̂2 are quadratures of
the control and target modes, respectively. The measurement
in the logical Pauli-Z basis {|0〉, |1〉} of a GKP qubit can
be implemented by homodyne detection for measuring the q̂
quadrature of the mode. However, we remark that Gaussian
operations and logical Clifford operations on GKP qubits are
different in that Pauli eigenstates of the GKP code, such as |0〉
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and |1〉, are non-Gaussian; that is, initialization of GKP qubits
requires non-Gaussian operations.

As for logical non-Clifford gates on GKP qubits, Ref. [20]
provides protocols for deterministically applying the T gate
to any GKP state using Gaussian operations and an auxil-
iary mode prepared either in a GKP Hadamard eigenstate
|H〉 := (cos π

8 )|0〉 + (sin π
8 )|1〉, a GKP π

8 phase state |π
8 〉 :=

1√
2
(e−i π

8 |0〉 + ei π
8 |1〉), or a cubic phase state. A CV state that

assists Gaussian operations to apply a logical non-Clifford
gate to GKP qubits, such as |H〉, is called a GKP magic state.

III. DETERMINISTIC ALL-GAUSSIAN UNIVERSALITY
USING A GKP MAGIC STATE

Toward implementing fault-tolerant quantum computation
using photonic systems, it is promising to combine Gaus-
sian operations with GKP qubits [21–25]. This is because
Gaussian operations by themselves cannot correct Gaussian
errors that occur in CV photonic systems [55], but combining
Gaussian operations with an approximate GKP code concate-
nated with a multiqubit quantum error-correcting code, we can
achieve the quantum error correction for CV systems [21].

Which GKP state to prepare and how to combine the GKP
state with Gaussian operations matter in reducing the tech-
nological cost of implementing quantum computation, since
GKP states are non-Gaussian. Employing the non-Gaussianity
of |0〉 of a GKP qubit, Ref. [26] has recently shown a protocol
based on magic state distillation [27,56] that probabilistically
and approximately transforms auxiliary GKP qubits prepared
in |0〉 ⊗ |0〉 ⊗ · · · into a magic state |H〉 only using Gaussian
operations, whereas it is still unknown whether a deterministic
or exact Gaussian transformation from a finite number of
|0〉′s to |H〉 is possible or not. This protocol suggests that
when Gaussian operations are available, a light source that
can emit only a single type of a GKP state |0〉 suffices
to implement universal quantum computation. However, this
protocol imposes the overhead implementation cost arising
from the magic state distillation; that is, whenever we need
to use one GKP magic state |H〉 to implement one logical
T gate up to a sufficiently small accuracy ε in fidelity, the
light source has to generate many |0〉′s. This overhead cost
per T gate on a GKP qubit increases the total implementation
cost of fault-tolerant quantum computation including that of
implementing fault-tolerant logical non-Clifford gates on a
qubit-based quantum error-correcting code that we concate-
nate with the GKP code. In general, the overhead cost caused
by the magic state distillation in terms of the number of
auxiliary GKP qubits, which are prepared in |0〉 in the case
of the scheme in Ref. [26], amounts to [57–59]

O

(
polylog

(
1

ε

))
as ε → 0. (1)

To reduce this cost of the required number of auxiliary
GKP qubits, we here propose choosing |H〉 instead of |0〉 as
the single GKP state for achieving universal quantum compu-
tation. Since |H〉 and |π

8 〉 are related by Clifford operations
as |H〉 = SH |π

8 〉, and we can implement any logical Clifford
gates on the ideal GKP qubits by Gaussian operations, the
following description of our proposal uses these states inter-
changeably. Toward the cost reduction, recall a well-known

π
8
π
8

Z

S S† H |0

|ψ
π
8

Z

S T |ψ

FIG. 1. A quantum circuit of state injection for applying the T
gate to any one-qubit input state |ψ〉 by Clifford operations assisted
by an auxiliary input qubit prepared in | π

8 〉 at the top, and that for
converting a two-qubit input state | π

8 〉⊗2 to |0〉 at the bottom. The
latter conversion circuit can be implemented only by adaptive Gaus-
sian operations on GKP qubits, namely, Clifford gates CNOT, S, S†,
and H ) that are implemented with Gaussian unitary operations, and
conditioning on a Z-basis measurement outcome that is implemented
with a homodyne detection.

quantum circuit for state injection [20,27] given at the top of
Fig. 1, which can apply the T gate to an arbitrary one-qubit
input state |ψ〉 only using Clifford operations assisted by
an auxiliary qubit prepared in |π

8 〉. Inputting |ψ〉 = |π
8 〉 of a

GKP qubit to this circuit and using additional Clifford gates,
we can deterministically transform two GKP qubits prepared
in |ψ〉 ⊗ |π

8 〉 = |π
8 〉⊗2 into |0〉 only by Gaussian operations

as shown at the bottom of Fig. 1. This protocol indicates
that Gaussian operations combined with a light source of the
GKP state |H〉 can prepare |0〉; that is, this combination can
implement universal quantum computation. This protocol is
fault tolerant, i.e., can correct errors on CV systems as long
as we use an approximate GKP code that approximates the
ideal one sufficiently well, in the same way as the protocol in
Ref. [26]. Our deterministic protocol using |H〉′s to prepare
|0〉 can be advantageous over the probabilistic protocol in
Ref. [26] using |0〉′s to prepare |H〉; in contrast to Eq. (1), the
overhead cost of the number of auxiliary GKP qubits, which
are prepared in |H〉 in our protocol, per preparation of |0〉 is
deterministically bounded by a practically small constant, i.e.,

2 = O(1), (2)

where |0〉 is exactly (ε = 0) obtained in the ideal case.

IV. A RESOURCE-THEORETICAL FRAMEWORK FOR
ANALYZING FUNDAMENTAL LIMITATIONS IN GKP

STATE CONVERSION

Since transformation between GKP states |H〉 and |0〉 un-
der Gaussian operations is crucial in implementing quantum
computation by Gaussian operations with only one of |H〉
and |0〉, we here develop a simple analytical method for
obtaining fundamental bounds of the convertibility of the
GKP states. Our analysis is based on the resource theory of
non-Gaussianity, where Gaussian operations are considered
to be free and non-Gaussianity is regarded as a resource
for assisting Gaussian operations [31,32,60,61]. Following
Refs. [31,32], we include adaptive Gaussian operations con-
ditioned on measurement outcomes of homodyne detection in
the free operations. Note that while Gaussian operations on
GKP qubits are analogous to Clifford operations of qubits,
the resource theories of magic [62,63] using the Clifford
operations as the free operations are insufficient for our
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2

FIG. 2. Wigner functions of ideal GKP states |0〉 on the left
and |H〉 on the right, where each blue filled circle represents a
positive delta function δ, each red circled X represents a neg-
ative delta function −δ, each yellow filled circle represents a
weighted positive delta function 1√

2
δ, and each black circled X rep-

resents a weighted negative delta function − 1√
2
δ, e.g., W|0〉〈0|(q, p) ∝∑

s,t∈Z (−1)stδ(q − √
πs)δ(p −

√
π

2 t ) up to normalization. These
Wigner functions have periodicity, where the gray region shows a
period.

analysis. This is because Gaussian operations cannot prepare
Pauli eigenstates of GKP qubits, e.g., |0〉, but in the resource
theory of magic, Pauli eigenstates of qubits are free states and
can be prepared arbitrarily.

To analyze the convertibility between GKP states under
Gaussian operations, we can use a measure that quantifies
non-Gaussianity of a CV state. One way to quantify the
non-Gaussianity of a given CV state ψ̂ is to use the neg-
ativity [31,32] of the Wigner function Wψ̂ of ψ̂ defined as
N (ψ̂ ) := ∫ ∞

−∞ dq
∫ ∞
−∞ d p |Wψ̂ (q, p)|, where the normalization

of ψ̂ yields
∫ ∞
−∞ dq

∫ ∞
−∞ d pWψ̂ (q, p) = 1. Note that ln N

yields the logarithmic negativity used in Refs. [31,32]. The
negativity N does not increase under any Gaussian operations
(i.e., N has monotonicity).

We here put forward a simple analytical method for cal-
culating the negativities of ideal GKP states to compare
their non-Gaussianity. The Wigner functions of ideal GKP
states consist of infinitely many Dirac delta functions that are
arranged according to a square lattice, as depicted in Fig. 2.
Since the ideal GKP states are non-normalizable, the negativ-
ity N of an ideal GKP state is not well-defined. To circumvent
this mathematical subtlety, we exploit the periodicity of the
Wigner functions shown in Fig. 2 and evaluate the negativity
of an ideal GKP state by replacing the improper integral of N
from −∞ to ∞ with an integral over one period. In particular,
in place of N , we define

Ñ (ψ̂ ) :=
∫
I dq

∫
I d p

∣∣Wψ̂ (q, p)
∣∣∫

I dq
∫
I d pWψ̂ (q, p)

, (3)

where I := [0 + ε, 2
√

π + ε] for any fixed ε ∈ (0,
√

π

2 ) rep-
resents the period shown in Fig. 2, and the denominator is
chosen so we have Ñ (ψ̂ ) = 1 for a state ψ̂ that has a nonneg-
ative Wigner function. Then, by counting delta functions in
Fig. 2, we obtain

Ñ (|0〉〈0|) = 8
4 = 2, (4)

Ñ (|H〉〈H |) = 4 + 8 × (1/
√

2)

4
= 1 +

√
2. (5)

0 2 4 6 8 10 12
Squeezing level −10 log10(2σ

2) [dB]
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| 0
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FIG. 3. Negativities of the Wigner functions of |0σ 2 〉 (blue solid
line) and |Hσ 2 〉 ∝ (cos ( π

8 )|0σ 2 〉 + sin ( π

8 )|1σ 2 〉) (orange dashed line)
with respect to the squeezing level −10 log10(2σ 2). Negativity of
|0σ 2 〉 approaches 2, and that of |Hσ 2 〉 to 1 + √

2 = 2.41 · · · , as
expected from Eqs. (4) and (5).

Thus, we quantitatively compare the non-Gaussianity of |H〉
and |0〉 by

Ñ (|H〉〈H |)
Ñ (|0〉〈0|) = 1 + √

2

2
> 1, (6)

which implies that |H〉 has more non-Gaussianity than |0〉, and
hence no Gaussian operation can deterministically transform
|0〉 into |H〉.

To justify using Ñ as a substitute of N for ideal GKP
states, we also perform a numerical calculation of the neg-
ativity N of approximate GKP states, which is well-defined.
Figure 3 shows the negativities of the Wigner functions of
|0σ 2〉 and |Hσ 2〉 ∝ (cos ( π

8 )|0σ 2〉 + sin ( π
8 )|1σ 2〉) with respect

to the squeezing level −10 log10(2σ 2) of the approximate
codewords | jσ 2〉. For the plot, we performed the numerical
integration for the absolute values of the Wigner functions of
|0σ 2〉 and |Hσ 2〉 using Mathematica 11.2.0. The figure indi-
cates that the negativity of |0σ 2〉 approaches to Ñ (|0〉〈0|) = 2
as −10 log10(2σ 2) → ∞, that is, in the limit of good ap-
proximation, and that of |Hσ 2〉 to Ñ (|H〉〈H |) = 1 + √

2, as
expected from our arguments.

While a Gaussian transformation from |H〉⊗2 to |0〉 is
achievable as shown in Fig. 1, our method for evaluating
the negativities can conversely provide an upper bound in
generating |0〉′s of GKP qubits from |H〉 by Gaussian opera-
tions. In the same way as the multiplicativity of the negativity
N [31,32], Ñ is multiplicative, i.e., Ñ (ψ̂⊗n) = (Ñ (ψ̂ ))

n
. The

multiplicativity of Ñ shows that |H〉⊗2 cannot be transformed
into |0〉⊗3 by any Gaussian operation because we have

Ñ (|H〉〈H |⊗2)

Ñ (|0〉〈0|⊗3)
= (1 + √

2)
2

23
< 1. (7)

Our method finds a useful application of quantum resource
theory for obtaining fundamental bounds that limit GKP state
conversion. Note that the evaluation of the negativity of the
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ideal (infinitely squeezed) GKP states was also discussed in
Ref. [64], which is done independently of our work. Yet, in
contrast to Ref. [64], our numerical calculation shows the
negativity of GKP states not only at the infinite squeezing
level but all the squeezing levels in Fig. 3, justifying the
calculation of the negativity in the limit of the infinite squeez-
ing level. Furthermore, our crucial contribution is to apply
this calculation of the negativity to obtaining the fundamen-
tal limit on transformation between GKP states, from the
resource-theoretical perspective. While the monotonicity of
the negativity by itself may provide few implications for the
achievability, our analysis raises the following open questions
for future research. First, it remains unclear whether there
exist Gaussian operations that transform one copy of |H〉 to
|0〉, and how we can achieve such a Gaussian transformation
if it exists. Second, whereas the probabilistic transformation
from multiple |0〉′s to |H〉 is used in the scheme of Ref. [26],
whether a deterministic transformation of a finite number of
|0〉′s to |H〉 is possible or not is still open; in particular, the
calculations Eqs. (4) and (5) of the negativity do not prohibit
deterministic transformation from |0〉⊗2 to |H〉, and further
research is needed to conclude the feasibility of this transfor-
mation. Lastly, it would be interesting to investigate whether
Gaussian operations combined with postselection can increase
the negativity of a GKP state with nonzero probability; e.g., it
is interesting to investigate whether there can be a Gaussian
protocol for transforming only one copy of |0〉 into |H〉 with
nonzero probability in the limit of good approximation of the
GKP code. Our resource-theoretical arguments and methods
open a starting point for tackling these types of questions on
the GKP state conversion.

V. FEASIBILITY OF PREPARING A GKP MAGIC STATE

Since Gaussian operations combined with a GKP magic
state |H〉 can be advantageous in implementing quantum
computation over those with |0〉 of GKP qubits, we here
discuss possible protocols for preparing |H〉. Our following
discussion is based on the proposals for the photonic imple-
mentation of approximate GKP qubits [33–42], while there
also exist other proposals and experimental demonstrations
of generating approximate GKP code words in various sys-
tems [28,29,43–51]. Note that architectures such as super-
conducting cavities [28] and trapped-ion mechanical oscilla-
tors [29] are also promising candidates to realize the GKP
code, but we here focus on photonic implementations since
Gaussian operations are not necessarily easier to implement
than non-Gaussian operations on the superconducting cavities
and the trapped-ion mechanical oscillators. We remark that
these existing proposals mostly focus on preparing |0〉 or |1〉
of the GKP code. Some of the proposals, such as those in
Refs. [33–37,40], may not be suitable for the direct prepara-
tion of |H〉 as we discuss in Appendix B. In contrast, the pro-
tocols for the GKP state preparation proposed in Refs. [38–42]
can be easily modified for preparing |H〉.

Two promising routes toward preparing |H〉 directly
in photonic systems are to use interaction between a
discrete-variable system and an optical mode in the cavity
QED setups [38–40], and to use linear optical circuits fol-
lowed by photon-number-resolving (PNR) detectors [41,42].

References [38–40] consider an interaction between qudits
and an optical mode in the cavity QED setups; Refs. [38,40]
use a recursive application of controlled-displacement oper-
ator between a qubit and an optical mode, while Ref. [39]
utilizes a spin-J system, i.e., a qudit instead of the qubit,
prepared in a spin coherent state. Although these proto-
cols were aimed at preparing |0〉 or |1〉, the protocols can
be modified for preparation of |H〉 if we can perform an
additional non-Clifford measurement on the qubit or qudit
as we discuss in Appendix C. References [41,42] consider
generating non-Gaussian states using linear optical circuits
followed by PNR detectors. In contrast with other protocols,
this protocol affords implementations of |0〉 and |H〉 on an
equal footing with almost the same resource requirements,
as pointed out in Ref. [42]. Furthermore, preparing only
one type of GKP state in this protocol may be desired
since optical circuits and PNR detectors to generate the
GKP state need to be finely tuned to keep the fidelity high.
These protocols indicate that it is feasible to prepare |H〉 of
GKP qubits with a technological requirement comparable to
preparing |0〉.

VI. CONCLUSION

We have proposed a photonic scheme of implementing
universal quantum computation in a fault-tolerant way, where
Gaussian operations are combined with a light source emitting
the GKP magic state |H〉, rather than the GKP codeword |0〉
in the previous scheme of Ref. [26]. Our main contribution
is the essential reduction of non-Gaussian resources, i.e., the
number of GKP qubits, in implementing the computation,
achieved by the direct preparation of |H〉 in place of |0〉 of
the GKP code for avoiding the magic state distillation. This
cost reduction in the photonic quantum computation using the
GKP code is a result of its intrinsic property that both |H〉
and |0〉 of the GKP code are costly to prepare, which does
not necessarily hold for an error-correcting code for qubits. In
contrast with the previous scheme using |0〉, our scheme can
be free from the overhead cost given by Eq. (1) of the magic
state distillation for preparing |H〉 from |0〉′s, and achieves as
small as a constant overhead cost given by Eq. (2) in preparing
|0〉 from |H〉′s.

Our results put forward an argument on which of the
two possible light sources of GKP states, |H〉 or |0〉, to
realize toward implementing photonic fault-tolerant quantum
computation, while a more concrete cost estimation of these
two may require further assumptions on advances in photonic
technologies and hence is left for future work. In addition
to constructing the cost-reduced scheme, we have also in-
troduced an analytical technique for addressing fundamental
limitations in transformation between GKP states |H〉 and |0〉
under any Gaussian operations. This technique, based on the
resource theory of non-Gaussianity, discovers an application
of quantum resource theories to quantum computation imple-
mented by CV systems, progressing beyond applications of
the resource theory of magic to that implemented by discrete-
variable systems. We have also discussed two possible proto-
cols for directly preparing a photonic system in |H〉; one is
based on Refs. [38–40] and the other on Refs. [41,42]. We
point out here that not much attention has been paid to direct
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preparation of the GKP magic state |H〉. Our proposal and
results open up future research on these lines to explore more
efficient use of the GKP magic state |H〉 and its preparation
methods toward the goal of realizing photonic fault-tolerant
quantum computation.
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APPENDIX A: STANDARD FORM OF APPROXIMATE GKP CODEWORDS

We review a standard form of approximate GKP codewords proposed in Ref. [52]. For approximate codewords {| jσ 2〉 : j =
0, 1}, we use the following standard form [52]:

| jσ 2〉 = 1

(1/4 − σ 4)
1
4
√

Nσ 2, j

e−(arctanh(2σ 2 ))(â†â+ 1
2 )| j (ideal)〉 (A1)

= 1√√
πσ 2Nσ 2, j

∞∑
s=−∞

∫ ∞

−∞
dq e− 2σ2

2(1−4σ4 )
((2s+ j)

√
(1−4σ 4 )π )

2

e− 1
2(2σ2 )

(q−(2s+ j)
√

(1−4σ 4 )π )
2

|q〉q, (A2)

where | j (ideal)〉 :=
√

2
√

π
∑

s∈Z |√π (2s + j)〉q represents the ideal GKP codewords, Nσ 2, j is a constant for normalization, and

the factor e− 2σ2

2(1−4σ4 )
((2s+ j)

√
(1−4σ 4 )π )

2

and the state
∫ ∞
−∞ dq e− 1

2(2σ2 )
(q−(2s+ j)

√
(1−4σ 4 )π )

2

|q〉q can be regarded as the Gaussian envelop
and the finitely squeezed vacuum state, respectively. The Hadamard eigenstate |Hσ 2〉 of the approximate GKP code is given by

|Hσ 2〉 = 1√
1 + 1√

2
�(〈0σ 2 | 1σ 2〉)

(
cos

(π

8

)
|0σ 2〉 + sin

(π

8

)
|1σ 2〉

)
, (A3)

where � represents the real part and the prefactor comes from the fact that |0σ 2〉 and |1σ 2〉 have nonzero overlap 〈0σ 2 | 1σ 2〉 �= 0.
The normalization factor Nσ 2, j , the overlap 〈0σ 2 | 1σ 2〉, and the Wigner functions of | jσ 2〉 and |Hσ 2〉 can be obtained from the

results in Ref. [52]. To show them here, we define the theta function with rational characteristics (a, b) as

ϑ

[
a

b

]
(z, τ ) :=

∑
s∈Z

exp[π iτ (s + a)2 + 2π i(z + b)(s + a)]. (A4)

Then, Ref. [52] shows that the normalization factor Nσ 2, j and the overlap 〈0σ 2 | 1σ 2〉 are given, respectively, by

Nσ 2, j = ϑ

[
j
d

0

]
(0, 8iσ 2)ϑ

[
0

0

](
0,

iσ 2

2

)
+ ϑ

[
j
d + 1

2

0

]
(0, 8iσ 2)ϑ

[
0
1
2

](
0,

iσ 2

2

)
, (A5)

〈0σ 2 | 1σ 2〉 = 1√
Nσ 2,0Nσ 2,1

[
ϑ

[
1
4

0
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(0, 8iσ 2)ϑ
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0
1
4

](
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2

)
+ ϑ

[
3
4

0

]
(0, 8iσ 2)ϑ

[
0
3
4

](
0,

iσ 2

2

)]
. (A6)

Regarding the Wigner functions of |0σ 2〉 and |Hσ 2〉, in this paper, we only need to show the Wigner representations of the
operator | jσ 2〉〈 j′

σ 2 | for j, j′ ∈ {0, 1}. Applying Lemma 1 in Ref. [52] to the Wigner representation of | jσ 2〉〈 j′
σ 2 | in Proposition 2

in Ref. [52], we obtain

W| j
σ2 〉〈 j′

σ2 |(q, p) = 1

2σ 2
√

Nσ 2, jNσ 2, j′

[
G 1

4σ2
(q) ϑ
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0
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4
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2
√

π
,

iσ 2

2

)
G 1
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4

0
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2
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π
,

iσ 2

2
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G 1

4σ2
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[
j− j′

4 + 1
2

0
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√
π
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)]
, (A7)

where G 1
4σ2

(x) denotes a probability density function of the normal distribution with variance 1
4σ 2 given by

G 1
4σ2

(x) :=
√

2σ 2

π
e−2σ 2x2

. (A8)

Using these formulas for explicitly representing the
approximate GKP states in terms of the theta function,
we can evaluate the negativities N (|0σ 2〉〈0σ 2 |) and

N (|Hσ 2〉〈Hσ 2 |) by numerically computing the integral
of the theta function, as we show in the main
text.

023270-6



COST-REDUCED ALL-GAUSSIAN UNIVERSALITY WITH … PHYSICAL REVIEW RESEARCH 2, 023270 (2020)

Squeezed state
Qubit |+

D(
√

2π)
RZ(φ) X

FIG. 4. A phase-estimation-like protocol for generating approxi-
mate GKP codewords proposed in Ref. [40], which is a refinement of
the protocol in Ref. [38]. The operations surrounded by the dashed
line is recursively performed, while the parameter φ of the rotation
around Z axis RZ (φ) is chosen according to the former outcomes of
the measurement on the qubits.

APPENDIX B: PROTOCOLS THAT CANNOT
STRAIGHTFORWARDLY PREPARE A GKP MAGIC STATE

We summarize existing protocols that can prepare a GKP
codeword |0〉 or |1〉 but do not straightforwardly generalize to
those for preparing a GKP magic state |H〉. Toward generating
GKP codewords, Ref. [33] considers using the cross-Kerr
nonlinearity to couple two optical modes initially prepared in
a coherent state and a squeezed coherent state, respectively,
followed by performing homodyne measurement of the mode
initialized as the coherent state, which results in generating
approximate GKP codewords |0〉 or |1〉. In this scheme, |H〉
cannot be directly prepared as long as Gaussian states are
fed into the cross-Kerr interaction followed by the homodyne
detection. References [34,35,40] consider protocols that breed
approximate GKP codewords from squeezed cat states. A
rough sketch of the protocol is that two premature GKP
codewords, which are initially the even squeezed cat states,
are interfered by a 50:50 beamsplitter, and then one of the
modes is measured by a homodyne detector. With a postse-
lection or feedback operation, the state becomes a better GKP
codeword, that is, a superposition of the squeezed coherent
states (approximately) weighted by a Gaussian function. This
scheme naturally prepares |0〉 but does not prepare |H〉,
because a coherent superposition of |0〉 and |1〉 cannot be
implemented with a naive application of the protocol. Note
that in addition to the breeding protocol, Ref. [40] shows a
protocol for preparing GKP codewords based on interaction
between a qubit and an optical mode, and this protocol can
be used for preparing a GKP magic state as we will show
in Appendix C. As for other proposals, Ref. [36] analyzes
optimization of parametrized non-Gaussian optical circuits by
machine learning, and Ref. [37] uses time-frequency degrees
of freedom. These proposals do not fit our current settings

GKP qubit |0
Qubit |+

D( π/2)

T X

GKP qubit π
8

FIG. 5. A quantum circuit for preparing a GKP π

8 phase state
| π

8 〉 from an input GKP codeword |0〉 using the same setup as that
in Ref. [40]. Note that the T gate is a rotation around Z axis in the
same way as RZ (φ) in Fig. 4, and thus this quantum circuit can be
implemented using the same experimental setup as that in Fig. 4.

for preparing photonic GKP qubits where Gaussian operations
are easy compared to non-Gaussian operations, while they are
also interesting research directions.

APPENDIX C: THE PREPARATION OF A GKP MAGIC
STATE WITH A NON-CLIFFORD MEASUREMENT

ON A QUBIT

Here we discuss how to prepare the GKP π
8 phase state

|π
8 〉 using the interaction between a discrete-variable system

and an optical mode based on the protocols in Refs. [38–40].
These protocols use a controlled-displacement gate, where we
write a displacement operator as

D(α) := eαâ†−α∗â, α ∈ C, (C1)

D(r)|q0〉q = |q0 +
√

2r〉q, r ∈ R. (C2)

Note that if we are allowed to use an interaction be-
tween a qubit and a photonic system beyond the controlled-
displacement gate, an additional controlled-Fourier operation
between the qubit and the photonic system can also prepare
|H〉 from |0〉 as shown in Ref. [20], while the protocols in
Refs. [38–40] do not require this additional interaction. For
simplicity, we focus on the protocol proposed in Refs. [38,40],
which recursively performs the controlled-displacement oper-
ation between a qubit and an optical mode, while a similar
strategy to that in the following discussion is also applicable to
the protocol proposed in Ref. [39]. Figure 4 shows a protocol
given in Ref. [40], which is a modification of the protocol in
Ref. [38] while these protocols work essentially in the same
way. Using this protocol, we can prepare a superposition of
a squeezed coherent state weighted by a Gaussian envelope.
Then, using the same experimental setup with a modification
of parameters, we can obtain the GKP π

8 phase state |π
8 〉 from

an input GKP codeword |0〉, as shown in Fig. 5. Thus in this
protocol, the technological requirements for preparing |0〉 and
|H〉 are at the same level.
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